1
|
Time above threshold plasma concentrations as pharmacokinetic parameter in the comparison of oral and intravenous docetaxel treatment of breast cancer tumors. Anticancer Drugs 2023; 34:281-289. [PMID: 36730487 DOI: 10.1097/cad.0000000000001426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Prolonging the time which plasma concentrations of antimitotic drugs, such as the taxanes, exceed cytotoxic threshold levels may be beneficial for their efficacy. Orally administered docetaxel offers an undemanding approach to optimize such time above threshold plasma concentrations (t C>threshold ). METHODS A nonsystematic literature screen was performed to identify studies reporting in-vitro half-maximal inhibitory concentration (IC 50 ) values for docetaxel. Pharmacokinetics of intravenously (i.v.) docetaxel (75 mg/m 2 ) and orally administered docetaxel (ModraDoc006) co-administered with ritonavir (r) given twice daily (30 + 20 mg concomitant with 100 mg ritonavir bis in die) were simulated using previously developed population models. T C>threshold was calculated for a range of relevant thresholds in terms of in-vitro cytotoxicity and plasma concentrations achieved after i.v. and oral administration of docetaxel. A published tumor growth inhibition model for i.v. docetaxel was adapted to predict the effect of attainment of time above threshold levels on tumor dynamics. RESULTS Identified studies reported a wide range of in vitro IC 50 values [median 0.04 µmol/L, interquartile range (IQR): 0.0046-0.62]. At cytotoxic thresholds <0.078 µmol/L oral docetaxel shows up to ~7.5-fold longer t C>threshold within each 3-week cycle for a median patient compared to i.v.. Simulations of tumor dynamics showed the increased relative potential of oral docetaxel for inhibition of tumor growth at thresholds of 0.075, 0.05 and 0.005 µmol/L. CONCLUSION ModraDoc006/r is superior to i.v. docetaxel 75 mg/m 2 in terms of median time above cytotoxic threshold levels <0.078 µmol/L. This may indicate superior cytotoxicity and inhibition of tumor growth compared to i.v. administration for relatively docetaxel-sensitive tumors.
Collapse
|
2
|
Leoncin M, La Starza R, Roti G, Pagliaro L, Bassan R, Mecucci C. Modern treatment approaches to adult acute T-lymphoblastic and myeloid/T-lymphoblastic leukemia: from current standards to precision medicine. Curr Opin Oncol 2022; 34:738-747. [PMID: 36017547 DOI: 10.1097/cco.0000000000000900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW To review the most recent advancements in the management of adult T-cell acute lymphoblastic leukemia (T-ALL), we summarize insights into molecular diagnostics, immunotherapy, targeted therapy and new techniques of drug sensitivity profiling that may support further therapeutic progress in T-ALL subsets. RECENT FINDINGS With current induction/consolidation chemotherapy and/or risk-oriented allogeneic stem cell transplantation programs up to 95% adult T-ALL patients achieve a remission and >50% (up to 80% in adolescents and young adults) are cured. The group of patients who fail upfront therapy, between 25% and 40%, is enriched in high-risk characteristics (unfavorable genetics, persistent minimal residual disease) and represents the ideal setting for the study of molecular mechanisms of disease resistance, and consequently explore novel ways of restoration of drug sensitivity and assess patient/subset-specific patterns of drug vulnerability to targeting agents, immunotherapy and cell therapy. SUMMARY The emerging evidence supports the contention that precision medicine may soon allow valuable therapeutic chances to adult patients with high-risk T-ALL. The ongoing challenge is to identify the best way to integrate all these new data into the therapeutic path of newly diagnosed patients, with a view to optimize the individual treatment plan and increase the cure rate.
Collapse
Affiliation(s)
- Matteo Leoncin
- Hematology Unit, Azienda Ulss3 Serenissima, Ospedale dell'Angelo, Venezia-Mestre
| | | | - Giovanni Roti
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Luca Pagliaro
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Renato Bassan
- Hematology Unit, Azienda Ulss3 Serenissima, Ospedale dell'Angelo, Venezia-Mestre
| | - Cristina Mecucci
- Department of Medicine and Surgery, University of Perugia, Perugia
| |
Collapse
|
3
|
Hartmann RW, Pijnappel M, Nilvebrant J, Helgudottir HR, Asbjarnarson A, Traustadottir GA, Gudjonsson T, Nygren PÅ, Lehmann F, Odell LR. The Wittig bioconjugation of maleimide derived, water soluble phosphonium ylides to aldehyde-tagged proteins. Org Biomol Chem 2021; 19:10417-10423. [PMID: 34817496 DOI: 10.1039/d1ob01155c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we disclose the transformation of maleimides into water-soluble tris(2-carboxyethyl)phosphonium ylides and their subsequent application in the bioconjugation of protein- and peptide-linked aldehydes. The new entry into Wittig bioconjugate chemistry proceeds under mild conditions and relies on highly water soluble reagents, which are likely already part of most biochemists' inventory.
Collapse
Affiliation(s)
- Rafael W Hartmann
- Recipharm OT Chemistry, Virdings allé 16, 75450 Uppsala, Sweden
- Department of Medicinal Chemistry, Uppsala University, Uppsala Biomediciniska Centrum, Husargatan 3, 75123 Uppsala, Sweden.
| | | | - Johan Nilvebrant
- Department of Protein Science, Division of Protein Engineering, KTH School of Engineering Sciences in Chemistry, Biology and Health, AlbaNova Universitetscentrum, Roslagsvägen 30B, 10961 Stockholm, Sweden
| | - Hildur Run Helgudottir
- Stem Cell Research Unit, Biomedical Center, University of Iceland, 101 Reykjavik, Iceland
| | - Arni Asbjarnarson
- Stem Cell Research Unit, Biomedical Center, University of Iceland, 101 Reykjavik, Iceland
| | | | - Thorarinn Gudjonsson
- Stem Cell Research Unit, Biomedical Center, University of Iceland, 101 Reykjavik, Iceland
- Department of Laboratory Hematology, Landspítali-University Hospital, Reykjavik, Iceland
| | - Per-Åke Nygren
- Department of Protein Science, Division of Protein Engineering, KTH School of Engineering Sciences in Chemistry, Biology and Health, AlbaNova Universitetscentrum, Roslagsvägen 30B, 10961 Stockholm, Sweden
| | - Fredrik Lehmann
- Recipharm OT Chemistry, Virdings allé 16, 75450 Uppsala, Sweden
| | - Luke R Odell
- Department of Medicinal Chemistry, Uppsala University, Uppsala Biomediciniska Centrum, Husargatan 3, 75123 Uppsala, Sweden.
| |
Collapse
|
4
|
Alyami NM. MicroRNAs Role in Breast Cancer: Theranostic Application in Saudi Arabia. Front Oncol 2021; 11:717759. [PMID: 34760689 PMCID: PMC8573223 DOI: 10.3389/fonc.2021.717759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/30/2021] [Indexed: 11/23/2022] Open
Abstract
Breast cancer is an aggressive silent disease, representing 11.7% of the diagnosed cancer worldwide, and it is also a leading cause of death in Saudi Arabia. Consequently, microRNAs have emerged recently as potential biomarkers to diagnose and monitor such cases at the molecular level, which tends to be problematic during diagnosis. MicroRNAs are highly conserved non- coding oligonucleotide RNA. Over the last two decades, studies have determined the functional significance of these small RNAs and their impact on cellular development and the interaction between microRNAs and messenger RNAs, which affect numerous molecular pathways and physiological functions. Moreover, many disorders, including breast cancer, are associated with the dysregulation of microRNA. Sparingly, many microRNAs can suppress cancer cell proliferation, apoptosis, angiogenesis, invasion, metastasis, and vice versa. Remarkably, microRNAs can be harvested from patients’ biofluids to predict disease progression that considered a non-invasive method. Nevertheless, MicroRNAs are currently utilized as anti- cancer therapies combined with other drug therapies or even as a single agents’ treatment. Therefore, this review will focus on microRNAs’ role in breast cancer as an indicator of disease progression. In addition, this review summarizes the current knowledge of drug sensitivity and methods in detecting microRNA and their application to improve patient care and identifies the current gaps in this field.
Collapse
Affiliation(s)
- Nouf M Alyami
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Fernandes DA, Fernandes DD, Malik A, Gomes GNW, Appak-Baskoy S, Berndl E, Gradinaru CC, Kolios MC. Multifunctional nanoparticles as theranostic agents for therapy and imaging of breast cancer. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2021; 218:112110. [PMID: 33865007 DOI: 10.1016/j.jphotobiol.2020.112110] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/13/2020] [Accepted: 12/18/2020] [Indexed: 11/26/2022]
Abstract
Over the last decade, there has been significant developments in nanotechnology, in particular for combined imaging and therapeutic applications (theranostics). The core or shell of nanoemulsions (NEs) can be loaded with various therapeutic agents, including drugs with low solubility for effective treatment, or various imaging agents for specific imaging modalities (e.g., MRI, fluorescence). In this work, perfluorohexane (PFH) NEs were synthesized for theranostic applications and were coupled to silica coated gold nanoparticles (scAuNPs) to increase the generation of PFH bubbles upon laser induced vaporization (i.e., optical droplet vaporization). The localized heat generated from the absorption properties of these nanoparticles (used to provide photoacoustic signals) can also be used to treat cancer without significantly damaging nearby healthy tissues. The theranostic potential of these PFH-NEs for contrast imaging of tumors and as a drug-delivery vehicle for therapeutic purposes were demonstrated for both in vitro and in vivo systems using a combination of photoacoustic, ultrasound and fluorescence imaging modalities. The ability of PFH-NEs to couple with scAuNPs, attach to the membranes of cancer cells and internalize within cancer cells, are encouraging for targeted chemotherapeutic applications for directly inducing cancer cell death via vaporization in clinical settings.
Collapse
Affiliation(s)
- Donald A Fernandes
- Department of Chemistry & Biology, Ryerson University, Toronto, ON M5B 2K3, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between Ryerson University and St. Michael's Hospital, Toronto, ON M5B 1T8, Canada; Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, M5B 1T8, Canada.
| | - Dennis D Fernandes
- Department of Physics, University of Toronto, Toronto, ON M5S 1A7, Canada; Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Aimen Malik
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Gregory-Neal W Gomes
- Department of Physics, University of Toronto, Toronto, ON M5S 1A7, Canada; Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Sila Appak-Baskoy
- Department of Chemistry & Biology, Ryerson University, Toronto, ON M5B 2K3, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between Ryerson University and St. Michael's Hospital, Toronto, ON M5B 1T8, Canada; Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, M5B 1T8, Canada
| | - Elizabeth Berndl
- Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between Ryerson University and St. Michael's Hospital, Toronto, ON M5B 1T8, Canada; Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, M5B 1T8, Canada; Department of Physics, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Claudiu C Gradinaru
- Department of Physics, University of Toronto, Toronto, ON M5S 1A7, Canada; Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada.
| | - Michael C Kolios
- Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between Ryerson University and St. Michael's Hospital, Toronto, ON M5B 1T8, Canada; Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, M5B 1T8, Canada; Department of Physics, Ryerson University, Toronto, ON M5B 2K3, Canada.
| |
Collapse
|
6
|
Uhr K, Prager-van der Smissen WJC, Heine AAJ, Ozturk B, van Jaarsveld MTM, Boersma AWM, Jager A, Wiemer EAC, Smid M, Foekens JA, Martens JWM. MicroRNAs as possible indicators of drug sensitivity in breast cancer cell lines. PLoS One 2019; 14:e0216400. [PMID: 31063487 PMCID: PMC6504094 DOI: 10.1371/journal.pone.0216400] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 04/20/2019] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miRNAs) regulate gene expression post-transcriptionally. In this way they might influence whether a cell is sensitive or resistant to a certain drug. So far, only a limited number of relatively small scale studies comprising few cell lines and/or drugs have been performed. To obtain a broader view on miRNAs and their association with drug response, we investigated the expression levels of 411 miRNAs in relation to drug sensitivity in 36 breast cancer cell lines. For this purpose IC50 values of a drug screen involving 34 drugs were associated with miRNA expression data of the same breast cancer cell lines. Since molecular subtype of the breast cancer cell lines is considered a confounding factor in drug association studies, multivariate analysis taking subtype into account was performed on significant miRNA-drug associations which retained 13 associations. These associations consisted of 11 different miRNAs and eight different drugs (among which Paclitaxel, Docetaxel and Veliparib). The taxanes, Paclitaxel and Docetaxel, were the only drugs having miRNAs in common: hsa-miR-187-5p and hsa-miR-106a-3p indicative of drug resistance while Paclitaxel sensitivity alone associated with hsa-miR-556-5p. Tivantinib was associated with hsa-let-7d-5p and hsa-miR-18a-5p for sensitivity and hsa-miR-637 for resistance. Drug sensitivity was associated with hsa-let-7a-5p for Bortezomib, hsa-miR-135a-3p for JNJ-707 and hsa-miR-185-3p for Panobinostat. Drug resistance was associated with hsa-miR-182-5p for Veliparib and hsa-miR-629-5p for Tipifarnib. Pathway analysis for significant miRNAs was performed to reveal biological roles, aiding to find a potential mechanistic link for the observed associations with drug response. By doing so hsa-miR-187-5p was linked to the cell cycle G2-M checkpoint in line with this checkpoint being the target of taxanes. In conclusion, our study shows that miRNAs could potentially serve as biomarkers for intrinsic drug resistance and that pathway analyses can provide additional information in this context.
Collapse
Affiliation(s)
- Katharina Uhr
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Wendy J. C. Prager-van der Smissen
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Anouk A. J. Heine
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Bahar Ozturk
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marijn T. M. van Jaarsveld
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Antonius W. M. Boersma
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Agnes Jager
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Erik A. C. Wiemer
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marcel Smid
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - John A. Foekens
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - John W. M. Martens
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
- * E-mail:
| |
Collapse
|
7
|
|
8
|
O. M. K. BIOTECHNICAL INFORMATION SYSTEMS FOR MONITORING OF CHEMICALS IN ENVIRONMENT: BIOPHYSICAL APPROACH. BIOTECHNOLOGIA ACTA 2019. [DOI: 10.15407/biotech12.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
9
|
Gebregiworgis T, Bhinderwala F, Purohit V, Chaika NV, Singh PK, Powers R. Insights into gemcitabine resistance and the potential for therapeutic monitoring. Metabolomics 2018; 14:156. [PMID: 30830412 PMCID: PMC6620022 DOI: 10.1007/s11306-018-1452-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/19/2018] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Gemcitabine is an important component of pancreatic cancer clinical management. Unfortunately, acquired gemcitabine resistance is widespread and there are limitations to predicting and monitoring therapeutic outcomes. OBJECTIVE To investigate the potential of metabolomics to differentiate pancreatic cancer cells that develops resistance or respond to gemcitabine treatment. RESULTS We applied 1D 1H and 2D 1H-13C HSQC NMR methods to profile the metabolic signature of pancreatic cancer cells. 13C6-glucose labeling identified 30 key metabolites uniquely altered between wild-type and gemcitabine-resistant cells upon gemcitabine treatment. Gemcitabine resistance was observed to reprogram glucose metabolism and to enhance the pyrimidine synthesis pathway. Myo-inositol, taurine, glycerophosphocholine and creatinine phosphate exhibited a "binary switch" in response to gemcitabine treatment and acquired resistance. CONCLUSION Metabolic differences between naïve and resistant pancreatic cancer cells and, accordingly, their unique responses to gemcitabine treatment were revealed, which may be useful in the clinical setting for monitoring a patient's therapeutic response.
Collapse
Affiliation(s)
- Teklab Gebregiworgis
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Fatema Bhinderwala
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Vinee Purohit
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Nina V Chaika
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Pankaj K Singh
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
| |
Collapse
|
10
|
|
11
|
Fernandes DA, Fernandes DD, Li Y, Wang Y, Zhang Z, Rousseau D, Gradinaru CC, Kolios MC. Synthesis of Stable Multifunctional Perfluorocarbon Nanoemulsions for Cancer Therapy and Imaging. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:10870-10880. [PMID: 27564412 DOI: 10.1021/acs.langmuir.6b01867] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Nanotechnology provides a promising platform for drug-delivery in medicine. Nanostructured materials can be designed with desired superparamagnetic or fluorescent properties in conjunction with biochemically functionalized moieties (i.e., antibodies, peptides, and small molecules) to actively bind to target sites. These multifunctional properties make them suitable agents for multimodal imaging, diagnosis, and therapy. Perfluorohexane nanoemulsions (PFH-NEs) are novel drug-delivery vehicles and contrast agents for ultrasound and photoacoustic imaging of cancer in vivo, offering higher spatial resolution and deeper penetration of tissue when compared to conventional optical techniques. Compared to other theranostic agents, our PFH-NEs are one of the smallest of their kind (<100 nm), exhibit minimal aggregation, long-term stability at physiological conditions, and provide a noninvasive cancer imaging and therapy alternative for patients. Here, we show, using high-resolution imaging and correlative techniques, that our PFH-NEs, when in tandem with silica-coated gold nanoparticles (scAuNPs), can be used as a drug-loaded therapeutic via endocytosis and as a multimodal imaging agent for photoacoustic, ultrasound, and fluorescence imaging of tumor growth.
Collapse
Affiliation(s)
| | - Dennis D Fernandes
- Department of Physics, University of Toronto , 60 St George Streeet, Toronto, Ontario M5S 1A7, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga , 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada
| | - Yuchong Li
- Department of Physics, University of Toronto , 60 St George Streeet, Toronto, Ontario M5S 1A7, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga , 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada
| | | | - Zhenfu Zhang
- Department of Physics, University of Toronto , 60 St George Streeet, Toronto, Ontario M5S 1A7, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga , 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada
| | | | - Claudiu C Gradinaru
- Department of Physics, University of Toronto , 60 St George Streeet, Toronto, Ontario M5S 1A7, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga , 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada
| | | |
Collapse
|