1
|
Roy M, Majid H, Khan P, Sharma N, Kohli S, Islam SU, Vohora D, Nidhi. CTX-1 and TRACP-5b as biomarkers for osteoporosis risk in type 2 diabetes mellitus: a cross-sectional study. J Diabetes Metab Disord 2024; 23:2055-2064. [PMID: 39610562 PMCID: PMC11599675 DOI: 10.1007/s40200-024-01464-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/23/2024] [Indexed: 11/30/2024]
Abstract
OBJECTIVE Type 2 diabetes mellitus (T2DM) demonstrates a higher risk of fractures compared to the healthy population. Therefore, the aim of our study is to assess the risk of osteoporosis in T2DM patients. METHODOLOGY A cross-sectional observational study was conducted in T2DM patients. The serum levels of bone resorption markers- carboxy-terminal crosslinked telopeptide of type 1 collagen (CTX-1) and tartrate-resistant acid phosphatase 5b (TRACP-5b) were compared in the T2DM group (n = 43) and the control group (n = 43) and its association with duration of T2DM, HbA1c level, body mass index (BMI), oral hypoglycaemic agents (OHA), and level of functioning was evaluated. RESULTS CTX-1 and TRACP-5b were significantly lower in the T2DM group compared to the control group (p < 0.05). There was no significant correlation between the bone resorption markers and the duration of T2DM and HbA1c levels. However, a significant positive correlation was found between the level of functioning and TRACP-5b level, but no such correlation was observed in T2DM patients. The linear regression model revealed that none of the OHA affected the levels of CTX-1 and TRACP-5b. CONCLUSION The bone resorption markers are not influenced by the duration of T2DM and HbA1c level. However, they were significantly associated with BMI and the level of functionality. However, further research is needed to strengthen the evidence of the association between T2DM and osteoporosis.
Collapse
Affiliation(s)
- Madhura Roy
- Department of Translational and Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062 India
| | - Haya Majid
- Department of Translational and Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062 India
| | - Parvej Khan
- Department of Translational and Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062 India
| | - Nikhil Sharma
- Department of Pharmacy Practice, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062 India
| | - Sunil Kohli
- Department of Medicine, Hamdard Institute of Medical Science and Research, New Delhi, 110062 India
| | - Sajad Ul Islam
- Department of Medicine, Hamdard Institute of Medical Science and Research, New Delhi, 110062 India
| | - Divya Vohora
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062 India
| | - Nidhi
- Department of Translational and Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062 India
| |
Collapse
|
2
|
Katamesh BE, Futela P, Vincent A, Thilagar B, Whipple M, Hassan AR, Abuelazm M, Nanda S, Anstine C, Singla A. Navigating the Proteomic Landscape of Menopause: A Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1473. [PMID: 39336514 PMCID: PMC11434514 DOI: 10.3390/medicina60091473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/23/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024]
Abstract
Background and Objectives: Proteomics encompasses the exploration of protein composition, regulation, function, and pathways. Its influence spans diverse clinical fields and holds promise in addressing various women's health conditions, including cancers, osteoporosis, and cardiovascular disorders. However, no comprehensive summary of proteomics and menopausal health exists. Our objective was to summarize proteomic profiles associated with diseases and disorders in peri- and postmenopausal women. Materials and Methods: We conducted a comprehensive search of databases including PubMed, Google Scholar, the Cochrane database, Elsevier, and ScienceDirect until 2022. A total of 253 studies were identified, and 41 studies met the inclusion criteria to identify data of interest. These included the study design, disease, and proteomics/proteins of significance, as described by the authors. Results: The 41 studies covered diverse areas, including bone disorders (10 studies), cardiovascular diseases (5 studies), oncological malignancies (10 studies), and various conditions, such as obesity, nonalcoholic liver disease, the effects of hormone replacement therapy, and neurological diseases (16 studies). The results of our study indicate that proteomic profiles correlate with heart disease in peri- and postmenopausal women, with distinct sex differences. Furthermore, proteomic profiles significantly differ between women with and without osteoporosis. Additionally, patients with breast, ovarian, and endometrial cancer exhibit notable variations in proteomic profiles compared to those without these conditions. Conclusions: Proteomics has the potential to enhance risk assessment and disease monitoring in peri- and postmenopausal women. By analyzing unique protein profiles, clinicians can identify individuals with heightened susceptibility to specific diseases or those already affected by established conditions. This review suggests that there is sufficient preliminary data related to proteomics in peri- and postmenopausal women for early identification of cardiovascular disease, osteoporosis, and cancers, disease monitoring, and tailoring individualized therapies. Rigorous validation studies involving large populations are essential before drawing definitive conclusions regarding the clinical applicability of proteomic findings.
Collapse
Affiliation(s)
- Basant E Katamesh
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Pragyat Futela
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Internal Medicine, Metro Health Medical Center, Cleveland, OH 44109, USA
| | - Ann Vincent
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Bright Thilagar
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Mary Whipple
- School of Nursing, University of Minnesota, Minneapolis, MN 55455, USA
| | - Abdul Rhman Hassan
- Department of Ophthalmology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | - Sanjeev Nanda
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Christopher Anstine
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Abhinav Singla
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
3
|
Becerra-Cervera A, Argoty-Pantoja AD, Aparicio-Bautista DI, López-Montoya P, Rivera-Paredez B, Hidalgo-Bravo A, Velázquez-Cruz R. Proteomic Biomarkers Associated with Low Bone Mineral Density: A Systematic Review. Int J Mol Sci 2024; 25:7526. [PMID: 39062769 PMCID: PMC11277462 DOI: 10.3390/ijms25147526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/07/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Osteoporosis is a globally relevant public health issue. Our study aimed to summarize the knowledge on the proteomic biomarkers for low bone mineral density over the last years. We conducted a systematic review following the PRISMA guidelines; the scoured databases were PubMed, Web of Sciences, Scopus, and EBSCO, from inception to 2 June 2023. A total of 610 relevant studies were identified and 33 were assessed for eligibility. Finally, 29 studies met the criteria for this systematic review. The risk of bias was evaluated using the Joanna Briggs Institute Critical Appraisal Checklist tool. From the studies selected, 154 proteins were associated with changes of bone mineral density, from which only 10 were reported in at least two articles. The protein-protein network analysis indicated potential biomarkers involved in the skeletal system, immune system process, regulation of protein metabolic process, regulation of signaling, transport, cellular component assembly, cell differentiation, hemostasis, and extracellular matrix organization. Mass spectrometry-based proteomic profiling has allowed the discovery of new biomarkers with diagnostic potential. However, it is necessary to compare and validate the potential biomarkers in different populations to determine their association with bone metabolism and evaluate their translation to the clinical management of osteoporosis.
Collapse
Affiliation(s)
- Adriana Becerra-Cervera
- Genomics of Bone Metabolism Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico; (A.B.-C.); (D.I.A.-B.); (P.L.-M.)
- National Council of Humanities, Science and Technology (CONAHCYT), Mexico City 03940, Mexico
| | - Anna D. Argoty-Pantoja
- Research Center in Policies, Population and Health, School of Medicine, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico; (A.D.A.-P.); (B.R.-P.)
| | - Diana I. Aparicio-Bautista
- Genomics of Bone Metabolism Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico; (A.B.-C.); (D.I.A.-B.); (P.L.-M.)
| | - Priscilla López-Montoya
- Genomics of Bone Metabolism Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico; (A.B.-C.); (D.I.A.-B.); (P.L.-M.)
| | - Berenice Rivera-Paredez
- Research Center in Policies, Population and Health, School of Medicine, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico; (A.D.A.-P.); (B.R.-P.)
| | - Alberto Hidalgo-Bravo
- Department of Genomic Medicine, National Institute of Rehabilitation, Mexico City 14389, Mexico;
| | - Rafael Velázquez-Cruz
- Genomics of Bone Metabolism Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico; (A.B.-C.); (D.I.A.-B.); (P.L.-M.)
| |
Collapse
|
4
|
Wang J, Xue M, Hu Y, Li J, Li Z, Wang Y. Proteomic Insights into Osteoporosis: Unraveling Diagnostic Markers of and Therapeutic Targets for the Metabolic Bone Disease. Biomolecules 2024; 14:554. [PMID: 38785961 PMCID: PMC11118602 DOI: 10.3390/biom14050554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/25/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Osteoporosis (OP), a prevalent skeletal disorder characterized by compromised bone strength and increased susceptibility to fractures, poses a significant public health concern. This review aims to provide a comprehensive analysis of the current state of research in the field, focusing on the application of proteomic techniques to elucidate diagnostic markers and therapeutic targets for OP. The integration of cutting-edge proteomic technologies has enabled the identification and quantification of proteins associated with bone metabolism, leading to a deeper understanding of the molecular mechanisms underlying OP. In this review, we systematically examine recent advancements in proteomic studies related to OP, emphasizing the identification of potential biomarkers for OP diagnosis and the discovery of novel therapeutic targets. Additionally, we discuss the challenges and future directions in the field, highlighting the potential impact of proteomic research in transforming the landscape of OP diagnosis and treatment.
Collapse
Affiliation(s)
- Jihan Wang
- Xi’an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China; (J.W.)
| | - Mengju Xue
- School of Medicine, Xi’an International University, Xi’an 710077, China
| | - Ya Hu
- Department of Medical College, Hunan Polytechnic of Environment and Biology, Hengyang 421000, China
| | - Jingwen Li
- Xi’an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China; (J.W.)
- Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
| | - Zhenzhen Li
- Xi’an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China; (J.W.)
- Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
| | - Yangyang Wang
- School of Electronics and Information, Northwestern Polytechnical University, Xi’an 710129, China
| |
Collapse
|
5
|
Zhang F, Qiao W, Wei JA, Tao Z, Chen C, Wu Y, Lin M, Ng KMC, Zhang L, Yeung KWK, Chow BKC. Secretin-dependent signals in the ventromedial hypothalamus regulate energy metabolism and bone homeostasis in mice. Nat Commun 2024; 15:1030. [PMID: 38310104 PMCID: PMC10838336 DOI: 10.1038/s41467-024-45436-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 01/22/2024] [Indexed: 02/05/2024] Open
Abstract
Secretin, though originally discovered as a gut-derived hormone, is recently found to be abundantly expressed in the ventromedial hypothalamus, from which the central neural system controls satiety, energy metabolism, and bone homeostasis. However, the functional significance of secretin in the ventromedial hypothalamus remains unclear. Here we show that the loss of ventromedial hypothalamus-derived secretin leads to osteopenia in male and female mice, which is primarily induced by diminished cAMP response element-binding protein phosphorylation and upregulation in peripheral sympathetic activity. Moreover, the ventromedial hypothalamus-secretin inhibition also contributes to hyperphagia, dysregulated lipogenesis, and impaired thermogenesis, resulting in obesity in male and female mice. Conversely, overexpression of secretin in the ventromedial hypothalamus promotes bone mass accrual in mice of both sexes. Collectively, our findings identify an unappreciated secretin signaling in the central neural system for the regulation of energy and bone metabolism, which may serve as a new target for the clinical management of obesity and osteoporosis.
Collapse
Affiliation(s)
- Fengwei Zhang
- School of Biological Sciences, the University of Hong Kong, Hong Kong, China
| | - Wei Qiao
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, the University of Hong Kong, Hong Kong, China.
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, the University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
| | - Ji-An Wei
- School of Biological Sciences, the University of Hong Kong, Hong Kong, China
- Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Zhengyi Tao
- School of Biological Sciences, the University of Hong Kong, Hong Kong, China
| | - Congjia Chen
- School of Biological Sciences, the University of Hong Kong, Hong Kong, China
| | - Yefeng Wu
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, the University of Hong Kong, Hong Kong, China
| | - Minghui Lin
- School of Biological Sciences, the University of Hong Kong, Hong Kong, China
| | - Ka Man Carmen Ng
- School of Biological Sciences, the University of Hong Kong, Hong Kong, China
| | - Li Zhang
- Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Kelvin Wai-Kwok Yeung
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, the University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China.
| | | |
Collapse
|
6
|
Scebba F, Salvadori S, Cateni S, Mantellini P, Carozzi F, Bisanzi S, Sani C, Robotti M, Barravecchia I, Martella F, Colla V, Angeloni D. Top-Down Proteomics of Human Saliva, Analyzed with Logistic Regression and Machine Learning Methods, Reveal Molecular Signatures of Ovarian Cancer. Int J Mol Sci 2023; 24:15716. [PMID: 37958700 PMCID: PMC10648137 DOI: 10.3390/ijms242115716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 11/15/2023] Open
Abstract
Ovarian cancer (OC) is the most lethal of all gynecological cancers. Due to vague symptoms, OC is mostly detected at advanced stages, with a 5-year survival rate (SR) of only 30%; diagnosis at stage I increases the 5-year SR to 90%, suggesting that early diagnosis is essential to cure OC. Currently, the clinical need for an early, reliable diagnostic test for OC screening remains unmet; indeed, screening is not even recommended for healthy women with no familial history of OC for fear of post-screening adverse events. Salivary diagnostics is considered a major resource for diagnostics of the future. In this work, we searched for OC biomarkers (BMs) by comparing saliva samples of patients with various stages of OC, breast cancer (BC) patients, and healthy subjects using an unbiased, high-throughput proteomics approach. We analyzed the results using both logistic regression (LR) and machine learning (ML) for pattern analysis and variable selection to highlight molecular signatures for OC and BC diagnosis and possibly re-classification. Here, we show that saliva is an informative test fluid for an unbiased proteomic search of candidate BMs for identifying OC patients. Although we were not able to fully exploit the potential of ML methods due to the small sample size of our study, LR and ML provided patterns of candidate BMs that are now available for further validation analysis in the relevant population and for biochemical identification.
Collapse
Affiliation(s)
- Francesca Scebba
- Health Science Interdisciplinary Center, Scuola Superiore Sant’Anna, Via G. Moruzzi, 1, 56124 Pisa, Italy;
| | - Stefano Salvadori
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi, 1, 56124 Pisa, Italy;
| | - Silvia Cateni
- Center for Information and Communication Technologies for Complex Industrial Systems and Processes (ICT-COISP), Telecommunications, Computer Engineering, and Photonics Institute (TeCIP), Scuola Superiore Sant’Anna, Via G. Moruzzi, 1, 56124 Pisa, Italy; (S.C.); (V.C.)
| | - Paola Mantellini
- Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Via Cosimo il Vecchio, 2, 50139 Firenze, Italy; (P.M.); (F.C.); (S.B.); (C.S.)
| | - Francesca Carozzi
- Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Via Cosimo il Vecchio, 2, 50139 Firenze, Italy; (P.M.); (F.C.); (S.B.); (C.S.)
| | - Simonetta Bisanzi
- Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Via Cosimo il Vecchio, 2, 50139 Firenze, Italy; (P.M.); (F.C.); (S.B.); (C.S.)
| | - Cristina Sani
- Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Via Cosimo il Vecchio, 2, 50139 Firenze, Italy; (P.M.); (F.C.); (S.B.); (C.S.)
| | - Marzia Robotti
- Ph.D. School in Translational Medicine, Scuola Superiore Sant’Anna, Via G. Moruzzi, 1, 56124 Pisa, Italy;
| | - Ivana Barravecchia
- The Institute of Biorobotics, Scuola Superiore Sant’Anna, Via G. Moruzzi, 1, 56124 Pisa, Italy;
| | - Francesca Martella
- Breast Unit and SOC Oncologia Medica Firenze—Dipartimento Oncologico, Azienda Usl Toscana Centro, Ospedale Santa Maria Annunziata, Via dell’Antella, 58, 50012 Firenze, Italy;
| | - Valentina Colla
- Center for Information and Communication Technologies for Complex Industrial Systems and Processes (ICT-COISP), Telecommunications, Computer Engineering, and Photonics Institute (TeCIP), Scuola Superiore Sant’Anna, Via G. Moruzzi, 1, 56124 Pisa, Italy; (S.C.); (V.C.)
| | - Debora Angeloni
- Health Science Interdisciplinary Center, Scuola Superiore Sant’Anna, Via G. Moruzzi, 1, 56124 Pisa, Italy;
- Ph.D. School in Translational Medicine, Scuola Superiore Sant’Anna, Via G. Moruzzi, 1, 56124 Pisa, Italy;
- The Institute of Biorobotics, Scuola Superiore Sant’Anna, Via G. Moruzzi, 1, 56124 Pisa, Italy;
| |
Collapse
|
7
|
Mobasseri M, Tarverdizadeh N, Mirghafourvand M, Salehi-Pourmehr H, Ostadrahimi A, Farshbaf-Khalili A. The role of bone turnover markers in screening low bone mineral density and their relationship with fracture risk in the postmenopausal period. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2023; 28:54. [PMID: 37496649 PMCID: PMC10366982 DOI: 10.4103/jrms.jrms_612_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 03/09/2023] [Accepted: 03/22/2023] [Indexed: 07/28/2023]
Abstract
Background Using bone turnover marker (BTM) monitoring to identify "quick losers" who may develop osteoporosis in the coming years is one of the main challenges in clinical practice. This study was implemented to examine the association of BTMs with bone mineral density (BMD) as well as to determine their relationship with the fracture risk assessment tool (FRAX) in women in the postmenopausal period. Materials and Methods This study was observational cross-sectional research that was done on women between the ages of 50 and 65 who were in the postmenopausal period. A dual-energy X-ray absorptiometry was applied to select 120 eligible women with normal BMD and 120 women without normal BMD. BTMs were assessed using enzyme-linked immunosorbent assay. Osteoporosis's Odds Ratio (OR) was estimated using a confounder-adjusted logistic regression model. The area under curve was calculated for the differentiation of low BMD in the postmenopausal period through receiver-operator characteristic (ROC) curves. To assess the probability of major osteoporotic fracture and hip fracture for the future 10 years, FRAX was applied. Results Higher serum osteocalcin (OC) (OR: 1.134, 95% confidence interval [CI]: 1.086-1.184), osteopontin (OP) (OR: 1.180; 95%CI: 1.105-1.261), and alkaline phosphatase (ALP) (OR: 1.007; 95%CI: 1.001-1.144) concentrations were potential risk factors for developing low BMD in women after menopause. The area under curve (AUC) (95%CI) for OC, OP, and ALP was 0.75 (0.668-0.8130), 0.75 (0.685-0.812), and 0.602 (0.524-0.670), respectively. ROC analysis indicated that at the cut-off point of 16.28 ng/mL, sensitivity and specificity were 70.3% and 70.9%, respectively, for OC. Furthermore, at the cut-off point of 28.85 ng/mL, the sensitivity of 70.3% and specificity of 66.6% were obtained for OP. The serum OC and OP were significantly related to hip and major osteoporotic fractures (P < 0.05). Conclusion The higher serum concentration of OC, OP, and ALP had significant associations with lower BMD. These BTMs can be complementary tools and helpful in the postmenopausal period as measures for screening of bone loss and possible bone fracture.
Collapse
Affiliation(s)
- Majid Mobasseri
- Endocrine Reserach Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nahid Tarverdizadeh
- Department of Midwifery, Faculty of Nursing and Midwifery, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mojgan Mirghafourvand
- Social Determinants of Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hanieh Salehi-Pourmehr
- Research Center for Evidence-Based Medicine, Iranian EBM Centre: A Joanna Briggs Institute Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Ostadrahimi
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azizeh Farshbaf-Khalili
- Physical Medicine and Rehabilitation Research Centre, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
QiangGuYin Modulates the OPG/RANKL/RANK Pathway by Increasing Secretin Levels during Treatment of Primary Type I Osteoporosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:7114139. [PMID: 34754319 PMCID: PMC8572595 DOI: 10.1155/2021/7114139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 10/06/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022]
Abstract
QiangGuYin (QGY) is a common Traditional Chinese medicine prescription for the treatment of osteoporosis. Previous clinical studies have found that QGY effectively improves bone mineral density (BMD) in postmenopausal women, but its underlying mechanism remains unclear. The osteoprotegerin (OPG)/receptor activator of nuclear factor kappa B ligand (RANKL)/receptor activator of nuclear factor kappa B (RANK) pathway is a classic pathway involved in osteoporosis. Secretin levels are a serum marker of osteoporosis, but their effect on the OPG/RANKL/RANK pathway has not been reported. Hence, we investigated the relationship between the OPG/RANKL/RANK pathway and secretin and further revealed the mechanism underlying the effect of QGY in the treatment of osteoporosis. Mice were divided into secretin knockdown, secretin overexpression, and corresponding control groups. Micro-computed tomography was used to detect BMD in different groups, and the results show that QGY significantly improved BMD in mice of the secretin knockdown group. To further verify this, the serum levels of OPG, RANKL, RANK, and secretin were measured by enzyme-linked immunosorbent assays, and femur levels of OPG, RANKL, RANK, and secretin were evaluated by real-time quantitative PCR and western blotting. The results show that the expression of OPG was inhibited and that of RANKL and RANK was increased in mice from the secretin knockdown group, whereas the expression of OPG was upregulated and that of RANKL and RANK was downregulated after QGY intervention. Therefore, QGY inhibited bone resorption by promoting the expression of secretin and modulating the OPG/RANKL/RANK pathway. In addition to the effect of QGY, we also revealed the general regulatory effect of secretin on the OPG/RANKL/RANK pathway. We conclude that QGY modulates the OPG/RANKL/RANK pathway by increasing secretin levels during treatment of primary type I osteoporosis. This work provides a theoretical basis for the clinical use of QGY in the treatment of osteoporosis.
Collapse
|
9
|
Zhang LL, Li CW, Liu K, Liu Z, Liang BC, Yang YR, Shi XL. Discovery and Identification of Serum Succinyl-Proteome for Postmenopausal Women with Osteoporosis and Osteopenia. Orthop Surg 2019; 11:784-793. [PMID: 31663278 PMCID: PMC6819194 DOI: 10.1111/os.12519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 07/13/2019] [Accepted: 07/28/2019] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE For the purpose of providing evidence for the treatment of osteoporosis and osteopenia, this study retrospectively identified succinylation-modified sites and proteins in postmenopausal women, and bioinformatics analysis were performed. METHODS From January 2016 to June 2018, a total of 30 postmenopausal women aged from 55 to 70 years old were assigned to three groups: 10 cases with osteoporosis; 10 cases with osteopenia; and 10 cases with normal bone mass. Subsequently, the serum samples were collected from all cases for succinyl-proteome. Measures comprised label-free quantitative analysis, succinylation enrichment techniques, the liquid chromatograph-mass spectrometer/mass spectrometer (LC-MS/MS) methods, and bioinformatics. RESULTS A total of 113 succinylation sites on 35 proteins were identified based on quantitative information. The variation of the different multiple folds were more than 1.2 times as a significant increase for up-regulated and less than 1/1.2 times as a significant decrease for down-regulated. Among the quantified succinylation sites, 66 were up-regulated and 11 down-regulated in the Osteopenia/Normal comparison group, 24 were up-regulated and 44 down-regulated in the Osteoporosis/Osteopenia comparison group, 45 were up-regulated and 32 down-regulated in the Osteoporosis/Normal comparison group. Among the quantified succinylation proteins, 24 were up-regulated and 7 down-regulated in the Osteopenia/Normal comparison group, 15 were up-regulated and 20 down-regulated in the Osteoporosis/Osteopenia comparison group, 20 were up-regulated and 17 down-regulated in the Osteoporosis/Normal comparison group. The percentage of proteins differed in immune response, signaling pathway, proteolysis, lymphocyte, leukocyte, and cell activation. Four differentially expressed proteins (apolipoprotein A-I, apolipoprotein A-II, hemoglobin subunit alpha, and haptoglobin) contained quantitative information; they were mediated with receptors, factors, mechanisms, that related to bone metabolism. Hemoglobin subunit alpha was screened for diagnosis of osteopenia. CONCLUSIONS The succinyl-proteome experimental data indicated that apolipoprotein A-I, apolipoprotein A-II, hemoglobin subunit alpha, and haptoglobin were valuable for diagnosis and treatment in postmenopausal women with osteoporosis and osteopenia.
Collapse
Affiliation(s)
- Li-Li Zhang
- Department of Pathology, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Chun-Wen Li
- Department of Diagnostics of Traditional Chinese Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Kang Liu
- Department of Osteology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhong Liu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bo-Cheng Liang
- Department of Osteology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yi-Ran Yang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiao-Lin Shi
- Department of Osteology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
10
|
Identification of MST1 as a potential early detection biomarker for colorectal cancer through a proteomic approach. Sci Rep 2017; 7:14265. [PMID: 29079854 PMCID: PMC5660227 DOI: 10.1038/s41598-017-14539-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 10/12/2017] [Indexed: 02/08/2023] Open
Abstract
Colorectal cancer (CRC) is a common malignant neoplasm worldwide. It is important to identify new biomarkers for the early detection of CRC. In this study, magnetic beads and the Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) platform were used to analyse CRC and healthy control (HC) serum samples. The CRC diagnosis pattern was established to have a specificity of 94.7% and sensitivity of 92.3% in a blind test. The candidate biomarker serine/threonine kinase 4 (STK4, also known as MST1) was identified by Tandem mass spectrometry (MS/MS) and verified with western blotting and enzyme-linked immunosorbent assay (ELISA). The results indicated that there was a higher concentration of MST1 in HC subjects than stage I CRC patients for the early detection of CRC and a lower concentration in stage IV patients than in other CRC patients. The sensitivity and specificity of MST1 combined with carcinoembryonic antigen (CEA) and faecal occult blood test (FOBT) in diagnosis of colorectal cancer were 92.3% and 100%, respectively. Additionally, low MST1 expression was associated with the poor prognosis. These results illustrate that MST1 is a potential biomarker for early detection, prognosis and prediction of distant metastasis of CRC.
Collapse
|