1
|
Xie X, Pi M, Zhang H, Zhou L, Liu M, Zhu W, Jiao Y, Gu X, Ma Z. Neutrophil-derived exosomes promote sepsis-related multiple organ dysfunction through the induction of neutrophil extracellular trap formation. Int Immunopharmacol 2025; 159:114892. [PMID: 40403502 DOI: 10.1016/j.intimp.2025.114892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 04/19/2025] [Accepted: 05/14/2025] [Indexed: 05/24/2025]
Abstract
Our previous studies have demonstrated that neutrophils play a key role in septic organ injury partly through the excessive formation of neutrophil extracellular traps (NETs) and that exosomes participate in the regulation of NET formation during sepsis. Therefore, this study aimed to determine whether neutrophil-derived exosomes promote the formation of NETs and induce multiple organ dysfunction during sepsis. Initially, polymorphonuclear neutrophil (PMN)-derived exosomes following in vitro stimulation with PBS or LPS (1 μg/mL) for 6 h. In vivo, PMN-derived exosomes were intravenously administered to wild-type C57BL/6 mice. Then, histopathological injury and NET formation in multiple organs were evaluated. In vitro, PMN-derived exosomes were cocultured with PMNs freshly isolated from healthy volunteers, and subsequently, NET formation and activation of associated molecular pathways were detected. Administration of LPS-stimulated PMN-derived exosomes in mice significantly enhanced NET formation, resulting in multi-organ inflammation and tissue injury. In vitro coculture experiments also demonstrated that exosomes from LPS-stimulated PMNs promote ROS-dependent NET formation. Proteomic analysis revealed enrichment of matrix metalloproteinase 9 (MMP9) expression in exosomes from LPS-stimulated PMNs, and further mechanistic investigations showed that exosomal MMP9 induced NET formation through the p38 MAPK pathway. Clinical data analysis suggests a close association between sepsis severity/prognosis and plasma-derived exosomal MMP9 expression levels. PMN-derived exosomes facilitate the excessive formation of NETs in sepsis, leading to the subsequent development of multiple organ dysfunction. This discovery reveals a novel role for PMN-derived exosomes in the pathogenesis of sepsis-related multiple organ dysfunction and suggests their potential as prognostic indicators for this condition.
Collapse
Affiliation(s)
- Xin Xie
- Department of Anaesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Mengying Pi
- Department of Anaesthesiology, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Heng Zhang
- Department of Anaesthesiology, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Luyang Zhou
- Department of Anaesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Mei Liu
- Department of Anaesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Wei Zhu
- Department of Anaesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yang Jiao
- Department of Anaesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| | - Xiaoping Gu
- Department of Anaesthesiology, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Zhengliang Ma
- Department of Anaesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| |
Collapse
|
2
|
Mineiro R, Rodrigues Cardoso M, Catarina Duarte A, Santos C, Cipolla-Neto J, Gaspar do Amaral F, Costa D, Quintela T. Melatonin and brain barriers: The protection conferred by melatonin to the blood-brain barrier and blood-cerebrospinal fluid barrier. Front Neuroendocrinol 2024; 75:101158. [PMID: 39395545 DOI: 10.1016/j.yfrne.2024.101158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/29/2024] [Accepted: 10/05/2024] [Indexed: 10/14/2024]
Abstract
The blood-brain barrier and the blood-cerebrospinal fluid barrier separate the blood from brain tissue and cerebrospinal fluid. These brain barriers are important to maintain homeostasis and complex functions by protecting the brain from xenobiotics and harmful endogenous compounds. The disruption of brain barriers is a characteristic of neurologic diseases. Melatonin is a lipophilic hormone that is mainly produced by the pineal gland. The blood-brain barrier and the blood-cerebrospinal fluid barriers are melatonin-binding sites. Among the several melatonin actions, the most characteristic one is the regulation of sleep-wake cycles, melatonin has anti-inflammatory and antioxidant properties. Since brain barriers disruption can arise from inflammation and oxidative stress, knowing the influence of melatonin on the integrity of brain barriers is extremely important. Therefore, the objective of this review is to gather and discuss the available literature about the regulation of brain barriers by melatonin.
Collapse
Affiliation(s)
- Rafael Mineiro
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Maria Rodrigues Cardoso
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Ana Catarina Duarte
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Cecília Santos
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Jose Cipolla-Neto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Diana Costa
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Telma Quintela
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal.
| |
Collapse
|
3
|
Acute Effect of Caffeine on the Synthesis of Pro-Inflammatory Cytokines in the Hypothalamus and Choroid Plexus during Endotoxin-Induced Inflammation in a Female Sheep Model. Int J Mol Sci 2021; 22:ijms222413237. [PMID: 34948033 PMCID: PMC8706723 DOI: 10.3390/ijms222413237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 11/17/2022] Open
Abstract
This study was designed to determine the effect of acute caffeine (CAF) administration, which exerts a broad spectrum of anti-inflammatory activity, on the synthesis of pro-inflammatory cytokines and their receptors in the hypothalamus and choroid plexus (ChP) during acute inflammation caused by the injection of bacterial endotoxin—lipopolysaccharide (LPS). The experiment was performed on 24 female sheep randomly divided into four groups: control; LPS treated (iv.; 400 ng/kg of body mass (bm.)); CAF treated (iv.; 30 mg/kg of bm.); and LPS and CAF treated. The animals were euthanized 3 h after the treatment. It was found that acute administration of CAF suppressed the synthesis of interleukin (IL-1β) and tumor necrosis factor (TNF)α, but did not influence IL-6, in the hypothalamus during LPS-induced inflammation. The injection of CAF reduced the LPS-induced expression of TNF mRNA in the ChP. CAF lowered the gene expression of IL-6 cytokine family signal transducer (IL6ST) and TNF receptor superfamily member 1A (TNFRSF1) in the hypothalamus and IL-1 type II receptor (IL1R2) in the ChP. Our study on the sheep model suggests that CAF may attenuate the inflammatory response at the hypothalamic level and partly influence the inflammatory signal generated by the ChP cells. This suggests the potential of CAF to suppress neuroinflammatory processes induced by peripheral immune/inflammatory challenges.
Collapse
|
4
|
Domżalska M, Wiczkowski W, Szczepkowska A, Chojnowska S, Misztal T, Walter FR, Deli MA, Ishikawa H, Schroten H, Schwerk C, Skipor J. Effect of Lipopolysaccharide-Induced Inflammatory Challenge on β-Glucuronidase Activity and the Concentration of Quercetin and Its Metabolites in the Choroid Plexus, Blood Plasma and Cerebrospinal Fluid. Int J Mol Sci 2021; 22:ijms22137122. [PMID: 34281178 PMCID: PMC8268849 DOI: 10.3390/ijms22137122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 11/21/2022] Open
Abstract
Quercetin-3-glucuronide (Q3GA), the main phase II metabolite of quercetin (Q) in human plasma, is considered to be a more stable form of Q for transport with the bloodstream to tissues, where it can be potentially deconjugated by β-glucuronidase (β-Gluc) to Q aglycone, which easily enters the brain. This study evaluates the effect of lipopolysaccharide (LPS)-induced acute inflammation on β-Gluc gene expression in the choroid plexus (ChP) and its activity in blood plasma, ChP and cerebrospinal fluid (CSF), and the concentration of Q and its phase II metabolites in blood plasma and CSF. Studies were performed on saline- and LPS-treated adult ewes (n = 40) receiving Q3GA intravenously (n = 16) and on primary rat ChP epithelial cells and human ChP epithelial papilloma cells. We observed that acute inflammation stimulated β-Gluc activity in the ChP and blood plasma, but not in ChP epithelial cells and CSF, and did not affect Q and its phase II metabolite concentrations in plasma and CSF, except Q3GA, for which the plasma concentration was higher 30 min after administration (p < 0.05) in LPS- compared to saline-treated ewes. The lack of Q3GA deconjugation in the ChP observed under physiological and acute inflammatory conditions, however, does not exclude its possible role in the course of neurodegenerative diseases.
Collapse
Affiliation(s)
- Małgorzata Domżalska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (M.D.); (W.W.); (A.S.)
| | - Wiesław Wiczkowski
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (M.D.); (W.W.); (A.S.)
| | - Aleksandra Szczepkowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (M.D.); (W.W.); (A.S.)
| | - Sylwia Chojnowska
- Faculty of Health Sciences, Lomza State University of Applied Sciences, 18-400 Lomza, Poland;
| | - Tomasz Misztal
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland;
| | - Fruzsina R. Walter
- Institute of Biophysics, Biological Research Centre, ELKH, 6726 Szeged, Hungary; (F.R.W.); (M.A.D.)
| | - Maria A. Deli
- Institute of Biophysics, Biological Research Centre, ELKH, 6726 Szeged, Hungary; (F.R.W.); (M.A.D.)
| | - Hiroshi Ishikawa
- Laboratory of Regenerative Medicine, Department of Neurosurgery, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan;
| | - Horst Schroten
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (H.S.); (C.S.)
| | - Christian Schwerk
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (H.S.); (C.S.)
| | - Janina Skipor
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (M.D.); (W.W.); (A.S.)
- Correspondence:
| |
Collapse
|
5
|
Photoperiod alters the choroid plexus response to LPS-induced acute inflammation in EWES. ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2020-0079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract
This study determined the influence of photoperiod on the expression of toll-like receptor 2 and 4 (TLR2 and TLR4), interleukin 1□ (IL1B), IL-1 receptor type I (IL1R1) and II (IL1R2), interleukin 6 (IL6), the IL-6 receptor (IL6R) and signal transducer (IL6ST), tumor necrosis factor α (TNF), and TNF□ receptor type I (TNFRSF1A) and II (TNFRSF1B) in the choroid plexus (ChP) of ewes with lipopolysaccharide (LPS)-induced acute inflammation. Under short-days (SD, n = 12, anestrous) and long-days (LD, n = 12, synchronized follicular phase), ewes were treated with saline or LPS. Compared to LD conditions, the ewes under SD were characterized by a greater (P<0.05) area under the curve (AUC) of cortisol in the LPS-treated group and by a lower (P<0.05) AUC of prolactin in the saline-treated group. Under both photoperiods, LPS increased (P<0.05) the expression of all examined genes except for TNFRSF1B (only under SD), TNF and TNFRSF1A (no stimulation), and IL6R (decreased (P<0.05) under SD). The LPS-induced increases in TLR2, TLR4, IL1B and its receptors, IL6 and TNFRSF1B were higher (P<0.05) under SD than LD. TLR4 was positively correlated with IL1B and IL6 in both saline- (r2 = 0.64, P<0.01 and r2 = 0.52, P<0.01) and LPS-treated (r2 = 0.81, P<0.0001 and r2 = 0.51, P<0.001) ewes. IL1B (r2 = 0.56, P<0.01 and r2 = 0.77, P<0.0001) and IL6 (r2 = 0.77, P<0.005 and r2 = 0.35, P<0.05) were positively correlated with TLR2 in saline- and LPS-treated ewes, respectively. This indicates that in ewes, the ChP response to acute systemic inflammation is dependent upon the photoperiod with stronger effects being observed under SD. Our results also suggest that gonadal hormones altering TLR4 signaling events are involved in the photoperiodic modulation of the ChP response to LPS. Further experiments are required to explain the mechanism involved in this phenomenon.
Collapse
|
6
|
Tomczyk M, Tomaszewska-Zaremba D, Bochenek J, Herman A, Herman AP. Anandamide Influences Interleukin-1β Synthesis and IL-1 System Gene Expressions in the Ovine Hypothalamus during Endo-Toxin-Induced Inflammation. Animals (Basel) 2021; 11:ani11020484. [PMID: 33673103 PMCID: PMC7918765 DOI: 10.3390/ani11020484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Pro-inflammatory cytokines are considered to be one of the most important mediators affecting the function of central nervous system during an immune/inflammatory challenge. It was found that in acting on different hypothalamic nuclei, pro-inflammatory cytokines influence the centrally regulated processes including reproduction. Recently, it has been shown that the endocannabinoid system and endogenous cannabinoids may attenuate the inflammatory response. Therefore, in our study we examined the influence of anandamide, one of the earliest known endocannabinoids, on the synthesis of interleukin (IL)-1β and IL-1 system gene expressions in the hypothalamic structures involved in gonadotropin-releasing hormone (GnRH)-ergic activity, and thus the central control of reproduction, during immune stress induced by endotoxin injection. It was found that anandamide inhibited lipopolysaccharide (LPS)-stimulated synthesis of IL-1β in the hypothalamus, likely affecting posttranscriptional levels of this cytokine synthesis. Anti-inflammatory effect of anandamide at the level of central nervous system might also result from its stimulating action on IL-1 antagonist and IL-1 type II receptor gene expression. This study suggests the potential of endocannabinoids and/or their metabolites in the inhibition of inflammatory process at the level of the central nervous system, as well as their usefulness in the therapy of inflammation-induced neuroendocrine disorders, but further detailed research is required to investigate this issue. Abstract This study evaluated the effect of anandamide (AEA) on interleukin (IL)-1β synthesis and gene expression of IL-1β, its type I (IL-1R1) and II (IL-1R2) receptors, and IL-1 receptor antagonist (IL-1RN) in the hypothalamic structures, involved in the central control of reproduction, during inflammation. Animals were intravenously (i.v.) injected with bacterial endotoxin-lipopolysaccharide (LPS) (400 ng/kg) or saline, and two hours after LPS administration., a third group received i.v. injection of AEA (10 μg/kg). Ewes were euthanized one hour later. AEA injection (p < 0.05) suppressed LPS-induced expression of IL-1β protein in the hypothalamus. The gene expression of IL-1β, IL-1RN, and IL-1R2 in the hypothalamic structures was higher (p < 0.05) in animals treated with both LPS and AEA in comparison to other experimental groups. AEA administration did not influence LPS-stimulated IL-1R1 gene expression. Our study shows that AEA suppressed IL-1β synthesis in the hypothalamus, likely affecting posttranscriptional levels of this cytokine synthesis. However, anti-inflammatory effect of AEA might also result from its stimulating action on IL-1RN and IL-1R2 gene expression. These results indicate the potential of endocannabinoids and/or their metabolites in the inhibition of inflammatory process at the level of central nervous system, and therefore their usefulness in the therapy of inflammation-induced neuroendocrine disorders.
Collapse
Affiliation(s)
- Monika Tomczyk
- Department of Genetic Engineering, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland; (M.T.); (J.B.)
| | - Dorota Tomaszewska-Zaremba
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland;
| | - Joanna Bochenek
- Department of Genetic Engineering, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland; (M.T.); (J.B.)
| | - Anna Herman
- Faculty of Health Sciences, Warsaw School of Engineering and Health, 02-366 Warsaw, Poland;
| | - Andrzej P. Herman
- Department of Genetic Engineering, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland; (M.T.); (J.B.)
- Correspondence: ; Tel.: +45-22-7653300
| |
Collapse
|
7
|
Photoperiod Affects Leptin Action on the Choroid Plexus in Ewes Challenged with Lipopolysaccharide-Study on the mRNA Level. Int J Mol Sci 2020; 21:ijms21207647. [PMID: 33076568 PMCID: PMC7589540 DOI: 10.3390/ijms21207647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/05/2020] [Accepted: 10/12/2020] [Indexed: 12/22/2022] Open
Abstract
The ovine choroid plexus (ChP) expresses the long isoform of the leptin receptor, which makes this structure a potential target for leptin action. In sheep, leptin concentration in plasma is higher during long days (LD) than short days (SD). This study evaluates the influence a of photoperiod on leptin impact on the gene expression of Toll-like receptor 4 (TLR4), proinflammatory cytokines (IL1B, IL6), their receptors (IL1R1, IL1R2, ILRN, IL6R, IL6ST) and inflammasome components necessary for pro-IL-1β activation (NLRP3, PYCARD, CASP1), chemokine (CCL2), leptin receptor isoforms (LEPRa, LEPRb) and a suppressor of cytokine signalling (SOCS3) in the ChP of ewes treated or not with lipopolysaccharide (LPS). Studies were conducted on adult female sheep divided into four groups (n = 6 in each): control, leptin (20 μg/kg), LPS (400 ng/kg), and LPS and leptin injected under SD and LD photoperiods. The leptin alone did not affect the gene expression but in co-treatment with LPS increased (p < 0.05) IL1B but only during SD, and SOCS3, IL1R2, IL1RN, IL6ST and CCL2 only during LD, and decreased (p < 0.05) the IL1R1 expression only during SD photoperiod. This indicates that the immunomodulatory action of leptin on the ChP is manifested only under the LPS challenge and is photoperiodically dependent.
Collapse
|
8
|
Herman AP, Skipor J, Krawczyńska A, Bochenek J, Wojtulewicz K, Pawlina B, Antushevich H, Herman A, Tomaszewska-Zaremba D. Effect of Central Injection of Neostigmine on the Bacterial Endotoxin Induced Suppression of GnRH/LH Secretion in Ewes during the Follicular Phase of the Estrous Cycle. Int J Mol Sci 2019; 20:ijms20184598. [PMID: 31533319 PMCID: PMC6769544 DOI: 10.3390/ijms20184598] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/10/2019] [Accepted: 09/16/2019] [Indexed: 12/29/2022] Open
Abstract
Induced by a bacterial infection, an immune/inflammatory challenge is a potent negative regulator of the reproduction process in females. The reduction of the synthesis of pro-inflammatory cytokine is considered as an effective strategy in the treatment of inflammatory induced neuroendocrine disorders. Therefore, the effect of direct administration of acetylcholinesterase inhibitor—neostigmine—into the third ventricle of the brain on the gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) secretions under basal and immune stress conditions was evaluated in this study. In the study, 24 adult, 2-years-old Blackhead ewes during the follicular phase of their estrous cycle were used. Immune stress was induced by the intravenous injection of LPS Escherichia coli in a dose of 400 ng/kg. Animals received an intracerebroventricular injection of neostigmine (1 mg/animal) 0.5 h before LPS/saline treatment. It was shown that central administration of neostigmine might prevent the inflammatory-dependent decrease of GnRH/LH secretion in ewes and it had a stimulatory effect on LH release. This central action of neostigmine is connected with its inhibitory action on local pro-inflammatory cytokines, such as interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)α synthesis in the hypothalamus, which indicates the importance of this mediator in the inhibition of GnRH secretion during acute inflammation.
Collapse
Affiliation(s)
- Andrzej Przemysław Herman
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-100 Jabłonna, Poland; (A.K.); (J.B.); (K.W.); (B.P.); (H.A.); (D.T.-Z.)
- Correspondence: ; Tel.: +48-22-765-33-02; Fax: +48-22-765-33-03
| | - Janina Skipor
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland;
| | - Agata Krawczyńska
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-100 Jabłonna, Poland; (A.K.); (J.B.); (K.W.); (B.P.); (H.A.); (D.T.-Z.)
| | - Joanna Bochenek
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-100 Jabłonna, Poland; (A.K.); (J.B.); (K.W.); (B.P.); (H.A.); (D.T.-Z.)
| | - Karolina Wojtulewicz
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-100 Jabłonna, Poland; (A.K.); (J.B.); (K.W.); (B.P.); (H.A.); (D.T.-Z.)
| | - Bartosz Pawlina
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-100 Jabłonna, Poland; (A.K.); (J.B.); (K.W.); (B.P.); (H.A.); (D.T.-Z.)
| | - Hanna Antushevich
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-100 Jabłonna, Poland; (A.K.); (J.B.); (K.W.); (B.P.); (H.A.); (D.T.-Z.)
| | - Anna Herman
- Faculty of Health Sciences, Warsaw School of Engineering and Health, 02-366 Warsaw, Poland;
| | - Dorota Tomaszewska-Zaremba
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-100 Jabłonna, Poland; (A.K.); (J.B.); (K.W.); (B.P.); (H.A.); (D.T.-Z.)
| |
Collapse
|
9
|
Zhang S, Wu H, Li S, Wang M, Fang L, Liu R. Melatonin Enhances Autophagy and Decreases Apoptosis Induced by nanosilica in RAW264.7 cells. IUBMB Life 2019; 71:1021-1029. [PMID: 31018046 DOI: 10.1002/iub.2055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Shi‐Hai Zhang
- Department of PulmonaryAnhui Geriatric Institute, the First Affiliated Hospital of Anhui Medical University Hefei China
- Anhui Provincial Children's HospitalChildren's Hospital of Anhui Medical University Hefei China
| | - Hui‐Mei Wu
- Department of PulmonaryAnhui Geriatric Institute, the First Affiliated Hospital of Anhui Medical University Hefei China
| | - Shuai Li
- Department of PulmonaryAnhui Geriatric Institute, the First Affiliated Hospital of Anhui Medical University Hefei China
| | - Mu‐Zi Wang
- Department of PulmonaryAnhui Geriatric Institute, the First Affiliated Hospital of Anhui Medical University Hefei China
| | - Lei Fang
- Department of PulmonaryAnhui Geriatric Institute, the First Affiliated Hospital of Anhui Medical University Hefei China
| | - Rong‐Yu Liu
- Department of PulmonaryAnhui Geriatric Institute, the First Affiliated Hospital of Anhui Medical University Hefei China
| |
Collapse
|
10
|
Herman AP, Tomaszewska-Zaremba D, Kowalewska M, Szczepkowska A, Oleszkiewicz M, Krawczyńska A, Wójcik M, Antushevich H, Skipor J. Neostigmine Attenuates Proinflammatory Cytokine Expression in Preoptic Area but Not Choroid Plexus during Lipopolysaccharide-Induced Systemic Inflammation. Mediators Inflamm 2018; 2018:9150207. [PMID: 30402044 PMCID: PMC6198615 DOI: 10.1155/2018/9150207] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 09/04/2018] [Accepted: 09/17/2018] [Indexed: 12/03/2022] Open
Abstract
The study was designed to examine whether the administration of neostigmine (0.5 mg/animal), a peripheral inhibitor of acetylcholinesterase (AChE), during an immune/inflammatory challenge provoked by intravenous injection of bacterial endotoxin-lipopolysaccharide (LPS; 400 ng/kg)-attenuates the synthesis of proinflammatory cytokines in the ovine preoptic area (POA), the hypothalamic structure playing an essential role in the control of the reproduction process, and in the choroid plexus (CP), a multifunctional organ sited at the interface between the blood and cerebrospinal fluid in the ewe. Neostigmine suppressed (p < 0.05) LPS-stimulated synthesis of cytokines such as interleukin- (IL-) 1β, IL-6, and tumor necrosis factor (TNF) α in the POA, and this effect was similar to that induced by the treatment with systemic AChE inhibitor-donepezil (2.5 mg/animal). On the other hand, both AChE inhibitors did not influence the gene expression of these cytokines and their corresponding receptors in the CP. It was found that this structure seems to not express the neuronal acetylcholine (ACh) receptor subunit alpha-7, required for anti-inflammatory action of ACh. The mechanism of action involves inhibition of the proinflammatory cytokine synthesis on the periphery as well as inhibition of their de novo synthesis rather in brain microvessels and not in the CP. In conclusion, it is suggested that the AChE inhibitors incapable of reaching brain parenchyma might be used in the treatment of neuroinflammatory processes induced by peripheral inflammation.
Collapse
Affiliation(s)
- Andrzej P. Herman
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland
| | - Dorota Tomaszewska-Zaremba
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland
| | - Marta Kowalewska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland
| | - Aleksandra Szczepkowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland
| | - Małgorzata Oleszkiewicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland
| | - Agata Krawczyńska
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland
| | - Maciej Wójcik
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland
| | - Hanna Antushevich
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland
| | - Janina Skipor
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland
| |
Collapse
|