1
|
Pang X, Pan Y, Wang M, Qiu S, He Y, Ren Y, Yu T, Yu S, Cui Y. Comparison of reproductive performance and functional analysis of spermatogenesis factors between domestic yak and semi-wild blood yak. BMC Genomics 2025; 26:418. [PMID: 40301732 DOI: 10.1186/s12864-025-11594-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 04/10/2025] [Indexed: 05/01/2025] Open
Abstract
This study investigates differences in reproductive performance, testicular histology, and transcriptomic profiles between male Subei (SB; semi-wild) yaks and two domestic yaks, Gannan (GN) and Qinghai (QH). Key metrics including mating age, utilization time, breeding capacity, morphometric traits, and testicular indices were analyzed. SB yaks exhibited superior reproductive metrics, including earlier sexual maturity, prolonged utilization periods, and enhanced breeding capacity compared to GN and QH (P < 0.05). Morphologically, SB yaks demonstrated significantly greater body weight, and testicular dimensions. Compared with GN and QH yaks, the seminiferous tubules of SB yaks exhibited significantly larger spermatogenic cells and luminal cavities, along with a notably higher sperm density within the luminal cavity. Transcriptomic analysis identified 2,403 and 4,428 differentially expressed genes (DEGs) in GN vs. SB and QH vs. SB comparisons, respectively. Eight key genes (TPPP3, SMAD3, PAFAH1B3, BMP7, ARSA, CTNNB1, SMAD4, STAT3) and three pathways (Hippo, pluripotency regulation, TGF-β) were implicated in testicular development and spermatogenesis. These findings underscore the genetic and physiological advantages of SB yaks, offering insights for enhancing male yak reproductive performance.
Collapse
Affiliation(s)
- Xin Pang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Gansu Innovation Centre for Livestock Embryo Engineering and Technology, Lanzhou, China
| | - Yangyang Pan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Gansu Innovation Centre for Livestock Embryo Engineering and Technology, Lanzhou, China
| | - Meng Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Gansu Innovation Centre for Livestock Embryo Engineering and Technology, Lanzhou, China
| | - Shantong Qiu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Gansu Innovation Centre for Livestock Embryo Engineering and Technology, Lanzhou, China
| | - Yulong He
- Jiuquan Animal Husbandry and Veterinary Medicine General Station, Jiuquan, China
| | - Yuchun Ren
- Central Agricultural Radio and Television School Tianzhu County Branch, Wuwei, China
| | - Tianjun Yu
- Subei Mongolian Autonomous County Animal Husbandry and Veterinary Technical Service Center, Jiuquan, China
| | - Sijiu Yu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.
- Gansu Innovation Centre for Livestock Embryo Engineering and Technology, Lanzhou, China.
| | - Yan Cui
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.
- Gansu Innovation Centre for Livestock Embryo Engineering and Technology, Lanzhou, China.
| |
Collapse
|
2
|
Ren F, Zhang Q, Jiang Y, Xie W, Qiao P, Hu J. Comprehensive analysis of long non-coding RNA and mRNA expression patterns during seminiferous tubules maturation in Guanzhong dairy goats. BMC Genomics 2025; 26:159. [PMID: 39966702 PMCID: PMC11834200 DOI: 10.1186/s12864-025-11320-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/04/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) play crucial roles in testicular development and spermatogenesis. The seminiferous tubule, the exclusive site of spermatogenesis, houses all types of male germ cells, regulated by both lncRNAs and mRNAs. However, the expression patterns and functions of these molecules across different developmental stages of dairy goat seminiferous tubules remain poorly understood. RESULTS In this study, we sequenced and identified lncRNAs and mRNAs expressed in the seminiferous tubules of Guanzhong dairy goats at two developmental stages: 45-day-old premature (G45) and 240-day-old mature (G240). Significant differences in testis index and seminiferous tubules morphology were observed between G45 and G240 (P < 0.05). Transcriptome analyses revealed 11,612 lncRNAs and 18,217 mRNAs, with 7,554 lncRNAs and 11,986 mRNAs showing significant differential expression between the two stages. Among these, 229 differentially expressed mRNAs related to spermatogenesis were identified. Key genes, such as Kit, Dmrt1, and Sox9, were down-regulated, whereas Ddx4, Sycp1, and Sycp3 were up-regulated after sexual maturity. Notably, signalling pathways including PI3K/Akt, MAPK, and Rap1 were implicated in the regulation of spermatogenesis. We constructed lncRNA-mRNA interaction networks, identifying specific lncRNAs and their target genes potentially critical for spermatogenesis. Additionally, single-cell transcriptome data validated the expression of key genes, revealing that Piwil4 and Dnmt3l were specifically expressed in spermatogonial clusters, whereas Piwil1, Piwil2, and Gtsf1 were predominantly expressed in spermatocyte clusters. CONCLUSIONS These findings highlight the essential roles of specific genes in the maturation of seminiferous tubules in dairy goats. This study provides comprehensive transcriptomic profiles and lncRNA-mRNA interaction networks between the G45 and G240 stages, offering valuable insights into spermatogenesis and seminiferous tubules development in Guanzhong dairy goats.
Collapse
Affiliation(s)
- Fa Ren
- Department of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong Province, P.R. China.
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi Province, 712100, P.R. China.
| | - Que Zhang
- Department of Animal Science and Technology, Shandong Vocational Animal Science and Veterinary College, Weifang, Shandong Province, 261061, P.R. China
| | - Yu Jiang
- Department of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong Province, P.R. China
| | - Wenling Xie
- Department of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong Province, P.R. China
| | - Pengyun Qiao
- Department of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong Province, P.R. China.
| | - Jianhong Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi Province, 712100, P.R. China.
| |
Collapse
|
3
|
Wan RD, Gao X, Wang GW, Wu SX, Yang QL, Zhang YW, Yang QE. Identification of candidate genes related to hybrid sterility by genomic structural variation and transcriptome analyses in cattle-yak. J Dairy Sci 2025; 108:679-693. [PMID: 39414017 DOI: 10.3168/jds.2024-24770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 09/24/2024] [Indexed: 10/18/2024]
Abstract
Hybrids between closely related but genetically incompatible species are often inviable or sterile. Cattle-yak, an interspecific hybrid of yak and cattle, exhibits male-specific sterility, which limits the fixation of its desired traits and prevents genetic improvement in yak through crossbreeding. Transcriptome profiles of testicular tissues have been generated in cattle, yak, and cattle-yak; however, the genetic variations underlying differential gene expression associated with hybrid sterility have yet to be elucidated. We detected differences in the cellular composition and gene expression of testes from yak and cattle-yak at 3 mo of age, 10 mo of age, and adulthood. Histological analysis revealed that the most advanced germ cells were gonocytes (prospermatogonia) at 3 mo and spermatocytes at 10 mo. Complete spermatogenesis occurred in the seminiferous tubules of adult yak, whereas only spermatogonia and a limited number of spermatocytes were detected in the testis of adult cattle-yak. Transcriptome analysis revealed 180, 6,310, and 6,112 differentially expressed genes (DEG) in yak and cattle-yak at each stage, respectively. Next, we examined the spermatogenic cell types in the backcross generation (BC1) and detected the appearance of round spermatids, indicating the partial recovery of spermatogenesis in these animals. Compared with those in cattle-yak, 272 DEG were identified in the testes of BC1 animals. Notably, we discovered that the expression of X chromosome-linked genes was upregulated in the testis of cattle-yak compared with yak, suggesting a possible abnormality in the process of meiotic sex chromosome inactivation in hybrid animals. We next screened DEG harboring structural variations (SV) and identified a list of SV genes associated with spermatogonial development, meiotic recombination, and double-strand break repair. Furthermore, we found that the SV genes ESCO2 (establishment of sister chromatid cohesion N-acetyltransferase 2) and BRDT (bromodomain testis associated) may be involved in meiotic arrest of cattle-yak spermatocytes. Overall, our research provides a valuable database for identifying structural variant loci that contribute to hybrid sterility.
Collapse
Affiliation(s)
- Rui-Dong Wan
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China; Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China
| | - Xue Gao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China; Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China
| | - Guo-Wen Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China; Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China
| | - Shi-Xin Wu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China; Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China
| | - Qi-Lin Yang
- Department of Veterinary Sciences, Qinghai Vocational Technical College of Animal Science and Agriculture, Xining 810016, China
| | - Yi-Wen Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China; Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China
| | - Qi-En Yang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China; Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China.
| |
Collapse
|
4
|
Liu Y, Chen L, Jiang H, Wang H, Zhang Y, Yuan Z, Ma Y. N 6-Methyladenosine Modification-Related Genes Express Differentially in Sterile Male Cattle-Yaks. Life (Basel) 2024; 14:1155. [PMID: 39337938 PMCID: PMC11433611 DOI: 10.3390/life14091155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/20/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
N6-methyladenosine (m6A), an RNA post-transcriptional modification, plays a crucial role in spermatogenesis. Cattle-yaks are interspecific hybrid offsprings of yak and cattle, and male cattle-yaks are sterile. This study aims to investigate the role of m6A modification in male cattle-yak infertility. Herein, testicular tissues were analyzed via histological observations, immunohistochemical assays, reverse-transcription quantitative polymerase chain reaction, Western blotting, and immunofluorescence assays. The results revealed that male cattle-yaks presented smaller testes (5.933 ± 0.4885 cm vs. 7.150 ± 0.3937 cm), with only single cell layers in seminiferous tubules, and weakened signals of m6A regulators such as METTL14 (methyltransferase-like 14), ALKBH5 (alpha-ketoglutarate-dependent hydroxylase homolog 5), FTO (fat mass and obesity-associated protein), and YTHDF2 (YTH N6-methyladenosine RNA binding protein F2), both at the RNA and protein levels, compared with those of yaks. Altogether, these findings suggest that m6A modification may play a crucial role in male cattle-yak sterility, providing a basis for future studies.
Collapse
Affiliation(s)
- Yuxin Liu
- Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China; (Y.L.); (L.C.)
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lili Chen
- Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China; (Y.L.); (L.C.)
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin 300381, China
- Tianjin Engineering Research Center of Animal Healthy Farming, Tianjin 300381, China
| | - Hui Jiang
- Institute of Animal Husbandry and Veterinary Medicine, Xizang Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850002, China; (H.J.); (H.W.)
| | - Hongzhuang Wang
- Institute of Animal Husbandry and Veterinary Medicine, Xizang Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850002, China; (H.J.); (H.W.)
| | - Yujiao Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China;
| | - Zhengrong Yuan
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China;
| | - Yi Ma
- Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China; (Y.L.); (L.C.)
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin 300381, China
- Tianjin Engineering Research Center of Animal Healthy Farming, Tianjin 300381, China
| |
Collapse
|
5
|
Zhang YW, Wu SX, Wang GW, Wan RD, Yang QE. Single-cell analysis identifies critical regulators of spermatogonial development and differentiation in cattle-yak bulls. J Dairy Sci 2024; 107:7317-7336. [PMID: 38642661 DOI: 10.3168/jds.2023-24442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/11/2024] [Indexed: 04/22/2024]
Abstract
Spermatogenesis is a continuous process in which functional sperm are produced through a series of mitotic and meiotic divisions and morphological changes in germ cells. The aberrant development and fate transitions of spermatogenic cells cause hybrid sterility in mammals. Cattle-yak, a hybrid animal between taurine cattle (Bos taurus) and yak (Bos grunniens), exhibits male-specific sterility due to spermatogenic failure. In the present study, we performed single-cell RNA sequencing analysis to identify differences in testicular cell composition and the developmental trajectory of spermatogenic cells between yak and cattle-yak. The composition and molecular signatures of spermatogonial subtypes were dramatically different between these 2 animals, and the expression of genes associated with stem cell maintenance, cell differentiation and meiotic entry was altered in cattle-yak, indicating the impairment of undifferentiated spermatogonial fate decisions. Cell communication analysis revealed that signaling within different spermatogenic cell subpopulations was weakened, and progenitor spermatogonia were unable to or delayed receiving and sending signals for transformation to the next stage in cattle-yak. Simultaneously, the communication between niche cells and germ cells was also abnormal. Collectively, we obtained the expression profiles of transcriptome signatures of different germ cells and testicular somatic cell populations at the single-cell level and identified critical regulators of spermatogonial differentiation and meiosis in yak and sterile cattle-yak. The findings of this study shed light on the genetic mechanisms that lead to hybrid sterility and speciation in bovid species.
Collapse
Affiliation(s)
- Yi-Wen Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shi-Xin Wu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guo-Wen Wang
- Qinghai Academy of Animal Husbandry and Veterinary Sciences, Xining, Qinghai 810016, China
| | - Rui-Dong Wan
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi-En Yang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810000, China; University of Chinese Academy of Sciences, Beijing 100049, China; Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China.
| |
Collapse
|
6
|
Du M, Liu Y, Cao J, Li X, Wang N, He Q, Zhang L, Zhao B, Dugarjaviin M. Food from Equids-Commercial Fermented Mare's Milk (Koumiss) Products: Protective Effects against Alcohol Intoxication. Foods 2024; 13:2344. [PMID: 39123538 PMCID: PMC11312395 DOI: 10.3390/foods13152344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Fermented mare's milk (koumiss), a traditional Central Asian dairy product derived from fermented mare's milk, is renowned for its unique sour taste and texture. It has long been consumed by nomadic tribes for its nutritional and medicinal benefits. This study aimed to comprehensively analyze the protective effects of koumiss against alcohol-induced harm across behavioral, hematological, gastrointestinal, hepatic, and reproductive dimensions using a mouse model. Optimal intoxicating doses of alcohol and koumiss doses were determined, and their effects were explored through sleep tests and blood indicator measurements. Pretreatment with koumiss delayed inebriation, accelerated sobering, and reduced mortality in mice, mitigating alcohol's impact on blood ethanol levels and various physiological parameters. Histopathological and molecular analyses further confirmed koumiss's protective role against alcohol-induced damage in the liver, stomach, small intestine, and reproductive system. Transcriptomic studies on reproductive damage indicated that koumiss exerts its benefits by influencing mitochondrial and ribosomal functions and also shows promise in mitigating alcohol's effects on the reproductive system. In summary, koumiss emerges as a potential natural agent for protection against alcohol-induced harm, opening avenues for future research in this field.
Collapse
Affiliation(s)
- Ming Du
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (M.D.); (Y.L.); (J.C.); (X.L.); (N.W.); (Q.H.); (L.Z.); (B.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yuanyi Liu
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (M.D.); (Y.L.); (J.C.); (X.L.); (N.W.); (Q.H.); (L.Z.); (B.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jialong Cao
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (M.D.); (Y.L.); (J.C.); (X.L.); (N.W.); (Q.H.); (L.Z.); (B.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xinyu Li
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (M.D.); (Y.L.); (J.C.); (X.L.); (N.W.); (Q.H.); (L.Z.); (B.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Na Wang
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (M.D.); (Y.L.); (J.C.); (X.L.); (N.W.); (Q.H.); (L.Z.); (B.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Qianqian He
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (M.D.); (Y.L.); (J.C.); (X.L.); (N.W.); (Q.H.); (L.Z.); (B.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lei Zhang
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (M.D.); (Y.L.); (J.C.); (X.L.); (N.W.); (Q.H.); (L.Z.); (B.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Bilig Zhao
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (M.D.); (Y.L.); (J.C.); (X.L.); (N.W.); (Q.H.); (L.Z.); (B.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Manglai Dugarjaviin
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (M.D.); (Y.L.); (J.C.); (X.L.); (N.W.); (Q.H.); (L.Z.); (B.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
7
|
Wang X, Guo S, Xiong L, Wu X, Bao P, Kang Y, Cao M, Ding Z, Liang C, Pei J, Guo X. Complete characterization of the yak testicular development using accurate full-length transcriptome sequencing. Int J Biol Macromol 2024; 271:132400. [PMID: 38759851 DOI: 10.1016/j.ijbiomac.2024.132400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Alternative splicing is a prevalent phenomenon in testicular tissues. Due to the low assembly accuracy of short-read RNA sequencing technology in analyzing post-transcriptional regulatory events, full-length (FL) transcript sequencing is highly demanded to accurately determine FL splicing variants. In this study, we performed FL transcriptome sequencing of testicular tissues from 0.5, 1.5, 2.5, and 4-year-old yaks and 4-year-old cattle-yaks using Oxford Nanopore Technologies. The obtained sequencing data were predicted to have 47,185 open reading frames (ORFs), including 26,630 complete ORFs, detected 7645 fusion transcripts, 15,355 alternative splicing events, 25,798 simple sequence repeats, 7628 transcription factors, and 35,503 long non-coding RNAs. A total of 40,038 novel transcripts were obtained from the sequencing data, and the proportion was almost close to the number of known transcripts identified. Structural analysis and functional annotation of these novel transcripts resulted in the successful annotation of 9568 transcripts, with the highest and lowest annotation numbers in the Nr and KOG databases, respectively. Weighted gene co-expression network analysis revealed the key regulatory pathways and hub genes at various stages of yak testicular development. Our findings enhance our comprehension of transcriptome complexity, contribute to genome annotation refinement, and provide foundational data for further investigations into male sterility in cattle-yaks.
Collapse
Affiliation(s)
- Xingdong Wang
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, PR China
| | - Shaoke Guo
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, PR China
| | - Lin Xiong
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, PR China
| | - Xiaoyun Wu
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, PR China
| | - Pengjia Bao
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, PR China
| | - Yandong Kang
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, PR China
| | - Mengli Cao
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, PR China
| | - Ziqiang Ding
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, PR China
| | - Chunnian Liang
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, PR China
| | - Jie Pei
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, PR China.
| | - Xian Guo
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, PR China.
| |
Collapse
|
8
|
Oberska P, Grabowska M, Marynowska M, Murawski M, Gączarzewicz D, Syczewski A, Michałek K. Cellular Distribution of Aquaporin 3, 7 and 9 in the Male Reproductive System: A Lesson from Bovine Study ( Bos taurus). Int J Mol Sci 2024; 25:1567. [PMID: 38338845 PMCID: PMC10855163 DOI: 10.3390/ijms25031567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
The increasing incidence of male infertility in humans and animals creates the need to search for new factors that significantly affect the course of reproductive processes. Therefore, the aim of this study was to determine the temporospatial expression of aquaglyceroporins (AQP3, AQP7 and AQP9) in the bovine (Bos taurus) reproductive system using immunohistochemistry and Western blotting. The study also included morphological analysis and identification of GATA-4. In brief, in immature individuals, AQP3 and AQP7 were found in gonocytes. In reproductive bulls, AQP3 was observed in spermatocytes and spermatogonia, while AQP7 was visible in all germ cells and the Sertoli cells. AQP7 and AQP9 were detected in the Leydig cells. Along the entire epididymis of reproductive bulls, aquaglyceroporins were visible, among others, in basal cells (AQP3 and AQP7), in epididymal sperm (AQP7) and in the stereocilia of the principal cells (AQP9). In males of all ages, aquaglyceroporins were identified in the principal and basal cells of the vas deferens. An increase in the expression of AQP3 in the testis and cauda epididymis and a decrease in the abundance of AQP7 in the vas deferens with age were found. In conclusion, age-related changes in the expression and/or distribution patterns of AQP3, AQP7 and AQP9 indicate the involvement of these proteins in the normal development and course of male reproductive processes in cattle.
Collapse
Affiliation(s)
- Patrycja Oberska
- Department of Physiology, Cytobiology and Proteomics, West Pomeranian University of Technology in Szczecin, Klemensa Janickiego 29, 71-270 Szczecin, Poland; (P.O.); (M.M.)
| | - Marta Grabowska
- Department of Histology and Developmental Biology, Pomeranian Medical University, Żołnierska 48, 71-210 Szczecin, Poland;
| | - Marta Marynowska
- Department of Physiology, Cytobiology and Proteomics, West Pomeranian University of Technology in Szczecin, Klemensa Janickiego 29, 71-270 Szczecin, Poland; (P.O.); (M.M.)
| | - Maciej Murawski
- Department of Nutrition, Animal Biotechnology and Fisheries, University of Agriculture in Krakow, 24/28 Mickiewicza Avenue, 30-059 Cracow, Poland;
| | - Dariusz Gączarzewicz
- Department of Animal Reproduction, Biotechnology and Environmental Hygiene, West Pomeranian University of Technology in Szczecin, Klemensa Janickiego 29, 71-270 Szczecin, Poland;
| | | | - Katarzyna Michałek
- Department of Physiology, Cytobiology and Proteomics, West Pomeranian University of Technology in Szczecin, Klemensa Janickiego 29, 71-270 Szczecin, Poland; (P.O.); (M.M.)
| |
Collapse
|
9
|
Wu SX, Wang GW, Fang YG, Chen YW, Jin YY, Liu XT, Jia GX, Yang QE. Transcriptome analysis reveals dysregulated gene expression networks in Sertoli cells of cattle-yak hybrids. Theriogenology 2023; 203:33-42. [PMID: 36966583 DOI: 10.1016/j.theriogenology.2023.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 03/14/2023] [Accepted: 03/18/2023] [Indexed: 04/03/2023]
Abstract
Cattle-yak, the hybrid offspring of yak and taurine cattle, exhibits male sterility with normal female fertility. Spermatogenesis is arrested in adult cattle-yak, and apoptosis is elevated in spermatogenic cells. Currently, the mechanisms underlying these defects remain elusive. Sertoli cells are the only somatic cells that directly interact with spermatogenic cells in the seminiferous tubules and play essential roles in spermatogenesis. The present study was designed to investigate gene expression signatures and potential roles of Sertoli cells in hybrid sterility in cattle-yak. Immunohistochemical analysis showed that the 5 mC and 5hmC signals in Sertoli cells of cattle-yaks were significantly different from those of age-matched yaks (P < 0.05). Transcriptome profiling of isolated Sertoli cells identified 402 differentially expressed genes (DEGs) between cattle-yaks and yaks. Notably, niche factor glial cell derived neurotrophic factor (GDNF) was upregulated, and genes involved in retinoic acid (RA) biogenesis were changed in Sertoli cells of cattle-yak, suggesting possible impairments of spermatogonial fate decisions. Further studies showed that the numbers of proliferative gonocytes and undifferentiated spermatogonia in cattle-yak were significantly higher than those in yak (P < 0.01). Exogenous GDNF significantly promoted the proliferation of UCHL1-positive spermatogonia in yaks. Therefore, we concluded that altered GDNF expression and RA signaling impacted the fate decisions of undifferentiated spermatogonia in cattle-yak. Together, these findings highlight the role of Sertoli cells and their derived factors in hybrid sterility.
Collapse
Affiliation(s)
- Shi-Xin Wu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guo-Wen Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - You-Gui Fang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810000, China; Agricultural Service Center of Maduo County, Qinghai, 813500, China
| | - Yong-Wei Chen
- Qinghai Headquarter of Animal Husbandry Extension Station, Xining, 810008, China
| | - Yan-Ying Jin
- Center for Animal Disease Control and Prevention of Gangcha County, Qinghai, 812399, China
| | - Xue-Tong Liu
- Shaanxi General Animal Husbandry Station, Xian, Shaanxi, 710010, China
| | - Gong-Xue Jia
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810000, China; Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810001, China
| | - Qi-En Yang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810000, China; Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810001, China.
| |
Collapse
|
10
|
Mipam T, Chen X, Zhao W, Zhang P, Chai Z, Yue B, Luo H, Wang J, Wang H, Wu Z, Wang J, Wang M, Wang H, Zhang M, Wang H, Jing K, Zhong J, Cai X. Single-cell transcriptome analysis and in vitro differentiation of testicular cells reveal novel insights into male sterility of the interspecific hybrid cattle-yak. BMC Genomics 2023; 24:149. [PMID: 36973659 PMCID: PMC10045231 DOI: 10.1186/s12864-023-09251-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Interspecific hybridization plays vital roles in enriching animal diversity, while male hybrid sterility (MHS) of the offspring commonly suffered from spermatogenic arrest constitutes the postzygotic reproductive isolation. Cattle-yak, the hybrid offspring of cattle (Bos taurus) and yak (Bos grunniens) can serve as an ideal MHS animal model. Although meiotic arrest was found to contribute to MHS of cattle-yak, yet the cellular characteristics and developmental potentials of male germline cell in pubertal cattle-yak remain to be systematically investigated. RESULTS Single-cell RNA-seq analysis of germline and niche cell types in pubertal testis of cattle-yak and yak indicated that dynamic gene expression of developmental germ cells was terminated at late primary spermatocyte (meiotic arrest) and abnormal components of niche cell in pubertal cattle-yak. Further in vitro proliferation and differentially expressed gene (DEG) analysis of specific type of cells revealed that undifferentiated spermatogonia of cattle-yak exhibited defects in viability and proliferation/differentiation potentials. CONCLUSION Comparative scRNA-seq and in vitro proliferation analysis of testicular cells indicated that not only meiotic arrest contributed to MHS of cattle-yak. Spermatogenic arrest of cattle-yak may originate from the differentiation stage of undifferentiated spermatogonia and niche cells of cattle-yak may provide an adverse microenvironment for spermatogenesis.
Collapse
Affiliation(s)
- TserangDonko Mipam
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Xuemei Chen
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Wangsheng Zhao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Peng Zhang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Zhixin Chai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Binglin Yue
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Hui Luo
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Jikun Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Haibo Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Zhijuan Wu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Jiabo Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Mingxiu Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Hui Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Ming Zhang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Hongying Wang
- College of Chemistry & Environment, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Kemin Jing
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Jincheng Zhong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China.
| | - Xin Cai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
11
|
Cao M, Wang X, Guo S, Kang Y, Pei J, Guo X. F1 Male Sterility in Cattle-Yak Examined through Changes in Testis Tissue and Transcriptome Profiles. Animals (Basel) 2022; 12:ani12192711. [PMID: 36230452 PMCID: PMC9559613 DOI: 10.3390/ani12192711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/16/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
Simple Summary Cattle-yak, a crossbreed of cattle and yak, has evident heterosis but F1 male cattle-yak is unable to generate sperm and is sterile, which limits the fixation of heterosis. This study analyzed the differences in testicular tissue development between four-year-old yak and cattle-yak from the perspective of histomorphological changes and sequenced the testicular tissue of the two using RNA-seq technology, examining the differential gene expression related to spermatogenesis and apoptosis. These findings offer a theoretical explanation for the sterility in F1 male cattle-yak that can help yak hybridization. Abstract Male-derived sterility in cattle-yaks, a hybrid deriving from yak and cattle, is a challenging problem. This study compared and analyzed the histomorphological differences in testis between sexually mature yak and cattle-yak, and examined the transcriptome differences employing RNA-seq. The study found that yak seminiferous tubules contained spermatogenic cells at all levels, while cattle-yak seminiferous tubules had reduced spermatogonia (SPG) and primary spermatocyte (Pri-SPC), fewer secondary spermatocytes (Sec-SPC), an absence of round spermatids (R-ST) and sperms (S), and possessed large vacuoles. All of these conditions could have significantly reduced the volume and weight of cattle-yak testis compared to that of yak. RNA-seq analysis identified 8473 differentially expressed genes (DEGs; 3580 upregulated and 4893 downregulated). GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment evaluations for DEGs found their relation mostly to spermatogenesis and apoptosis. Among the DEGs, spermatogonia stem cell (SSCs) marker genes (Gfra1, CD9, SOHLH1, SALL4, ID4, and FOXO1) and genes involved in apoptosis (Fas, caspase3, caspase6, caspase7, caspase8, CTSK, CTSB and CTSC) were significantly upregulated, while differentiation spermatogenic cell marker genes (Ccna1, PIWIL1, TNP1, and TXNDC2) and meiosis-related genes (TEX14, TEX15, MEIOB, STAG3 and M1AP) were significantly downregulated in cattle-yak. Furthermore, the alternative splicing events in cattle-yak were substantially decreased than in yak, suggesting that the lack of protein subtypes could be another reason for spermatogenic arrest in cattle-yak testis.
Collapse
Affiliation(s)
- Mengli Cao
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xingdong Wang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Shaoke Guo
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Yandong Kang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Jie Pei
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Correspondence: ; Tel.: +86-18993037854
| |
Collapse
|
12
|
Xu H, Sun W, Pei S, Li W, Li F, Yue X. Identification of Key Genes Related to Postnatal Testicular Development Based on Transcriptomic Data of Testis in Hu Sheep. Front Genet 2022; 12:773695. [PMID: 35145544 PMCID: PMC8822165 DOI: 10.3389/fgene.2021.773695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
The selection of testis size can improve the reproductive capacity of livestock used for artificial insemination and has been considered as an important strategy for accelerating the breeding process. Although much work has been done to investigate the mechanisms of testis development in various species, there is little information available in regard to the differences in transcriptomic profiling of sheep testes at different developmental stages. In this work, we aimed to identify differentially expressed genes (DEGs) by RNA-Seq in sheep during different growth stages, including 0 month old (infant, M0), 3 months old (puberty, M3), 6 months old (sexual maturity, M6) and 12 months old (body maturity, M12). A total of 4,606 (2,381 up and 2,225 down), 7,500 (4,368 up and 3,132 down), 15 (8 up and seven down) DEGs were identified in M3_vs_M0, M6_vs_M3, and M12_vs_M6 comparison, respectively. Of which, a number of genes were continuously up-regulated and down-regulated with testicular development, including ODF3, ZPBP1, PKDREJ, MYBL1, PDGFA, IGF1, LH, INSL3, VIM, AMH, INHBA, COL1A1, COL1A2, and INHA. GO analysis illustrated that DEGs were mainly involved in testis development and spermatogenesis. KEGG analysis identified several important pathways and verified several reproduction-associated DEGs such as COL1A1, COL1A2, PDGFA, and IGF1. In addition, two gene modules highly associated with testis development and core genes with testis size were identified using weighted gene co-expression network analysis (WGCNA), including hub genes positively associated with testis size such as RANBP9, DNAH17, SPATA4, CIB4 and SPEM1, and those negatively associated with testis size such as CD81, CSK, PDGFA, VIM, and INHBA. This study comprehensively identified key genes related to sheep testicular development, which may provide potential insights for understanding male fertility and better guide in animal breeding.
Collapse
|
13
|
Phakdeedindan P, Wittayarat M, Tharasanit T, Techakumphu M, Shimazaki M, Sambuu R, Hirata M, Tanihara F, Taniguchi M, Otoi T, Sato Y. Aberrant levels of DNA methylation and H3K9 acetylation in the testicular cells of crossbred cattle-yak showing infertility. Reprod Domest Anim 2021; 57:304-313. [PMID: 34854139 DOI: 10.1111/rda.14061] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/29/2021] [Indexed: 11/27/2022]
Abstract
Although the interspecies hybridization of bovids, such as cattle-yak (Bos taurus × Bos grunniens), has heterosis benefits, the infertility of hybrid males affects the maintenance of dominant traits in subsequent generations. To achieve reproductive capacity, male germ cell development requires coordinated changes in gene expression, including DNA methylation and generalized histone modifications. Although gene expression-related mechanisms underlying hybrid male sterility have been investigated recently, information on the cell types and stage-specific controls remains limited. Here, we used immunohistochemistry and image analyses to evaluate the 5-methylcytosine (5MC) and acetyl-histone H3 Lys9 (AcK9) expression in all spermatogonia and testicular somatic cell types to determine their roles in cattle-yak spermatogenesis. Testicular tissues from yak (1-3 years old) and backcrossed hybrids (2 years old) were used. In yak, the AcK9 expression levels increased in all cell types during maturation, but the 5MC expression levels did not change until reaching 3 years when they increased in all testicular cell types, except spermatogonia. Cattle-yak hybrids showed higher 5MC expression levels and different AcK9 expression levels in all cell types compared to the same-aged yak. These results suggested that both gene modulation by AcK9 and constant levels of DNA methylation are required for spermatogenesis during maturation in yak. Therefore, inappropriate expression levels of both AcK9 and DNA methylation might be the major factors for disruption of normal germ cell development in cattle-yak. Additionally, various modulations occurred depending on the cell type. Further experiments are needed to identify the stage-specific gene expression modulations in each cell type in yak and cattle-yak to potentially solve the infertility issue in crossbreeding.
Collapse
Affiliation(s)
- Praopilas Phakdeedindan
- Department of Animal Husbandry, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Manita Wittayarat
- Faculty of Veterinary Science, Prince of Songkla University, Songkhla, Thailand
| | - Theerawat Tharasanit
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Mongkol Techakumphu
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Megumi Shimazaki
- Department of Animal Reproduction, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Rentsenkhand Sambuu
- Institute for Extension of Agricultural Advanced Technology, Ulaanbaatar, Mongolia
| | - Maki Hirata
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Fuminori Tanihara
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Masayasu Taniguchi
- Department of Animal Reproduction, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Takeshige Otoi
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Yoko Sato
- Department of Medical Engineering, Faculty of Allied Sciences, University of East Asia, Yamaguchi, Japan
| |
Collapse
|
14
|
Amelkina O, Silva AMD, Silva AR, Comizzoli P. Transcriptome dynamics in developing testes of domestic cats and impact of age on tissue resilience to cryopreservation. BMC Genomics 2021; 22:847. [PMID: 34814833 PMCID: PMC8611880 DOI: 10.1186/s12864-021-08099-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/19/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Fundamental knowledge of cellular and molecular mechanisms in developing testicular tissues is critical to better understand gonadal biology and responses to non-physiological conditions. The objective of our study was to (1) analyze transcriptome dynamics in developing testis of the domestic cat and (2) characterize age effects on the initial response of the tissue to vitrification. Tissues from adult and juvenile cats were processed for histology, DNA integrity, and RNA sequencing analyses before and after vitrification. RESULTS Transcriptomic findings enabled to further characterize juvenile period, distinguishing between early and late juvenile tissues. Changes in gene expression and functional pathways were extensive from early to late juvenile to adult development stages. Additionally, tissues from juvenile animals were more resilient to vitrification compared to adult counterparts, with early juvenile sample responding the least to vitrification and late juvenile sample response being closest to adult tissues. CONCLUSIONS This is the first study reporting comprehensive datasets on transcriptomic dynamic coupled with structural analysis of the cat testis according to the age and exposure to cryopreservation. It provides a comprehensive network of functional terms and pathways that are affected by age in the domestic cat and are either enriched in adult or juvenile testicular tissues.
Collapse
Affiliation(s)
- Olga Amelkina
- Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, USA
| | - Andreia M da Silva
- Laboratory of Animal Germplasm Conservation, Federal Rural University of Semi-Arid - UFERSA, Mossoró, RN, Brazil
| | - Alexandre R Silva
- Laboratory of Animal Germplasm Conservation, Federal Rural University of Semi-Arid - UFERSA, Mossoró, RN, Brazil
| | - Pierre Comizzoli
- Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, USA.
| |
Collapse
|
15
|
Ren F, Xi H, Ren Y, Li Y, Wen F, Xian M, Zhao M, Zhu D, Wang L, Lei A, Hu J. TLR7/8 signalling affects X-sperm motility via the GSK3 α/β-hexokinase pathway for the efficient production of sexed dairy goat embryos. J Anim Sci Biotechnol 2021; 12:89. [PMID: 34340711 PMCID: PMC8330071 DOI: 10.1186/s40104-021-00613-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/10/2021] [Indexed: 02/07/2023] Open
Abstract
Background Goat milk is very similar to human milk in terms of its abundant nutrients and ease of digestion. To derive greater economic benefit, farmers require more female offspring (does); however, the buck-to-doe offspring sex ratio is approximately 50%. At present, artificial insemination after the separation of X/Y sperm using flow cytometry is the primary means of controlling the sex of livestock offspring. However, flow cytometry has not been successfully utilised for the separation of X/Y sperm aimed at sexing control in dairy goats. Results In this study, a novel, simple goat sperm sexing technology that activates the toll-like receptor 7/8 (TLR7/8), thereby inhibiting X-sperm motility, was investigated. Our results showed that the TLR7/8 coding goat X-chromosome was expressed in approximately 50% of round spermatids in the testis and sperm, as measured from cross-sections of the epididymis and ejaculate, respectively. Importantly, TLR7/8 was located at the tail of the X-sperm. Upon TLR7/8 activation, phosphorylated forms of glycogen synthase kinase α/β (GSK3 α/β) and nuclear factor kappa-B (NF-κB) were detected in the X-sperm, causing reduced mitochondrial activity, ATP levels, and sperm motility. High-motility Y-sperm segregated to the upper layer and the low-motility X-sperm, to the lower layer. Following in vitro fertilisation using the TLR7/8-activated sperm from the lower layer, 80.52 ± 6.75% of the embryos were XX females. The TLR7/8-activated sperm were subsequently used for in vivo embryo production via the superovulatory response; nine embryos were collected from the uterus of two does that conceived. Eight of these were XX embryos, and one was an XY embryo. Conclusions Our study reveals a novel TLR7/8 signalling mechanism that affects X-sperm motility via the GSK3 α/β-hexokinase pathway; this technique could be used to facilitate the efficient production of sexed dairy goat embryos. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-021-00613-y.
Collapse
Affiliation(s)
- Fa Ren
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, People's Republic of China
| | - Huaming Xi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yijie Ren
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yu Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, People's Republic of China
| | - Fei Wen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, People's Republic of China
| | - Ming Xian
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, People's Republic of China
| | - Mengjie Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, People's Republic of China
| | - Dawei Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, People's Republic of China
| | - Liqiang Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, People's Republic of China
| | - Anmin Lei
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jianhong Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
16
|
Abstract
Environmental hypoxia exposure causes fertility problems in human and animals. Compelling evidence suggests that chronic hypoxia impairs spermatogenesis and reduces sperm motility. However, it is unclear whether paternal hypoxic exposure affects fertilization and early embryo development. In the present study, we exposed male mice to high altitude (3200 m above sea level) for 7 or 60 days to evaluate the effects of hypoxia on sperm quality, zygotic DNA methylation and blastocyst formation. Compared with age-matched controls, hypoxia-treated males exhibited reduced fertility after mating with normoxic females as a result of defects in sperm motility and function. Results of in vitro fertilization (IVF) experiments revealed that 60 days' exposure significantly reduced cleavage and blastocyst rates by 30% and 70%, respectively. Immunohistochemical staining of pronuclear formation indicated that the pronuclear formation process was disturbed and expression of imprinted genes was reduced in early embryos after paternal hypoxia. Overall, the findings of this study suggested that exposing male mice to hypoxia impaired sperm function and affected key events during early embryo development in mammals.
Collapse
|
17
|
Transcriptome analysis revealed key signaling networks regulating ovarian activities in the domestic yak. Theriogenology 2020; 147:50-56. [PMID: 32092605 DOI: 10.1016/j.theriogenology.2020.02.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 01/19/2020] [Accepted: 02/16/2020] [Indexed: 12/20/2022]
Abstract
Domestic yaks are the most important livestock species on the Qinghai-Tibetan Plateau. Adult female yaks normally breed in warm season and enter anestrous in cold season. Currently, how the ovarian activity is regulated at the molecular level remains to be determined. This study was conducted to investigate follicular development and gene expression patterns of yak ovarian tissues in the warm and cold seasons. Dynamics of follicular development was evaluated based on histological analyses and global gene expression was examined by using RNA-sequencing (RNA-seq) technology. Firstly, we found that follicle development of yak cows in cold season was different from that in warm season. Interestingly, ovaries collected from yaks in cold season contained a significant higher number of antral follicles and some of these follicles showed signs of polycystic structure, indicating abnormal granulosa cell function. RNA-seq analyses of ovarian tissues from non-pregnant adult yaks in cold and warm season revealed that a list of 320 transcripts were differentially expressed, specifically, 79 were up-regulated and 241 were down-regulated in the ovaries from yaks during the cold season. Further analysis demonstrated that transcripts associated with estrogen secretion and metabolism signaling pathway were altered, including FST, CYP1A1, PIK3R1 and PIK3R2. This study showed histological features of follicle development and revealed candidate genes that may have important roles in regulating ovarian activities in the yak seasonal reproduction.
Collapse
|
18
|
Moreno-Brito V, Morales-Adame D, Soto-Orduño E, González-Chávez SA, Pacheco-Tena C, Espino-Solis GP, Leal-Berumen I, González-Rodríguez E. Ashwin Gene Expression Profiles in Oocytes, Preimplantation Embryos, and Fetal and Adult Bovine Tissues. Animals (Basel) 2020; 10:ani10020276. [PMID: 32054057 PMCID: PMC7070630 DOI: 10.3390/ani10020276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/21/2020] [Accepted: 01/25/2020] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Ashwin is a gene involved in the morphogenesis of the central nervous system and the early embryonic development of Xenopus laevis. The analysis of its phylogeny in silico has shown that its functions are restricted to vertebrates, but we lack additional information regarding its biological importance in higher vertebrates, such as mammals. The present study reveals the wide and variable expression of this gene in different bovine organs and confirms its significant expression during early embryonic development, with a pattern similar to that reported for maternal genes. In addition, specific expression of this gene throughout follicular development and during bovine spermatogenesis is revealed, leading to the proposal of ashwin as a new gene with important biological implications in bovine development and reproduction. Abstract The ashwin gene, originally identified in Xenopus laevis, was found to be expressed first in the neural plate and later in the embryonic brain, eyes, and spinal cord. Functional studies of ashwin suggest that it participates in cell survival and anteroposterior patterning. Furthermore, ashwin is expressed zygotically in this species, which suggests that it participates in embryonic development. Nevertheless, the expression of this gene has not been studied in mammals. Thus, the aim of this study was to analyze the ashwin expression pattern in bovine fetal and adult tissues, as well as in three independent samples of immature and mature oocytes, and in two- to four-, and eight-cell embryos, morula, and blastocysts. Spatiotemporal expression was analyzed using real-time polymerase chain reaction (PCR); ashwin mRNA was detected in all tissues analyzed, immature and mature oocytes, and two- to eight-cell embryos. It was down-regulated in morula and blastocysts, suggesting that this expression profile is similar to that of maternal genes. Immunohistochemical localization of the ashwin protein in fetal and adult ovaries and testes reveals that this protein is consistently present during all stages of follicular development and during bovine spermatogenesis. These observations lead us to propose ashwin as an important gene involved in mammalian reproduction.
Collapse
Affiliation(s)
- Verónica Moreno-Brito
- Faculty of Medicine and Biomedical Sciences, Autonomous University of Chihuahua, Circuito Universitario, Campus II, Chihuahua C.P. 31109, Chih., Mexico; (V.M.-B.); (S.A.G.-C.); (C.P.-T.); (G.P.E.-S.); (I.L.-B.)
| | - Daniel Morales-Adame
- Faculty of Zootechnics and Ecology, Autonomous University of Chihuahua, Francisco R. Almada Km 1, Chihuahua C.P. 31453, Chih., Mexico;
| | - Elier Soto-Orduño
- Faculty of Chemical Sciences, Autonomous University of Chihuahua, Circuito Universitario, Campus II, Chihuahua C.P. 31109, Chih., Mexico;
| | - Susana Aideé González-Chávez
- Faculty of Medicine and Biomedical Sciences, Autonomous University of Chihuahua, Circuito Universitario, Campus II, Chihuahua C.P. 31109, Chih., Mexico; (V.M.-B.); (S.A.G.-C.); (C.P.-T.); (G.P.E.-S.); (I.L.-B.)
| | - César Pacheco-Tena
- Faculty of Medicine and Biomedical Sciences, Autonomous University of Chihuahua, Circuito Universitario, Campus II, Chihuahua C.P. 31109, Chih., Mexico; (V.M.-B.); (S.A.G.-C.); (C.P.-T.); (G.P.E.-S.); (I.L.-B.)
| | - Gerardo Pavel Espino-Solis
- Faculty of Medicine and Biomedical Sciences, Autonomous University of Chihuahua, Circuito Universitario, Campus II, Chihuahua C.P. 31109, Chih., Mexico; (V.M.-B.); (S.A.G.-C.); (C.P.-T.); (G.P.E.-S.); (I.L.-B.)
- Translational Research Laboratory, National Laboratory of Flow Cytometry, Autonomous University of Chihuahua, Circuito Universitario, Campus II, Chihuahua C.P. 31109, Chih., Mexico
| | - Irene Leal-Berumen
- Faculty of Medicine and Biomedical Sciences, Autonomous University of Chihuahua, Circuito Universitario, Campus II, Chihuahua C.P. 31109, Chih., Mexico; (V.M.-B.); (S.A.G.-C.); (C.P.-T.); (G.P.E.-S.); (I.L.-B.)
| | - Everardo González-Rodríguez
- Faculty of Medicine and Biomedical Sciences, Autonomous University of Chihuahua, Circuito Universitario, Campus II, Chihuahua C.P. 31109, Chih., Mexico; (V.M.-B.); (S.A.G.-C.); (C.P.-T.); (G.P.E.-S.); (I.L.-B.)
- Correspondence: ; Tel.: +1-614-439-1500 (ext. 5166); Fax: +1-614-434-1448
| |
Collapse
|
19
|
Ring 1 and YY1 Binding Protein Expressed in Murine Spermatocytes but Dispensable for Spermatogenesis. Genes (Basel) 2020; 11:genes11010084. [PMID: 31940753 PMCID: PMC7016996 DOI: 10.3390/genes11010084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/28/2019] [Accepted: 01/06/2020] [Indexed: 02/08/2023] Open
Abstract
Spermatogenesis is a complex cellular-differentiation process that relies on the precise regulation of gene expression in spermatogonia, meiotic, and postmeiotic germ cells. The Ring 1 and YY1 binding protein (Rybp) is a member of the mammalian polycomb-group (PcG) protein family that plays multifunctional roles in development. Previous findings indicate that Rybp may function as an important regulator of meiosis. However, its expression in the testes and function in spermatogenesis have not been examined. In this study, we investigated Rybp expression in postnatal mouse testes using qRT-PCR and immunohistochemistry. We also examined the function of Rybp in spermatogenesis by using a conditional-knockout approach. Results showed that the relative expression of Rybp mRNA was significantly upregulated in the testes of postnatal day (PD) 6 mice. Immunofluorescent staining revealed that Rybp was enriched in the spermatocytes. Surprisingly, a conditional deletion of Rybp in fetal germ cells did not affect the fertility or normal development of spermatogenic cells. Further analysis revealed that Rybp deletion resulted in a decreased expression of meiosis-related genes, but that meiosis progression was normal. Together, these findings suggest that Rybp expression was enriched in spermatocytes, but that it was not required for spermatogenesis.
Collapse
|
20
|
Li YC, Wang GW, Xu SR, Zhang XN, Yang QE. The expression of histone methyltransferases and distribution of selected histone methylations in testes of yak and cattle-yak hybrid. Theriogenology 2020; 144:164-173. [PMID: 31972460 DOI: 10.1016/j.theriogenology.2020.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 01/01/2020] [Accepted: 01/01/2020] [Indexed: 01/23/2023]
Abstract
Interspecies hybridization exists widely in nature and plays an important role in animal evolution and adaptation. It is commonly recognized that male offspring of interspecies hybrid are often sterile, which presents a crucial way of reproductive isolation. Currently, the mechanisms underlying interspecies hybrid male sterility are not well understood. Cattle-yak, progeny of yak (Bos grunniens) and cattle (Bos taurus) cross, is a unique animal model for investigating hybrid male sterility. Because histone modifications are vital for spermatogenesis, herein, we examined expressions of histone methyltransferases (HMTs) and distributions of histone methylations in the yak and cattle-yak testis. Histological examination of seminiferous tubules revealed that gonocytes and spermatocytes were established normally, however, spermatogenesis was arrested at the meiosis phase began at 10 months after birth in the hybrids. SUV420H1 was the only HMT examined showing a significant enrichment in cattle-yak testes at 3 months. Relative expressions of MLL5, SETDB1 and SUV420H1 were increased while SETDB2 and EZH2 were decreased in cattle-yak testes at 10 months. Relative concentrations of MLL5 and SUV420H1 were again increased while EHMT2 and PRDM9 expressions were decreased at 24 months. Immunofluorescent detection of selected histone methylations in cross-sections of testicular tissues or meiotic chromosomes demonstrated that depletion of H3K4me3 and significant enrichment of H3K27me3 and H4K20me3 were observed in Sertoli cells of cattle-yak. Levels and localizations of H3K4me3, H3K9me1, H3K9me3 and H4K20me3 were strikingly different in meiotic chromosomes of cattle-yak spermatocytes. These results highlighted the potential roles of histone methylations in spermatogenic failure and hybrid male sterility.
Collapse
Affiliation(s)
- Yong-Chang Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guo-Wen Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shang-Rong Xu
- Qinghai Academy of Animal Sciences and Veterinary Medicine, Xining, Qinghai, 810008, China
| | - Xiao-Na Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qi-En Yang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810000, China; Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810001, China; CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|