1
|
Yan X, Xie F, Yang S, Sun Y, Lei Y, Ren Q, Si H, Li Z, Qiu Q. Metagenomic Insights into the Rumen Microbiome in Solid and Liquid Fractions of Yaks and their Differences Compared to Other Ruminants. Integr Zool 2025. [PMID: 40265464 DOI: 10.1111/1749-4877.12984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
The rumen microbiome plays a critical role in nutrient metabolism and adaptation of the yak (Bos grunniens), an import livestock animal of the Qinghai-Tibet Plateau renowned for their superior plant fiber degradation capacity. However, the microbiome among the different ecological niches within yak's rumen remains unelucidated. Through shotgun sequencing of rumen solid and liquid fractions from five yaks, we identified significant differences in the microbial communities and their genetic functions between the solid and liquid fractions. Solid fractions exhibited dominance by Ruminococcus, Succiniclasticum, and Aspergillus, while Prevotella, Paludibacter, Parabacteroides, and Bacteroides prevailed in liquid fractions. Comparative CAZyme profiling revealed solid fractions were significantly enriched in cellulose/hemicellulose-targeting enzymes (GH5, GH11, and CBM63), implicating their specialization in breaking down the fibrous grasses. In contrast, liquid fractions showed higher abundances of starch-degrading enzymes (GH13, CBM48) and host-glycan utilizers (GH92), suggesting roles in soluble nutrient extraction and host-microbe interactions. Comparative analysis of 574 metagenome-assembled genomes suggested that Methanomethylophilaceae_UBA71 and nitrate-respiring Ruminococcaceae_Firm-04 preferentially colonized in the solids, whereas propionate-producing Quinella and animal glycan-degrading Bacteroides were more prevalent in the liquids. Moreover, compared to Hu sheep, yak's rumen microbiome showed significantly enhanced utilization of plant polysaccharide capacity. Comparative analysis across 10 ruminant species further highlighted host phylogeny as a key driver of rumen microbiome variation. These findings advance our understanding of niche differentiation and functional specialization within the unique yak rumen ecosystem.
Collapse
Affiliation(s)
- Xiaoting Yan
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Fei Xie
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Shuo Yang
- Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yishan Sun
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Yu Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Qingmiao Ren
- The Precision Medicine Laboratory, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Huazhe Si
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Zhipeng Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Qiang Qiu
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
2
|
Yutharaksanukul P, Tangpromphan P, Tunsagool P, Sae-Tan S, Nitisinprasert S, Somnuk S, Nakphaichit M, Pusuntisumpun N, Wanikorn B. Effects of Purified Vitexin and Iso-Vitexin from Mung Bean Seed Coat on Antihyperglycemic Activity and Gut Microbiota in Overweight Individuals' Modulation. Nutrients 2024; 16:3017. [PMID: 39275332 PMCID: PMC11396884 DOI: 10.3390/nu16173017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/16/2024] Open
Abstract
Exceeding a healthy weight significantly elevates the likelihood of developing type 2 diabetes (T2DM). A commercially available singular constituent, available as either purified vitexin or iso-vitexin, has been associated with a decreased risk of T2DM, but its synergistic effect has not been reported yet. Vitexin and iso-vitexin were extracted using an ethanol-based solvent from mung bean seed coat (MBCE) and subsequently purified using preparative liquid chromatography (Prep-LC). Eleven mixture ratios of vitexin and/or iso-vitexin were determined for their antioxidant and antihyperglycemic activities. The 1:1.5 ratio of vitexin to iso-vitexin from MBCE demonstrated the most synergistic effects for enzyme inhibition and glucose uptake in HepG2 cells within an insulin-resistant system, while these ratios exhibited a significantly lower antioxidant capacity than that of each individual component. In a gut model system, the ratio of 1:1.5 (vitexin and iso-vitexin) regulated the gut microbiota composition in overweight individuals by decreasing the growth of Enterobacteriaceae and Enterococcaceae, while increasing in Ruminococcaceae and Lachnospiraceae. The application of vitexin/iso-vitexin for 24 h fermentation enhanced a high variety of abundances of 21 genera resulting in five genera of Parabacteroides, Ruminococcus, Roseburia, Enterocloster, and Peptacetobacter, which belonged to the phylum Firmicutes, exhibiting high abundant changes of more than 5%. Only two genera of Proteus and Butyricicoccus belonging to Proteobacteria and Firmicutes decreased. The findings suggest that these phytochemicals interactions could have synergistic effects in regulating glycemia, through changes in antihyperglycemic activity and in the gut microbiota in overweight individuals. This optimal ratio can be utilized by industries to formulate more potent functional ingredients for functional foods and to create nutraceutical supplements aimed at reducing the risk of T2DM in overweight individuals.
Collapse
Affiliation(s)
- Pornlada Yutharaksanukul
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| | - Preuk Tangpromphan
- Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand
| | - Paiboon Tunsagool
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| | - Sudathip Sae-Tan
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| | - Sunee Nitisinprasert
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| | - Surasawadee Somnuk
- Department of Sports and Health Science, Faculty of Sports Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Massalin Nakphaichit
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| | - Nut Pusuntisumpun
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| | - Bandhita Wanikorn
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
3
|
Niciura SCM, Cardoso TF, Ibelli AMG, Okino CH, Andrade BG, Benavides MV, Chagas ACDS, Esteves SN, Minho AP, Regitano LCDA, Gondro C. Multi-omics data elucidate parasite-host-microbiota interactions and resistance to Haemonchus contortus in sheep. Parasit Vectors 2024; 17:102. [PMID: 38429820 PMCID: PMC10908167 DOI: 10.1186/s13071-024-06205-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/18/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND The integration of molecular data from hosts, parasites, and microbiota can enhance our understanding of the complex biological interactions underlying the resistance of hosts to parasites. Haemonchus contortus, the predominant sheep gastrointestinal parasite species in the tropics, causes significant production and economic losses, which are further compounded by the diminishing efficiency of chemical control owing to anthelmintic resistance. Knowledge of how the host responds to infection and how the parasite, in combination with microbiota, modulates host immunity can guide selection decisions to breed animals with improved parasite resistance. This understanding will help refine management practices and advance the development of new therapeutics for long-term helminth control. METHODS Eggs per gram (EPG) of feces were obtained from Morada Nova sheep subjected to two artificial infections with H. contortus and used as a proxy to select animals with high resistance or susceptibility for transcriptome sequencing (RNA-seq) of the abomasum and 50 K single-nucleotide genotyping. Additionally, RNA-seq data for H. contortus were generated, and amplicon sequence variants (ASV) were obtained using polymerase chain reaction amplification and sequencing of bacterial and archaeal 16S ribosomal RNA genes from sheep feces and rumen content. RESULTS The heritability estimate for EPG was 0.12. GAST, GNLY, IL13, MGRN1, FGF14, and RORC genes and transcripts were differentially expressed between resistant and susceptible animals. A genome-wide association study identified regions on chromosomes 2 and 11 that harbor candidate genes for resistance, immune response, body weight, and adaptation. Trans-expression quantitative trait loci were found between significant variants and differentially expressed transcripts. Functional co-expression modules based on sheep genes and ASVs correlated with resistance to H. contortus, showing enrichment in pathways of response to bacteria, immune and inflammatory responses, and hub features of the Christensenellaceae, Bacteroides, and Methanobrevibacter genera; Prevotellaceae family; and Verrucomicrobiota phylum. In H. contortus, some mitochondrial, collagen-, and cuticle-related genes were expressed only in parasites isolated from susceptible sheep. CONCLUSIONS The present study identified chromosome regions, genes, transcripts, and pathways involved in the elaborate interactions between the sheep host, its gastrointestinal microbiota, and the H. contortus parasite. These findings will assist in the development of animal selection strategies for parasite resistance and interdisciplinary approaches to control H. contortus infection in sheep.
Collapse
|
4
|
Chai J, Zhuang Y, Cui K, Bi Y, Zhang N. Metagenomics reveals the temporal dynamics of the rumen resistome and microbiome in goat kids. MICROBIOME 2024; 12:14. [PMID: 38254181 PMCID: PMC10801991 DOI: 10.1186/s40168-023-01733-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 11/28/2023] [Indexed: 01/24/2024]
Abstract
BACKGROUND The gut microbiome of domestic animals carries antibiotic resistance genes (ARGs) which can be transmitted to the environment and humans, resulting in challenges of antibiotic resistance. Although it has been reported that the rumen microbiome of ruminants may be a reservoir of ARGs, the factors affecting the temporal dynamics of the rumen resistome are still unclear. Here, we collected rumen content samples of goats at 1, 7, 14, 28, 42, 56, 70, and 84 days of age, analyzed their microbiome and resistome profiles using metagenomics, and assessed the temporal dynamics of the rumen resistome in goats at the early stage of life under a conventional feeding system. RESULTS In our results, the rumen resistome of goat kids contained ARGs to 41 classes, and the richness of ARGs decreased with age. Four antibiotic compound types of ARGs, including drugs, biocides, metals, and multi-compounds, were found during milk feeding, while only drug types of ARGs were observed after supplementation with starter feed. The specific ARGs for each age and their temporal dynamics were characterized, and the network inference model revealed that the interactions among ARGs were related to age. A strong correlation between the profiles of rumen resistome and microbiome was found using Procrustes analysis. Ruminal Escherichia coli within Proteobacteria phylum was the main carrier of ARGs in goats consuming colostrum, while Prevotella ruminicola and Fibrobacter succinogenes associated with cellulose degradation were the carriers of ARGs after starter supplementation. Milk consumption was likely a source of rumen ARGs, and the changes in the rumen resistome with age were correlated with the microbiome modulation by starter supplementation. CONCLUSIONS Our data revealed that the temporal dynamics of the rumen resistome are associated with the microbiome, and the reservoir of ARGs in the rumen during early life is likely related to age and diet. It may be a feasible strategy to reduce the rumen and its downstream dissemination of ARGs in ruminants through early-life dietary intervention. Video Abstract.
Collapse
Affiliation(s)
- Jianmin Chai
- Institute of Feed Research of Chinese Academy of Agricultural Sciences, Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, 528225, China
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Yimin Zhuang
- Institute of Feed Research of Chinese Academy of Agricultural Sciences, Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Kai Cui
- Institute of Feed Research of Chinese Academy of Agricultural Sciences, Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Yanliang Bi
- Institute of Feed Research of Chinese Academy of Agricultural Sciences, Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Beijing, 100081, China.
| | - Naifeng Zhang
- Institute of Feed Research of Chinese Academy of Agricultural Sciences, Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Beijing, 100081, China.
| |
Collapse
|
5
|
Conteville LC, da Silva JV, Andrade BGN, Cardoso TF, Bruscadin JJ, de Oliveira PSN, Mourão GB, Coutinho LL, Palhares JCP, Berndt A, de Medeiros SR, Regitano LCDA. Rumen and fecal microbiomes are related to diet and production traits in Bos indicus beef cattle. Front Microbiol 2023; 14:1282851. [PMID: 38163076 PMCID: PMC10754987 DOI: 10.3389/fmicb.2023.1282851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/22/2023] [Indexed: 01/03/2024] Open
Abstract
Background Ruminants harbor a complex microbial community within their gastrointestinal tract, which plays major roles in their health and physiology. Brazil is one of the largest producers of beef in the world and more than 90% of the beef cattle herds are composed of pure and crossbred Nelore (Bos indicus). Despite its importance to the Brazilian economy and human feeding, few studies have characterized the Nelore microbiome. Therefore, using shotgun metagenomics, we investigated the impact of diet on the composition and functionality of the Nelore microbiome, and explored the associations between specific microbial taxa and their functionality with feed efficiency and methane emission. Results The ruminal microbiome exhibited significantly higher microbial diversity, distinctive taxonomic profile and variations in microbial functionality compared to the fecal microbiome, highlighting the distinct contributions of the microbiomes of these environments. Animals subjected to different dietary treatments exhibited significant differences in their microbiomes' archaeal diversity and in the abundance of 89 genera, as well as in the functions associated with the metabolism of components of each diet. Moreover, depending on the diet, feed-efficient animals and low methane emitters displayed higher microbial diversity in their fecal microbiome. Multiple genera were associated with an increase or decrease of the phenotypes. Upon analyzing the functions attributed to these taxa, we observed significant differences on the ruminal taxa associated with feed efficient and inefficient cattle. The ruminal taxa that characterized feed efficient cattle stood out for having significantly more functions related to carbohydrate metabolism, such as monosaccharides, di-/oligosaccharides and amino acids. The taxa associated with methane emission had functions associated with methanogenesis and the production of substrates that may influence methane production, such as hydrogen and formate. Conclusion Our findings highlight the significant role of diet in shaping Nelore microbiomes and how its composition and functionality may affect production traits such as feed efficiency and methane emission. These insights provide valuable support for the implementation of novel feeding and biotechnological strategies.
Collapse
Affiliation(s)
| | - Juliana Virginio da Silva
- Embrapa Southeast Livestock, São Carlos, Brazil
- Department of Genetics and Evolution, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | | | | | - Jennifer Jessica Bruscadin
- Embrapa Southeast Livestock, São Carlos, Brazil
- Department of Genetics and Evolution, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Priscila Silva Neubern de Oliveira
- Embrapa Southeast Livestock, São Carlos, Brazil
- Department of Genetics and Evolution, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Gerson Barreto Mourão
- Department of Animal Science, Center for Functional Genomics, University of São Paulo/ESALQ, Piracicaba, Brazil
| | - Luiz Lehmann Coutinho
- Department of Animal Science, Center for Functional Genomics, University of São Paulo/ESALQ, Piracicaba, Brazil
| | | | | | | | | |
Collapse
|
6
|
Malheiros JM, Correia BSB, Ceribeli C, Bruscadin JJ, Diniz WJS, Banerjee P, da Silva Vieira D, Cardoso TF, Andrade BGN, Petrini J, Cardoso DR, Colnago LA, Bogusz Junior S, Mourão GB, Coutinho LL, Palhares JCP, de Medeiros SR, Berndt A, de Almeida Regitano LC. Ruminal and feces metabolites associated with feed efficiency, water intake and methane emission in Nelore bulls. Sci Rep 2023; 13:18001. [PMID: 37865691 PMCID: PMC10590413 DOI: 10.1038/s41598-023-45330-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023] Open
Abstract
The objectives of this study were twofold: (1) to identify potential differences in the ruminal and fecal metabolite profiles of Nelore bulls under different nutritional interventions; and (2) to identify metabolites associated with cattle sustainability related-traits. We used different nutritional interventions in the feedlot: conventional (Conv; n = 26), and by-product (ByPr, n = 26). Thirty-eight ruminal fluid and 27 fecal metabolites were significantly different (P < 0.05) between the ByPr and Conv groups. Individual dry matter intake (DMI), residual feed intake (RFI), observed water intake (OWI), predicted water intake (WI), and residual water intake (RWI) phenotypes were lower (P < 0.05) in the Conv group, while the ByPr group exhibited lower methane emission (ME) (P < 0.05). Ruminal fluid dimethylamine was significantly associated (P < 0.05) with DMI, RFI, FE (feed efficiency), OWI and WI. Aspartate was associated (P < 0.05) with DMI, RFI, FE and WI. Fecal C22:1n9 was significantly associated with OWI and RWI (P < 0.05). Fatty acid C14:0 and hypoxanthine were significantly associated with DMI and RFI (P < 0.05). The results demonstrated that different nutritional interventions alter ruminal and fecal metabolites and provided new insights into the relationship of these metabolites with feed efficiency and water intake traits in Nelore bulls.
Collapse
Affiliation(s)
| | | | - Caroline Ceribeli
- Institute of Chemistry, University of São Paulo/USP, São Carlos, São Paulo, Brazil
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | | | - Wellison J S Diniz
- Departament of Animal Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Priyanka Banerjee
- Departament of Animal Sciences, Auburn University, Auburn, AL, 36849, USA
| | | | | | - Bruno Gabriel Nascimento Andrade
- Embrapa Southeast Livestock, São Carlos, São Paulo, Brazil
- Computer Science Department, Munster Technological University, MTU/ADAPT, Cork, Ireland
| | - Juliana Petrini
- Department of Animal Science, University of São Paulo/ESALQ, Piracicaba, São Paulo, Brazil
| | | | | | | | - Gerson Barreto Mourão
- Department of Animal Science, University of São Paulo/ESALQ, Piracicaba, São Paulo, Brazil
| | - Luiz Lehmann Coutinho
- Department of Animal Science, University of São Paulo/ESALQ, Piracicaba, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
7
|
Slanzon G, Sischo W, McConnel C. Contrasting Fecal Methanogenic and Bacterial Profiles of Organic Dairy Cows Located in Northwest Washington Receiving Either a Mixed Diet of Pasture and TMR or Solely TMR. Animals (Basel) 2022; 12:ani12202771. [PMID: 36290156 PMCID: PMC9597778 DOI: 10.3390/ani12202771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 12/01/2022] Open
Abstract
Currently, little is known regarding fecal microbial populations and their associations with methanogenic archaea in pasture-based dairy cattle. In this study, we assessed the fecal microbiome of organic dairy cows across different time points receiving a mixed diet of pasture and total mixed ration (TMR) or TMR only. We hypothesized that the fecal methanogenic community, as well as co-occurrence patterns with bacteria, change across diets. To test these hypotheses, we analyzed TMR and pasture samples, as well as the V3-V4 region of 16S rRNA of fecal samples collected over the course of a one-year study period from 209 cows located on an organic dairy in Northwest Washington. The inherent variability in pasture quality, quantity, availability, and animal preference can lead to diverse dietary intakes. Therefore, we conducted a k-means clustering analysis to identify samples from cows that were associated with either a pasture-based diet or a solely TMR diet. A total of 4 clusters were identified. Clusters 1 and 3 were mainly associated with samples primarily collected from cows with access to pasture of varying quality and TMR, cluster 2 was formed by samples from cows receiving only TMR, and cluster 4 was a mix of samples from cows receiving high-quality pasture and TMR or TMR only. Interestingly, we found little difference in the relative abundance of methanogens between the community clusters. There was evidence of differences in diversity between pasture associated bacterial communities and those associated with TMR. Cluster 4 had higher diversity and a less robust co-occurrence network based on Spearman correlations than communities representing TMR only or lower-quality pasture samples. These findings indicate that varied bacterial communities are correlated with the metabolic characteristics of different diets. The overall good pasture and TMR quality in this study, combined with the organic allowance for feeding high levels of TMR even during the grazing season, might have contributed to the lack of differences in the fecal archaeal community from samples associated with a mixed pasture and TMR diet, and a TMR only diet. Mitigation strategies to decrease methane emissions such as increasing concentrate to forage ratio, decreasing pasture maturity and adopting grazing systems targeting high quality pasture have been shown to be efficient for pasture-based systems. However, the allowance for organic dairy producers to provide up to an average of 70% of a ruminant's dry matter demand from dry matter fed (e.g., TMR), suggests that reducing enteric methane emissions may require the development of novel dietary strategies independent of pasture management.
Collapse
|
8
|
Fuerniss LK, Kreikemeier KK, Reed LD, Cravey MD, Johnson BJ. Cecal microbiota of feedlot cattle fed a four-species Bacillus supplement. J Anim Sci 2022; 100:skac258. [PMID: 35953238 PMCID: PMC9576023 DOI: 10.1093/jas/skac258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/09/2022] [Indexed: 11/14/2022] Open
Abstract
As commercial fed cattle consume large amounts of concentrate feedstuffs, hindgut health can be challenged. The objective of this study was to evaluate the effects of a commercially available Bacillus feed additive on cattle health outcomes and cecal microbiota of fed cattle at the time of harvest. Commercial cattle from a single feedlot were identified for characterization of cecal microbial communities using 16S ribosomal ribonucleic acid gene sequencing. All cattle were fed a common corn-based finishing diet. Control cattle (CON) were administered no treatment while treated cattle (TRT) were supplemented daily with 0.050 g of MicroSaf 4C 40 (2 billion colony forming units of Bacillus spp.; Phileo by Lesaffre, Milwaukee, WI). Immediately after harvest and evisceration, the cecal contents of cattle were sampled. After DNA extraction, amplification, and sequencing, reads from CON samples (N = 12) and TRT samples (N = 12) were assigned taxonomy using the SILVA 138 database. Total morbidity, first treatment of atypical interstitial pneumonia, and early shipments for harvest were decreased among TRT cattle compared to CON cattle (P ≤ 0.021). On average, cecal microbiota from TRT cattle had greater alpha diversity than microbiota from CON cattle as measured by Shannon diversity, Pielou's evenness, and feature richness (P < 0.010). Additionally, TRT microbial communities were different (P = 0.001) and less variable (P < 0.001) than CON microbial communities when evaluated by unweighted UniFrac distances. By relative abundance across all samples, the most prevalent phyla were Firmicutes (55.40%, SD = 15.97) and Bacteroidetes (28.17%, SD = 17.74) followed by Proteobacteria (6.75%, SD = 10.98), Spirochaetes (4.54%, SD = 4.85), and Euryarchaeota (1.77%, SD = 3.00). Spirochaetes relative abundance in TRT communities was greater than that in CON communities and was differentially abundant between treatments by ANCOM testing (W = 11); Monoglobaceae was the only family-level taxon identified as differentially abundant (W = 59; greater mean relative abundance in TRT group by 2.12 percentage points). Half (N = 6) of the CON samples clustered away from all other samples based on principal coordinates and represented cecal dysbiosis among CON cattle. The results of this study indicated that administering a four-species blend of Bacillus positively supported the cecal microbial communities of finishing cattle. Further research is needed to explore potential mechanisms of action of Bacillus DFM products in feedlot cattle.
Collapse
Affiliation(s)
- Luke K Fuerniss
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | | | - Lynn D Reed
- Phileo by Lesaffre, Milwaukee, WI 52404, USA
| | | | - Bradley J Johnson
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
9
|
Mahayri TM, Fliegerová KO, Mattiello S, Celozzi S, Mrázek J, Mekadim C, Sechovcová H, Kvasnová S, Atallah E, Moniello G. Host Species Affects Bacterial Evenness, but Not Diversity: Comparison of Fecal Bacteria of Cows and Goats Offered the Same Diet. Animals (Basel) 2022; 12:ani12162011. [PMID: 36009603 PMCID: PMC9404439 DOI: 10.3390/ani12162011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/29/2022] [Accepted: 08/05/2022] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Comparison of bacterial diversity and composition of feces from cows and goats offered the same pasture-based diet revealed that the animal species had no effect on bacterial species richness and diversity, but significantly affected species evenness. Both diet and host species influence the gut microbiome. Abstract The aim of this study was to compare the diversity and composition of fecal bacteria in goats and cows offered the same diet and to evaluate the influence of animal species on the gut microbiome. A total of 17 female goats (Blond Adamellan) and 16 female cows (Brown Swiss) kept on an organic farm were fed pasture and hay. Bacterial structure in feces was examined by high-throughput sequencing using the V4–V5 region of the 16S rRNA gene. The Alpha diversity measurements of the bacterial community showed no statistical differences in species richness and diversity between the two groups of ruminants. However, the Pielou evenness index revealed a significant difference and showed higher species evenness in cows compared to goats. Beta diversity measurements showed statistical dissimilarities and significant clustering of bacterial composition between goats and cows. Firmicutes were the dominant phylum in both goats and cows, followed by Bacteroidetes, Proteobacteria, and Spirochaetes. Linear discriminant analysis with effect size (LEfSe) showed a total of 36 significantly different taxa between goats and cows. Notably, the relative abundance of Ruminococcaceae UCG-005, Christensenellaceae R-7 group, Ruminococcaceae UCG-010, Ruminococcaceae UCG-009, Ruminococcaceae UCG-013, Ruminococcaceae UCG-014, Ruminococcus 1, Ruminococcaceae UCG-002, Lachnospiraceae NK4A136 group, Treponema 2, Lachnospiraceae AC2044 group, and Bacillus was higher in goats compared to cows. In contrast, the relative abundance of Turicibacter, Solibacillus, Alloprevotella, Prevotellaceae UCG-001, Negativibacillus, Lachnospiraceae UCG-006, and Eubacterium hallii group was higher in cows compared with goats. Our results suggest that diet shapes the bacterial community in feces, but the host species has a significant impact on community structure, as reflected primarily in the relative abundance of certain taxa.
Collapse
Affiliation(s)
- Tiziana Maria Mahayri
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, Czech Academy of Science, 14220 Prague, Czech Republic
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy
| | - Kateřina Olša Fliegerová
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, Czech Academy of Science, 14220 Prague, Czech Republic
- Correspondence: ; Tel.: +420-267-090-504
| | - Silvana Mattiello
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, University of Milan, 20133 Milan, Italy
| | - Stefania Celozzi
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, University of Milan, 20133 Milan, Italy
| | - Jakub Mrázek
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, Czech Academy of Science, 14220 Prague, Czech Republic
| | - Chahrazed Mekadim
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, Czech Academy of Science, 14220 Prague, Czech Republic
| | - Hana Sechovcová
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, Czech Academy of Science, 14220 Prague, Czech Republic
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences in Prague, 16500 Prague, Czech Republic
| | - Simona Kvasnová
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, Czech Academy of Science, 14220 Prague, Czech Republic
| | - Elie Atallah
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy
| | - Giuseppe Moniello
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
10
|
Shang P, Wei M, Duan M, Yan F, Chamba Y. Healthy Gut Microbiome Composition Enhances Disease Resistance and Fat Deposition in Tibetan Pigs. Front Microbiol 2022; 13:965292. [PMID: 35928149 PMCID: PMC9343729 DOI: 10.3389/fmicb.2022.965292] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 06/24/2022] [Indexed: 01/10/2023] Open
Abstract
The gut microbiota is involved in a range of physiological processes in animals, and modulating the microbiome composition is considered a novel target for identifying animal traits. Tibetan pigs show better fat deposition and disease resistance compared to Yorkshire pigs. However, studies investigating the correlation between favorable characteristics in Tibetan pigs and the gut microbial community remain scarce. In the current study, 1,249,822 high-quality sequences were obtained by amplicon sequencing of the colon contents of Tibetan and Yorkshire pigs. We found that at the boundary level, the abundance and relative abundance of colon bacterial community in Tibetan pigs were higher than that in Yorkshire pigs (P > 0.05). Phylum level, Firmicutes were the dominant colonic microflora of Tibetan and Yorkshire pigs, and the ratio of Firmicutes to Bacteroides in Tibetan pigs was slightly higher than in Yorkshire pigs. Actinobacteria and Spirobacteria were significantly higher in Tibetan pigs than in Yorkshire pigs (P < 0.05). At the genus level, the relative abundance of Bifidobacterium, Lactobacillus, and Bacteriologist, which are related to disease resistance, was significantly higher than that in Yorkshire pigs in Yorkshire pigs. In conclusion, the composition and abundance of colonic intestinal microflora in Tibetan pigs were closely related to their superior traits. Bifidobacteria, Ruminococcaceae, and Family-XIII-AD3011-Group are conducive to improving disease resistance in Tibetan pigs. Lactobacillus and Solobacterium were observed to be the main bacterial communities involved in fat deposition in Tibetan pigs. This study will provide a new reference for the development and utilization of Tibetan pigs in future.
Collapse
Affiliation(s)
- Peng Shang
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, China
- The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi, China
| | - Mingbang Wei
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, China
- The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi, China
| | - Mengqi Duan
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, China
- The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi, China
| | - Feifei Yan
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, China
- The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi, China
| | - Yangzom Chamba
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, China
- The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi, China
- *Correspondence: Yangzom Chamba,
| |
Collapse
|
11
|
Andrade BGN, Bressani FA, Cuadrat RRC, Cardoso TF, Malheiros JM, de Oliveira PSN, Petrini J, Mourão GB, Coutinho LL, Reecy JM, Koltes JE, Neto AZ, R de Medeiros S, Berndt A, Palhares JCP, Afli H, Regitano LCA. Stool and Ruminal Microbiome Components Associated With Methane Emission and Feed Efficiency in Nelore Beef Cattle. Front Genet 2022; 13:812828. [PMID: 35656319 PMCID: PMC9152269 DOI: 10.3389/fgene.2022.812828] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/02/2022] [Indexed: 12/27/2022] Open
Abstract
Background: The impact of extreme changes in weather patterns on the economy and human welfare is one of the biggest challenges our civilization faces. From anthropogenic contributions to climate change, reducing the impact of farming activities is a priority since it is responsible for up to 18% of global greenhouse gas emissions. To this end, we tested whether ruminal and stool microbiome components could be used as biomarkers for methane emission and feed efficiency in bovine by studying 52 Brazilian Nelore bulls belonging to two feed intervention treatment groups, that is, conventional and by-product-based diets. Results: We identified a total of 5,693 amplicon sequence variants (ASVs) in the Nelore bulls’ microbiomes. A Differential abundance analysis with the ANCOM approach identified 30 bacterial and 15 archaeal ASVs as differentially abundant (DA) among treatment groups. An association analysis using Maaslin2 software and a linear mixed model indicated that bacterial ASVs are linked to the host’s residual methane emission (RCH4) and residual feed intake (RFI) phenotype variation, suggesting their potential as targets for interventions or biomarkers. Conclusion: The feed composition induced significant differences in both abundance and richness of ruminal and stool microbial populations in ruminants of the Nelore breed. The industrial by-product-based dietary treatment applied to our experimental groups influenced the microbiome diversity of bacteria and archaea but not of protozoa. ASVs were associated with RCH4 emission and RFI in ruminal and stool microbiomes. While ruminal ASVs were expected to influence CH4 emission and RFI, the relationship of stool taxa, such as Alistipes and Rikenellaceae (gut group RC9), with these traits was not reported before and might be associated with host health due to their link to anti-inflammatory compounds. Overall, the ASVs associated here have the potential to be used as biomarkers for these complex phenotypes.
Collapse
Affiliation(s)
- Bruno G N Andrade
- Embrapa Southeast Livestock, São Carlos, Brazil.,Department of Computer Science, Munster Technological University, MTU/ADAPT, Cork, Ireland
| | | | - Rafael R C Cuadrat
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, Germany
| | | | | | | | - Juliana Petrini
- Department of Animal Science, University of São Paulo/ESALQ, Piracicaba, Brazil
| | - Gerson B Mourão
- Department of Animal Science, University of São Paulo/ESALQ, Piracicaba, Brazil
| | - Luiz L Coutinho
- Department of Animal Science, University of São Paulo/ESALQ, Piracicaba, Brazil
| | - James M Reecy
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - James E Koltes
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | | | | | | | | | - Haithem Afli
- Department of Computer Science, Munster Technological University, MTU/ADAPT, Cork, Ireland
| | | |
Collapse
|
12
|
Leske M, Bottacini F, Afli H, Andrade BGN. BiGAMi: Bi-Objective Genetic Algorithm Fitness Function for Feature Selection on Microbiome Datasets. Methods Protoc 2022; 5:42. [PMID: 35645350 PMCID: PMC9149982 DOI: 10.3390/mps5030042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 11/23/2022] Open
Abstract
The relationship between the host and the microbiome, or the assemblage of microorganisms (including bacteria, archaea, fungi, and viruses), has been proven crucial for its health and disease development. The high dimensionality of microbiome datasets has often been addressed as a major difficulty for data analysis, such as the use of machine-learning (ML) and deep-learning (DL) models. Here, we present BiGAMi, a bi-objective genetic algorithm fitness function for feature selection in microbial datasets to train high-performing phenotype classifiers. The proposed fitness function allowed us to build classifiers that outperformed the baseline performance estimated by the original studies by using as few as 0.04% to 2.32% features of the original dataset. In 35 out of 42 performance comparisons between BiGAMi and other feature selection methods evaluated here (sequential forward selection, SelectKBest, and GARS), BiGAMi achieved its results by selecting 6-93% fewer features. This study showed that the application of a bi-objective GA fitness function against microbiome datasets succeeded in selecting small subsets of bacteria whose contribution to understood diseases and the host state was already experimentally proven. Applying this feature selection approach to novel diseases is expected to quickly reveal the microbes most relevant to a specific condition.
Collapse
Affiliation(s)
- Mike Leske
- Department of Computer Sciences, Munster Technological University, MTU/ADAPT, T12 P928 Cork, Ireland;
| | - Francesca Bottacini
- Department of Biological Sciences, Munster Technological University, MTU, T12 P928 Cork, Ireland;
| | - Haithem Afli
- Department of Computer Sciences, Munster Technological University, MTU/ADAPT, T12 P928 Cork, Ireland;
| | - Bruno G. N. Andrade
- Department of Computer Sciences, Munster Technological University, MTU/ADAPT, T12 P928 Cork, Ireland;
| |
Collapse
|
13
|
Fabino Neto R, Pessoa FOA, Silva TD, Miyagi ES, Santana Neto VV, Godoy MMD, Lima DKS, Silva JRDM, Brainer MMDA. O efeito de probióticos fúngicos adicionados a uma dieta rica em grãos no trato gastrointestinal de ovinos. CIÊNCIA ANIMAL BRASILEIRA 2022. [DOI: 10.1590/1809-6891v22e-70605p] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Resumo Objetivou-se avaliar as características microbiológicas e físico-químicas do fluido ruminal e histológicas do trato gástrico intestinal (TGI) de ovinos sob dieta de alto grão com probiótico fungos Aspergillus terreus e/ou Rhizomucor spp. Analisou-se quatro probióticos (sem inóculos, com Rhizomucor spp., com Aspergillus terreus e com mistura dos dois fungos) e dois processamentos de milho (moído/inteiro), em fatorial 4x2 em em Delineamento Inteiramente Casualizados (DIC). Borregos Santa Inês/Dorper foram alojados em oito baias com cinco borregos em cada, durante 75 dias. Coletou-se fluido ruminal para o estudo do perfil microbiológico do rúmen, da característica macroscópica, da concentração de nitrogênio amoniacal e da atividade microbiológica, além dos fragmentos do TGI para análises histológicas. Pelas análises dos fluidos, os animais apresentaram baixo índice de acidose. O odor aromático e a cor castanho-enegrecido predominaram, o que caracteriza ambiente com pH neutro. As amostras do fluido apresentaram alta atividade microbiana. O pH ruminal diferenciou-se (P<0,05) quanto ao tipo de processamento, sendo maior para milho grão moído (MGM). Não houve diferença para nenhuma das comunidades microbiológicas analisadas (P>0,05) (bactérias Lac+ e Lac-, fungos, leveduras e protozoários). Seis gêneros de fungos anaeróbicos facultativos foram identificados num total de 15 observações. O Cladosporium spp. foi o gênero mais prevalente (46,66%), seguido do Aspergillus spp. (26,66%). A largura da base das papilas ruminais apresentou interação significativa, sendo maior para MGM (P<0,05) com Rhizomucor e o controle (P<0,05). O fluido ruminal de ovinos sob dieta de alto concentrado de grão com adição dos fungos Aspergillus terreus e Rhizomucor spp. não tiveram afetadas as características microbiológicas e físico-químicas.
Collapse
|
14
|
Fabino Neto R, Pessoa FOA, Silva TD, Miyagi ES, Santana Neto VV, Godoy MMD, Lima DKS, Silva JRDM, Brainer MMDA. The effect of fungal probiotics added to a high-grain diet on the gastrointestinal tract of sheep. CIÊNCIA ANIMAL BRASILEIRA 2022. [DOI: 10.1590/1809-6891v22e-70605e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Abstract This study aimed to evaluate the microbiological and physicochemical characteristics of the ruminal fluid and histological characteristics of the gastrointestinal tract (GIT) of sheep on a high-grain diet containing the probiotic fungi Aspergillus terreus and Rhizomucor spp. The study included four treatment groups (without probiotic, with Rhizomucor spp., with Aspergillus terreus, and with a mixture of both fungi), and two types of corn (ground/whole), in a Completely Randomized Design (CRD) arranged in 4 x 2 factorial design. Santa Inês x Dorper lambs were housed in eight pens with five lambs each for 75 days. Rumen fluid was collected to study the rumen microbiological profile, macroscopic characteristics, ammonia nitrogen concentration, and microbiological activity. In addition, GIT samples were taken for histological analysis. Fluid analyses showed that the animals presented a low acidosis index. The samples presented a predominantly aromatic odor and blackish-brown color, indicating a neutral pH and high microbial activity. The rumen pH differed (P < 0.05) according to the level of processed corn consumed, being higher for ground grain corn (GGC). There was no difference for any of the microbiological communities analyzed (P > 0.05) (Lac+ and Lac- bacteria, fungi, yeasts, and protozoa). Six genera of facultative anaerobic fungi were identified in 15 observations. Cladosporium spp. was the most prevalent genus (46.66%), followed by Aspergillus spp. (26,66%). The width of the base of rumen papillae showed significant correlation being greater for GCG (P < 0.05) with Rhizomucor and for the control (P < 0.05). The rumen fluid of sheep on a high-grain diet with added Aspergillus terreus and Rhizomucor spp. showed no microbiological and physicochemical changes.
Collapse
|
15
|
Corrêa PS, Jimenez CR, Mendes LW, Rymer C, Ray P, Gerdes L, da Silva VO, De Nadai Fernandes EA, Abdalla AL, Louvandini H. Taxonomy and Functional Diversity in the Fecal Microbiome of Beef Cattle Reared in Brazilian Traditional and Semi-Intensive Production Systems. Front Microbiol 2021; 12:768480. [PMID: 34956130 PMCID: PMC8692951 DOI: 10.3389/fmicb.2021.768480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/04/2021] [Indexed: 01/10/2023] Open
Abstract
The importance of beef production for economy of Brazil and the growing demand for animal protein across the globe warrant an improvement in the beef production system. Although most attention has been on modulation of the rumen microbiome to improve ruminant production, the role of the lower gut microbiome in host health and nutrition remains relatively unexplored. This work aimed to investigate the taxonomy and functional variations in the fecal microbiome of Brazilian beef cattle reared in two different production systems using a metagenomic approach. Sixty male beef cattle from six farms representing semi-intensive (I, n = 2) and traditional (T, n = 4) Brazilian beef production systems were enrolled in the study. Shotgun sequencing was used to characterize taxonomic and functional composition and diversity of the microbiome in fecal samples collected from each animal. Fecal samples were analyzed for copper (Cu), lead (Pb), nitrogen (N), phosphorous (P), selenium (Se), and zinc (Zn) and stable isotopes of carbon (13C) and nitrogen (15N). The fecal microbiome was influenced by the beef production systems with greater functional and lower taxonomic diversity in beef cattle feces from I systems compared with that from T systems. The concentration of N, P, and Zn was higher in beef cattle feces from I systems compared with that from T systems and was associated with taxonomic and functional profile of fecal microbiome in I system, suggesting the role of fecal nutrients in shaping system-specific microbiome. Semi-intensive management practices led to a more complex but less connected fecal microbiome in beef cattle. The microbial community in beef cattle feces from I systems was characterized by greater abundance of beneficial bacteria (phylum Firmicutes and butyrate-producing bacteria family Lachnospiraceae and genera Anaerostipes, Blautia, Butyrivibrio, Eubacterium, Roseburia, and Ruminococcus). In addition, the fecal abundance of microbial genes related to immune system, nutrient metabolism, and energy production was greater in beef cattle raised under I systems compared with that under T systems. Findings of the current study suggest that semi-intensive management practices could facilitate the development of a healthier and more efficient fecal microbiome in beef cattle by driving an increase in the abundance of beneficial bacteria and functional genes.
Collapse
Affiliation(s)
- Patricia Spoto Corrêa
- Laboratory of Animal Nutrition, Center for Nuclear Energy in Agriculture, University of São Paulo, São Paulo, Brazil
| | - Carolina Rodriguez Jimenez
- Laboratory of Animal Nutrition, Center for Nuclear Energy in Agriculture, University of São Paulo, São Paulo, Brazil
| | - Lucas William Mendes
- Laboratory of Molecular Cell Biology, Center for Nuclear Energy in Agriculture, University of São Paulo, São Paulo, Brazil
| | - Caroline Rymer
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, Reading, United Kingdom
| | - Partha Ray
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, Reading, United Kingdom
| | - Luciana Gerdes
- Reference Laboratory on Classification and Evaluation of Animal Products, Institute of Zootechnics, Nova Odessa, Brazil
| | - Vagner Ovani da Silva
- Laboratory of Animal Nutrition, Center for Nuclear Energy in Agriculture, University of São Paulo, São Paulo, Brazil
| | | | - Adibe Luiz Abdalla
- Laboratory of Animal Nutrition, Center for Nuclear Energy in Agriculture, University of São Paulo, São Paulo, Brazil
| | - Helder Louvandini
- Laboratory of Animal Nutrition, Center for Nuclear Energy in Agriculture, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
16
|
Sakamoto LS, Souza LL, Gianvecchio SB, de Oliveira MHV, Silva JAIIDV, Canesin RC, Branco RH, Baccan M, Berndt A, de Albuquerque LG, Mercadante MEZ. Phenotypic association among performance, feed efficiency and methane emission traits in Nellore cattle. PLoS One 2021; 16:e0257964. [PMID: 34648502 PMCID: PMC8516271 DOI: 10.1371/journal.pone.0257964] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 09/14/2021] [Indexed: 11/19/2022] Open
Abstract
Enteric methane (CH4) emissions are a natural process in ruminants and can result in up to 12% of energy losses. Hence, decreasing enteric CH4 production constitutes an important step towards improving the feed efficiency of Brazilian cattle herds. The aim of this study was to evaluate the relationship between performance, residual feed intake (RFI), and enteric CH4 emission in growing Nellore cattle (Bos indicus). Performance, RFI and CH4 emission data were obtained from 489 animals participating in selection programs (mid-test age and body weight: 414±159 days and 356±135 kg, respectively) that were evaluated in 12 performance tests carried out in individual pens (n = 95) or collective paddocks (n = 394) equipped with electronic feed bunks. The sulfur hexafluoride tracer gas technique was used to measure daily CH4 emissions. The following variables were estimated: CH4 emission rate (g/day), residual methane emission and emission expressed per mid-test body weight, metabolic body weight, dry matter intake (CH4/DMI), average daily gain, and ingested gross energy (CH4/GE). Animals classified as negative RFI (RFI<0), i.e., more efficient animals, consumed less dry matter (P <0.0001) and emitted less g CH4/day (P = 0.0022) than positive RFI animals (RFI>0). Nonetheless, more efficient animals emitted more CH4/DMI and CH4/GE (P < 0.0001), suggesting that the difference in daily intake between animals is a determinant factor for the difference in daily enteric CH4 emissions. In addition, animals classified as negative RFI emitted less CH4 per kg mid-test weight and metabolic weight (P = 0.0096 and P = 0.0033, respectively), i.e., most efficient animals could emit less CH4 per kg of carcass. In conclusion, more efficient animals produced less methane when expressed as g/day and per kg mid-test weight than less efficient animals, suggesting lower emissions per kg of carcass produced. However, it is not possible to state that feed efficiency has a direct effect on enteric CH4 emissions since emissions per kg of consumed dry matter and the percentage of gross energy lost as CH4 are higher for more efficient animals.
Collapse
Affiliation(s)
| | - Luana Lelis Souza
- Institute of Animal Science, Beef Cattle Research Center, Sertãozinho, SP, Brazil
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, Brazil
| | | | | | | | | | - Renata Helena Branco
- Institute of Animal Science, Beef Cattle Research Center, Sertãozinho, SP, Brazil
| | | | | | - Lucia Galvão de Albuquerque
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, Brazil
| | | |
Collapse
|
17
|
Yan L, Tang L, Zhou Z, Lu W, Wang B, Sun Z, Jiang X, Hu D, Li J, Zhang D. Metagenomics reveals contrasting energy utilization efficiencies of captive and wild camels (Camelus ferus). Integr Zool 2021; 17:333-345. [PMID: 34520120 DOI: 10.1111/1749-4877.12585] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Captive conditions can affect the symbiotic microbiome of animals. In this study, we compared the structural and functional differences of the gastrointestinal microbiomes of wild Bactrian camels (Camelus ferus) between wild and captive populations, as well as their different host energy utilization performances through metagenomics. The results showed that wild-living camels harbored more microbial taxa related to the production of volatile fatty acids, fewer methanogens, and fewer genes encoding enzymes involved in methanogenesis, leading to higher energy utilization efficiency compared to that of captive-living camels. These findings suggest that the wild-living camel fecal microbiome demonstrates a series of adaptive characteristics that enable the host to adjust to a relatively barren field environment. Our study provides novel insights into the mechanisms of wildlife adaptations to habitats from the perspective of the microbiome.
Collapse
Affiliation(s)
- Liping Yan
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Liping Tang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Zhichao Zhou
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Wei Lu
- Gansu Endangered Animals Protection Center, Wuwei, China
| | - Bo Wang
- Gansu Endangered Animals Protection Center, Wuwei, China
| | - Zhicheng Sun
- Administrative Bureau of Dunhuang Xihu National Nature Reserve, Dunhuang, China
| | - Xue Jiang
- Administrative Bureau of Dunhuang Xihu National Nature Reserve, Dunhuang, China
| | - Defu Hu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Junqing Li
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Dong Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| |
Collapse
|
18
|
Malheiros JM, Correia BSB, Ceribeli C, Cardoso DR, Colnago LA, Junior SB, Reecy JM, Mourão GB, Coutinho LL, Palhares JCP, Berndt A, de Almeida Regitano LC. Comparative untargeted metabolome analysis of ruminal fluid and feces of Nelore steers (Bos indicus). Sci Rep 2021; 11:12752. [PMID: 34140582 PMCID: PMC8211696 DOI: 10.1038/s41598-021-92179-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 06/07/2021] [Indexed: 02/05/2023] Open
Abstract
We conducted a study to identify the fecal metabolite profile and its proximity to the ruminal metabolism of Nelore steers based on an untargeted metabolomic approach. Twenty-six Nelore were feedlot with same diet during 105 d. Feces and rumen fluid were collected before and at slaughter, respectively. The metabolomics analysis indicated 49 common polar metabolites in the rumen and feces. Acetate, propionate, and butyrate were the most abundant polar metabolites in both bio-samples. The rumen presented significantly higher concentrations of the polar compounds when compared to feces (P < 0.05); even though, fecal metabolites presented an accentuated representability of the ruminal fluid metabolites. All fatty acids present in the ruminal fluid were also observed in the feces, except for C20:2n6 and C20:4n6. The identified metabolites offer information on the main metabolic pathways (higher impact factor and P < 0.05), as synthesis and degradation of ketone bodies; the alanine, aspartate and glutamate metabolisms, the glycine, serine; and threonine metabolism and the pyruvate metabolism. The findings reported herein on the close relationship between the ruminal fluid and feces metabolic profiles may offer new metabolic information, in addition to facilitating the sampling for metabolism investigation in animal production and health routines.
Collapse
Affiliation(s)
| | | | - Caroline Ceribeli
- Chemistry Institute of São Carlos, University of São Paulo/USP, São Carlos, São Paulo, Brazil
| | | | | | - Stanislau Bogusz Junior
- Chemistry Institute of São Carlos, University of São Paulo/USP, São Carlos, São Paulo, Brazil
| | - James Mark Reecy
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Gerson Barreto Mourão
- Department of Animal Science, University of São Paulo/ESALQ, Piracicaba, São Paulo, Brazil
| | - Luiz Lehmann Coutinho
- Department of Animal Science, University of São Paulo/ESALQ, Piracicaba, São Paulo, Brazil
| | | | | | | |
Collapse
|
19
|
Taxonomic annotation of 16S rRNA sequences of pig intestinal samples using MG-RAST and QIIME2 generated different microbiota compositions. J Microbiol Methods 2021; 186:106235. [PMID: 33974954 DOI: 10.1016/j.mimet.2021.106235] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 01/04/2023]
Abstract
Environmental microbiome studies rely on fast and accurate bioinformatics tools to characterize the taxonomic composition of samples based on the 16S rRNA gene. MetaGenome Rapid Annotation using Subsystem Technology (MG-RAST) and Quantitative Insights Into Microbial Ecology 2 (QIIME2) are two of the most popular tools available to perform this task. Their underlying algorithms differ in many aspects, and therefore the comparison of the pipelines provides insights into their best use and interpretation of the outcomes. Both of these bioinformatics tools are based on several specialized algorithms pipelined together, but whereas MG-RAST is a user-friendly webserver that clusters rRNA sequences based on their similarity to create Operational Taxonomic Units (OTU), QIIME2 employs DADA2 in the construction of Amplicon Sequence Variants (ASV) by applying an error model that considers the abundance of each sequence and its similarity to other sequences. Taxonomic compositions obtained from the analyses of amplicon sequences of DNA from swine intestinal gut and faecal microbiota samples using MG-RAST and QIIME2 were compared at domain-, phylum-, family- and genus-levels in terms of richness, relative abundance and diversity. We found significant differences between the microbiota profiles obtained from each pipeline. At domain level, bacteria were relatively more abundant using QIIME2 than MG-RAST; at phylum level, seven taxa were identified exclusively by QIIME2; at family level, samples processed in QIIME2 showed higher evenness and richness (assessed by Shannon and Simpson indices). The genus-level compositions obtained from each pipeline were used in partial least squares-discriminant analyses (PLS-DA) to discriminate between sample collection sites (caecum, colon and faeces). The results showed that different genera were found to be significant for the models, based on the Variable Importance in Projection, e.g. when using sequencing data processed by MG-RAST, the three most important genera were Acetitomaculum, Ruminococcus and Methanosphaera, whereas when data was processed using QIIME2, these were Candidatus Methanomethylophilus, Sphaerochaeta and Anaerorhabdus. Furthermore, the application of differential filtering procedures before the PLS-DA revealed higher accuracy when using non-restricted datasets obtained from MG-RAST, whereas datasets obtained from QIIME2 resulted in more accurate discrimination of sample collection sites after removing genera with low relative abundances (<1%) from the datasets. Our results highlight the differences in taxonomic compositions of samples obtained from the two separate pipelines, while underlining the impact on downstream analyses, such as biomarkers identification.
Collapse
|
20
|
Fu H, Zhang L, Fan C, Liu C, Li W, Li J, Zhao X, Jia S, Zhang Y. Domestication Shapes the Community Structure and Functional Metagenomic Content of the Yak Fecal Microbiota. Front Microbiol 2021; 12:594075. [PMID: 33897627 PMCID: PMC8059439 DOI: 10.3389/fmicb.2021.594075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 03/05/2021] [Indexed: 01/07/2023] Open
Abstract
Domestication is a key factor of genetic variation; however, the mechanism by which domestication alters gut microbiota is poorly understood. Here, to explore the variation in the structure, function, rapidly evolved genes (REGs), and enzyme profiles of cellulase and hemicellulose in fecal microbiota, we studied the fecal microbiota in wild, half-blood, and domestic yaks based on 16S rDNA sequencing, shotgun-metagenomic sequencing, and the measurement of short-chain-fatty-acids (SCFAs) concentration. Results indicated that wild and half-blood yaks harbored an increased abundance of the phylum Firmicutes and reduced abundance of the genus Akkermansia, which are both associated with efficient energy harvesting. The gut microbial diversity decreased in domestic yaks. The results of the shotgun-metagenomic sequencing showed that the wild yak harbored an increased abundance of microbial pathways that play crucial roles in digestion and growth of the host, whereas the domestic yak harbored an increased abundance of methane-metabolism-related pathways. Wild yaks had enriched amounts of REGs in energy and carbohydrate metabolism pathways, and possessed a significantly increased abundance of cellulases and endohemicellulases in the glycoside hydrolase family compared to domestic yaks. The concentrations of acetic, propionic, n-butyric, i-butyric, n-valeric, and i-valeric acid were highest in wild yaks. Our study displayed the domestic effect on the phenotype of composition, function in gut microbiota, and SCFAs associated with gut microbiota, which had a closely association with the growth performance of the livestock. These findings may enlighten the researchers to construct more links between economic characteristics and gut microbiota, and develop new commercial strains in livestock based on the biotechnology of gut microbiota.
Collapse
Affiliation(s)
- Haibo Fu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Liangzhi Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
| | - Chao Fan
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chuanfa Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
| | - Wenjing Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
| | - Jiye Li
- Datong Yak Breeding Farm of Qinghai Province, Datong, China
| | - Xinquan Zhao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
| | - Shangang Jia
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Yanming Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
| |
Collapse
|
21
|
Palumbo F, Squartini A, Barcaccia G, Macolino S, Pornaro C, Pindo M, Sturaro E, Ramanzin M. A multi-kingdom metabarcoding study on cattle grazing Alpine pastures discloses intra-seasonal shifts in plant selection and faecal microbiota. Sci Rep 2021; 11:889. [PMID: 33441587 PMCID: PMC7806629 DOI: 10.1038/s41598-020-79474-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
Diet selection by grazing livestock may affect animal performance as well as the biodiversity of grazed areas. Recent DNA barcoding techniques allow to assess dietary plant composition in faecal samples, which may be additionally integrated by the description of gut microbiota. In this high throughput metabarcoding study, we investigated the diversity of plant, fungal and bacterial taxa in faecal samples of lactating cows of two breeds grazing an Alpine semi-natural grassland during summer. The estimated plant composition of the diet comprised 67 genera and 39 species, which varied remarkably during summer, suggesting a decline of the diet forage value with the advancing of the vegetative season. The fungal community included Neocallimastigomycota gut symbionts, but also Ascomycota and Basidiomycota plant parasite and coprophilous taxa, likely ingested during grazing. The proportion of ingested fungi was remarkably higher than in other studies, and varied during summer, although less than that observed for plants. Some variation related to breed was also detected. The gut bacterial taxa remained stable through the summer but displayed a breed-specific composition. The study provided insights in the reciprocal organisms' interactions affecting, and being affected by, the foraging behaviour: plants showed a high temporal variation, fungi a smaller one, while bacteria had practically none; conversely, the same kingdoms showed the opposite gradient of variation as respect to the animal host breed, as bacteria revealed to be the group mostly characterized by host-specificity.
Collapse
Affiliation(s)
- Fabio Palumbo
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of Padova, Campus of Agripolis, Viale dell'Università 16, 35020, Legnaro, Padova, Italy
| | - Andrea Squartini
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of Padova, Campus of Agripolis, Viale dell'Università 16, 35020, Legnaro, Padova, Italy.
| | - Gianni Barcaccia
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of Padova, Campus of Agripolis, Viale dell'Università 16, 35020, Legnaro, Padova, Italy
| | - Stefano Macolino
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of Padova, Campus of Agripolis, Viale dell'Università 16, 35020, Legnaro, Padova, Italy
| | - Cristina Pornaro
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of Padova, Campus of Agripolis, Viale dell'Università 16, 35020, Legnaro, Padova, Italy
| | - Massimo Pindo
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via Mach 1, S. Michele All'Adige, 38010, Trento, Italy
| | - Enrico Sturaro
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of Padova, Campus of Agripolis, Viale dell'Università 16, 35020, Legnaro, Padova, Italy
| | - Maurizio Ramanzin
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of Padova, Campus of Agripolis, Viale dell'Università 16, 35020, Legnaro, Padova, Italy
| |
Collapse
|
22
|
Kataev VY, Sleptsov II, Martynov AA, Aduchiev BK, Khlopko YA, Miroshnikov SA, Cherkasov SV, Plotnikov AO. Data on rumen and faeces microbiota profiles of Yakutian and Kalmyk cattle revealed by high-throughput sequencing of 16S rRNA gene amplicons. Data Brief 2020; 33:106407. [PMID: 33102664 PMCID: PMC7578675 DOI: 10.1016/j.dib.2020.106407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 01/22/2023] Open
Abstract
It is known that the rumen microbiome directly or indirectly contributes to animal production, and may be a prospective target for mitigation of greenhouse gas emissions [1]. At the same time, feed types and components of diet can influence the composition of the rumen microbiome [2,3]. Fluctuations in the composition of the digestive tract microbiota can alter the development, health, and productivity of cattle [4]. Many studies of cattle microbiomes have focussed on the rumen microbiota, whereas the faecal microbiota has received less attention [5], [6], [7]. Therefore, the features of the faecal and the ruminal microbiomes in different cattle breeds are yet to be studied. Here, we provided 16S rRNA gene amplicon data of the ruminal and the faecal microbiomes from Yakutian and Kalmyk cattle living in the Republic of Sakha, Yakutia, Russia. Total DNA was extracted from 13 faecal and 13 ruminal samples, and DNA libraries were prepared and sequenced on an Illumina MiSeq platform. Paired-end raw reads were processed, and final operational taxonomic units (OTUs) were assigned to the respective prokaryotic taxa using the RDP (Ribosomal Database Project) database. Analysis of the microbiome composition at the phylum level revealed very similar faecal microbiota between the introduced Kalmyk breed and the indigenous Yakutian breed, whereas the ruminal microbiomes of these breeds differed substantially in terms of relative abundance of some prokaryotic phyla. We believe that the data obtained may provide new insights into the dynamics of the ruminal and the faecal microbiota of cattle as well as disclose breed-specific features of ruminal microbiomes. Besides, these data will contribute to our understanding of the ruminal microbiome structure and function, and might be useful for the management of cattle feeding and ruminal methane production.
Collapse
Affiliation(s)
- Vladimir Ya Kataev
- Institute for Cellular and Intracellular Symbiosis of the Ural Branch of the Russian Academy of Sciences, 11 Pionerskaya St., Orenburg 460000, Russian Federation
| | - Ivan I Sleptsov
- Arctic State Agrotechnological University, 15 Krasilnikov St., Yakutsk 677007, Russian Federation
| | - Andrey A Martynov
- Arctic State Agrotechnological University, 15 Krasilnikov St., Yakutsk 677007, Russian Federation
| | - Bator K Aduchiev
- Arctic State Agrotechnological University, 15 Krasilnikov St., Yakutsk 677007, Russian Federation
| | - Yuri A Khlopko
- Institute for Cellular and Intracellular Symbiosis of the Ural Branch of the Russian Academy of Sciences, 11 Pionerskaya St., Orenburg 460000, Russian Federation
| | - Sergey A Miroshnikov
- Federal Research Centre of Biological Systems and Agro-technologies of RAS, 29 9th Yanvarya St., Orenburg 460000, Russian Federation
| | - Sergey V Cherkasov
- Institute for Cellular and Intracellular Symbiosis of the Ural Branch of the Russian Academy of Sciences, 11 Pionerskaya St., Orenburg 460000, Russian Federation
| | - Andrey O Plotnikov
- Institute for Cellular and Intracellular Symbiosis of the Ural Branch of the Russian Academy of Sciences, 11 Pionerskaya St., Orenburg 460000, Russian Federation
| |
Collapse
|
23
|
Tang S, Xin Y, Ma Y, Xu X, Zhao S, Cao J. Screening of Microbes Associated With Swine Growth and Fat Deposition Traits Across the Intestinal Tract. Front Microbiol 2020; 11:586776. [PMID: 33178171 PMCID: PMC7596661 DOI: 10.3389/fmicb.2020.586776] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/15/2020] [Indexed: 12/12/2022] Open
Abstract
Pigs, as one of the most common livestock species worldwide, are expected to have a fast growth rate and lower subcutaneous fatness but higher intramuscular fat ("marbling meat"). Nowadays, it is believed that not only host genetics but also its gut microbiomes can modulate farm animal phenotypes, however, many of the mechanisms remain elusive. We measured the body weight (BW), average daily gain (ADG), backfat thickness (BFT), and intramuscular fatness (IMF) of 91 Enshi pigs at 260 days of age, then genotyped each one individually using a 50K single nucleotide polymorphism array and performed 16S ribosomal RNA gene sequencing on 455 microbial samples from the jejunum, ileum, cecum, colon, and rectum. The microbial diversity showed notable spatial variation across the entire intestinal tract, with the cecum and colon having the highest α-diversity. The cecal and colonic microbiotas made greater contributions to BW and ADG and accounted for 22-37% of the phenotypic variance. The jejunal and cecal microbiotas contributed more (13-31%) to the BFT and IMF than the other segments. Finally, from cecum, colon, and jejunum, we identified eight microbial taxa that were significantly correlated with the target traits. The genera Alloprevotella and Ruminococcaceae UCG-005 were highly positively correlated with BW and ADG. The genera Prevotellaceae UCG-001 and Alistipes in the cecum and Clostridium sensu stricto 1 in the jejunum were highly positively correlated with BFT and IMF. The genera Stenotrophomonas, Sphaerochaeta, and Desulfovibrio were negatively associated with the mentioned traits. These findings could aid in developing strategies for manipulating the gut microbiota to alter production performance in pigs.
Collapse
Affiliation(s)
- Shi Tang
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production – Swine Breeding and Reproduction Innovation Platform, Huazhong Agricultural University, Wuhan, China
| | - Ying Xin
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production – Swine Breeding and Reproduction Innovation Platform, Huazhong Agricultural University, Wuhan, China
| | - Yunlong Ma
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production – Swine Breeding and Reproduction Innovation Platform, Huazhong Agricultural University, Wuhan, China
| | - Xuewen Xu
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production – Swine Breeding and Reproduction Innovation Platform, Huazhong Agricultural University, Wuhan, China
| | - Shuhong Zhao
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production – Swine Breeding and Reproduction Innovation Platform, Huazhong Agricultural University, Wuhan, China
| | - Jianhua Cao
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production – Swine Breeding and Reproduction Innovation Platform, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|