1
|
Jiang Z, Mei L, Li Y, Guo Y, Yang B, Huang Z, Li Y. Enzymatic Regulation of the Gut Microbiota: Mechanisms and Implications for Host Health. Biomolecules 2024; 14:1638. [PMID: 39766345 PMCID: PMC11727233 DOI: 10.3390/biom14121638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/11/2024] [Accepted: 12/18/2024] [Indexed: 01/12/2025] Open
Abstract
The gut microbiota, a complex ecosystem, is vital to host health as it aids digestion, modulates the immune system, influences metabolism, and interacts with the brain-gut axis. Various factors influence the composition of this microbiota. Enzymes, as essential catalysts, actively participate in biochemical reactions that have an impact on the gut microbial community, affecting both the microorganisms and the gut environment. Enzymes play an important role in the regulation of the intestinal microbiota, but the interactions between enzymes and microbial communities, as well as the precise mechanisms of enzymes, remain a challenge in scientific research. Enzymes serve both traditional nutritional functions, such as the breakdown of complex substrates into absorbable small molecules, and non-nutritional roles, which encompass antibacterial function, immunomodulation, intestinal health maintenance, and stress reduction, among others. This study categorizes enzymes according to their source and explores the mechanistic principles by which enzymes drive gut microbial activity, including the promotion of microbial proliferation, the direct elimination of harmful microbes, the modulation of bacterial interaction networks, and the reduction in immune stress. A systematic understanding of enzymes in regulating the gut microbiota and the study of their associated molecular mechanisms will facilitate the application of enzymes to precisely regulate the gut microbiota in the future and suggest new therapeutic strategies and dietary recommendations. In conclusion, this review provides a comprehensive overview of the role of enzymes in modulating the gut microbiota. It explores the underlying molecular and cellular mechanisms and discusses the potential applications of enzyme-mediated microbiota regulation for host gut health.
Collapse
Affiliation(s)
- Zipeng Jiang
- Guangdong VTR Bio-Tech Co,. Ltd., Zhuhai 519060, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510641, China
| | - Liang Mei
- Guangdong VTR Bio-Tech Co,. Ltd., Zhuhai 519060, China
| | - Yuqi Li
- Guangdong VTR Bio-Tech Co,. Ltd., Zhuhai 519060, China
| | - Yuguang Guo
- Guangdong VTR Bio-Tech Co,. Ltd., Zhuhai 519060, China
| | - Bo Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510641, China
| | - Zhiyi Huang
- Guangdong VTR Bio-Tech Co,. Ltd., Zhuhai 519060, China
| | - Yangyuan Li
- Guangdong VTR Bio-Tech Co,. Ltd., Zhuhai 519060, China
| |
Collapse
|
2
|
Jiang Z, Huang Z, Du H, Li Y, Wang M, Chen D, Lu J, Liu G, Mei L, Li Y, Liang W, Yang B, Guo Y. Effects of high-dose glucose oxidase on broiler growth performance, antioxidant function, and intestinal microbiota in broilers. Front Microbiol 2024; 15:1439481. [PMID: 39529676 PMCID: PMC11551609 DOI: 10.3389/fmicb.2024.1439481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Glucose oxidase (GOD) has been investigated as a potential additive for enhancing intestinal health and growth performance in poultry. However, limited research exists on the effects of ultra-high doses of GOD in practical poultry production. This study aimed to investigate the impact of high dietary GOD levels on broiler growth performance, antioxidant capacity, and intestinal microbiota. A total of 400 healthy, 1-day-old, slow-growing broiler chickens were randomly assigned to four treatment groups. The control group was fed a standard basal diet, while the other groups (G1, G2, and G3) were fed the basal diet supplemented with 4 U/g, 20 U/g, and 100 U/g of VTR GOD, respectively. The results showed that a dose of 100 U/g GOD significantly improved the final body weight and average daily feed intake (ADFI) (p < 0.05). Additionally, the G3 group exhibited a marked increase in glutathione peroxidase (GSH-Px) activity (p < 0.05), reflecting enhanced antioxidant function. Gut morphology remained intact across all groups, indicating no adverse effects on intestinal barrier integrity. Microbiota analysis revealed significant increases (p < 0.05) in Firmicutes and Verrucomicrobiota abundance at the phylum level in the GOD-supplemented groups. Moreover, GOD treatments significantly increased the abundance of Faecalibacterium, Mucispirllum, and CHKCI001 at the genus level. Metabolic function predictions suggested that high-dose GOD supplementation enriched carbohydrate metabolism, particularly starch and sucrose metabolism. Correlation analysis indicated that Faecalibacterium and CHCKI001 were two bacteria strongly influenced by GOD supplementation and were associated with enhanced growth performance and improved gut health. In conclusion, high-dose GOD supplementation had no adverse effects and demonstrated significant benefits, promoting both growth performance and gut health in broilers.
Collapse
Affiliation(s)
- Zipeng Jiang
- Guangdong VTR Bio-tech Co., Ltd., Zhuhai, China
- South China University of Technology, School of Biology and Biological Engineering, Guangzhou, China
| | - Zhiyi Huang
- Guangdong VTR Bio-tech Co., Ltd., Zhuhai, China
| | - Hongfang Du
- Guangdong VTR Bio-tech Co., Ltd., Zhuhai, China
| | - Yangyuan Li
- Guangdong VTR Bio-tech Co., Ltd., Zhuhai, China
| | - Min Wang
- Guangdong VTR Bio-tech Co., Ltd., Zhuhai, China
| | - Dandie Chen
- Guangdong VTR Bio-tech Co., Ltd., Zhuhai, China
| | - Jingyi Lu
- Guangdong VTR Bio-tech Co., Ltd., Zhuhai, China
| | - Ge Liu
- Guangdong VTR Bio-tech Co., Ltd., Zhuhai, China
| | - Liang Mei
- Guangdong VTR Bio-tech Co., Ltd., Zhuhai, China
| | - Yuqi Li
- Guangdong VTR Bio-tech Co., Ltd., Zhuhai, China
| | | | - Bo Yang
- South China University of Technology, School of Biology and Biological Engineering, Guangzhou, China
| | - Yuguang Guo
- Guangdong VTR Bio-tech Co., Ltd., Zhuhai, China
| |
Collapse
|
3
|
Chen X, Zhang F, Li H, Liu J, Jiang Y, Ren F, Huang L, Yuan X, Li Y, Yang W, Yang C, Li S, Jiao N, Jiang S. The combination of macleaya extract and glucose oxidase improves the growth performance, antioxidant capacity, immune function and cecal microbiota of piglets. Front Vet Sci 2023; 10:1173494. [PMID: 37576836 PMCID: PMC10421655 DOI: 10.3389/fvets.2023.1173494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/28/2023] [Indexed: 08/15/2023] Open
Abstract
This study aims to investigate the effects of macleaya extract and glucose oxidase combination (MGO) on growth performance, antioxidant capacity, immune function, and cecal microbiota in piglets. A total of 120 healthy 28-day-old weaned piglets were randomly divided into two treatments of six replicates. Piglets were either received a basal diet or a basal diet supplemented with 250 mg/kg MGO (2 g/kg sanguinarine, 1 g/kg chelerythrine, and 1 × 106 U/kg glucose oxidase). The results showed that MGO supplementation increased average daily gain (ADG) and decreased feed:gain ratio (F/G) (p < 0.05). MGO increased serum superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity, and immunoglobulin G (IgG) content (p < 0.05), but decreased malondialdehyde (MDA) and interleukin 1β (IL-1β) content (p < 0.05). The jejunal mRNA expression of nuclear factor erythroid 2-related factor 2 (Nrf2), glutathione peroxidase 1 (GPX1), and heme oxygenase 1 (HO-1) were increased in MGO group (p < 0.05), while that of kelch like ECH associated protein 1 (Keap1) was decreased (p < 0.05). The Firmicutes was significantly increased at phylum levels in MGO group (p < 0.05). In conclusion, 250 mg/kg MGO improved piglet growth, and regulated intestinal flora of piglets, which provided a theoretical basis for MGO as an alternative additive for antibiotics.
Collapse
Affiliation(s)
- Xing Chen
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| | - Fan Zhang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| | - Huirong Li
- Shandong Livestock Product Quality and Safety Center, Shandong, China
| | - Jie Liu
- Shandong Livestock Product Quality and Safety Center, Shandong, China
| | - Yanping Jiang
- Shandong Livestock Product Quality and Safety Center, Shandong, China
| | - Furong Ren
- Zhongcheng Feed Technology Co., Ltd., Feicheng, Shandong, China
| | - Libo Huang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| | - Xuejun Yuan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| | - Yang Li
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| | - Weiren Yang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| | - Chongwu Yang
- Ciyao Animal Husbandry Station, Ningyang, Shandong, China
| | - Shuang Li
- Guelph Research and Development Center, Agriculture and Agri-Food Canada (AAFC), Guelph, ON, Canada
| | - Ning Jiao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| | - Shuzhen Jiang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|
4
|
Cao G, Wang H, Yu Y, Tao F, Yang H, Yang S, Qian Y, Li H, Yang C. Dietary bamboo leaf flavonoids improve quality and microstructure of broiler meat by changing untargeted metabolome. J Anim Sci Biotechnol 2023; 14:52. [PMID: 37024991 PMCID: PMC10080799 DOI: 10.1186/s40104-023-00840-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/13/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Dietary bamboo leaf flavonoids (BLFs) are rarely used in poultry production, and it is unknown whether they influence meat texture profile, perceived color, or microstructure. RESULTS A total of 720 one-day-old Arbor Acres broilers were supplemented with a basal diet with 20 mg bacitracin/kg, 50 mg BLFs/kg, or 250 mg BLFs/kg or without additions. Data showed that the dietary BLFs significantly (P < 0.05) changed growth performance and the texture profile. In particular, BLFs increased birds' average daily gain and average daily feed intake, decreased the feed:gain ratio and mortality rate, improved elasticity of breast meat, enhanced the gumminess of breast and leg meat, and decreased the hardness of breast meat. Moreover, a significant (P < 0.05) increase in redness (a*) and chroma (c*) of breast meat and c* and water-holding capacity of leg meat was found in BLF-supplemented broilers compared with control broilers. In addition, BLFs supplementation significantly decreased (P < 0.05) the β-sheet ratio and serum malondialdehyde and increased the β-turn ratio of protein secondary structure, superoxide dismutase, and glutathione peroxidase of breast meat and total antioxidant capacity and catalase of serum. Based on the analysis of untargeted metabolome, BLFs treatment considerably altered 14 metabolites of the breast meat, including flavonoids, amino acids, and organic acids, as well as phenolic and aromatic compounds. CONCLUSIONS Dietary BLFs supplementation could play a beneficial role in improving meat quality and sensory color in the poultry industry by changing protein secondary structures and modulating metabolites.
Collapse
Affiliation(s)
- Guangtian Cao
- College of Standardisation, China Jiliang University, Hangzhou, 310018, People's Republic of China
| | - Huixian Wang
- Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang A & F University, Hangzhou, 311300, People's Republic of China
| | - Yang Yu
- Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang A & F University, Hangzhou, 311300, People's Republic of China
| | - Fei Tao
- College of Standardisation, China Jiliang University, Hangzhou, 310018, People's Republic of China
| | - Huijuan Yang
- College of Standardisation, China Jiliang University, Hangzhou, 310018, People's Republic of China
| | - Shenglan Yang
- Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang A & F University, Hangzhou, 311300, People's Republic of China
| | - Ye Qian
- Zhejiang Vegamax Biotechnology Co., Ltd., Anji, 313300, People's Republic of China
| | - Hui Li
- Zhejiang Vegamax Biotechnology Co., Ltd., Anji, 313300, People's Republic of China
| | - Caimei Yang
- Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang A & F University, Hangzhou, 311300, People's Republic of China.
| |
Collapse
|
5
|
Zhao W, Huang Y, Cui N, Wang R, Xiao Z, Su X. Glucose oxidase as an alternative to antibiotic growth promoters improves the immunity function, antioxidative status, and cecal microbiota environment in white-feathered broilers. Front Microbiol 2023; 14:1100465. [PMID: 36937262 PMCID: PMC10020722 DOI: 10.3389/fmicb.2023.1100465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/06/2023] [Indexed: 03/06/2023] Open
Abstract
This study aimed to demonstrate the effects of glucose oxidase (GOD) on broilers as a potential antibiotic substitute. A total of four hundred twenty 1-day-old male Cobb500 broilers were randomly assigned into five dietary treatments, each with six replicates (12 chicks per replicate). The treatments included two control groups (a basal diet and a basal diet with 50 mg/kg aureomycin) and three GOD-additive groups involving three different concentrations of GOD. Analysis after the t-test showed that, on day 21, the feed:gain ratio significantly decreased in the 1,200 U/kg GOD-supplied group (GOD1200) compared to the antibiotic group (Ant). The same effect was also observed in GOD1200 during days 22-42 and in the 600 U/kg GOD-supplied group (GOD600) when compared to the control group (Ctr). The serum tests indicated that, on day 21, the TGF-β cytokine was significantly decreased in both GOD600 and GOD1200 when compared with Ctr. A decrease in malondialdehyde and an increase in superoxide dismutase in GOD1200 were observed, which is similar to the effects seen in Ant. On day 42, the D-lactate and glutathione peroxidase activity changed remarkably in GOD1200 and surpassed Ant. Furthermore, GOD upregulated the expression of the jejunal barrier genes (MUC-2 and ZO-1) in two phases relative to Ctr. In the aureomycin-supplied group, the secretory immunoglobulin A significantly decreased in the jejunum at 42 days. Changes in microbial genera were also discovered in the cecum by sequencing 16S rRNA genes at 42 days. The biomarkers for GOD supplementation were identified as Colidextribacter, Oscillibacter, Flavonifractor, Oscillospira, and Shuttleworthia. Except for Shuttleworthia, all the abovementioned genera were n-butyrate producers known for imparting their various benefits to broilers. The PICRUSt prediction of microbial communities revealed 11 pathways that were enriched in both the control and GOD-supplied groups. GOD1200 accounted for an increased number of metabolic pathways, demonstrating their potential in aiding nutrient absorption and digestion. In conclusion, a diet containing GOD can be beneficial to broiler health, particularly at a GOD concentration of 1,200 U/kg. The improved feed conversion ratio, immunity, antioxidative capacity, and intestinal condition demonstrated that GOD could be a valuable alternative to antibiotics in broiler breeding.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaoou Su
- Key Laboratory of Agro-Product Quality and Safety of the Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
6
|
Chen J, Wang P, Liu C, Yin Q, Chang J, Wang L, Jin S, Zhou T, Zhu Q, Lu F. Effects of compound feed additive on growth performance and intestinal microbiota of broilers. Poult Sci 2022; 102:102302. [PMID: 36436373 PMCID: PMC9700294 DOI: 10.1016/j.psj.2022.102302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
The purpose of this experiment was to determine the effectiveness of compound feed additive (CFA) to replace antibiotics for broiler production. A total of 350 one-day-old Arbor Acres broilers were randomly divided into 7 groups, 5 replications in each group and 10 broilers in each replication. Group A was the control; group B was supplemented with 75 mg/kg chlortetracycline; groups C, D, and E were supplemented with 0.03, 0.06, and 0.09% CFA including glucose oxidase, curcumin, and Lactobacillus acidophilus; group F was supplemented with 0.03% CFA plus 0.50% glucose; group G was supplemented with 0.50% glucose. The feeding period was divided into the early (1-21 d) and later stages (22-42 d). The results showed that average daily gain (ADG) and feed conversion rate (F/G) in group F in later stage were significantly better than those in the control and antibiotic groups; the diarrhea rates in the groups containing CFA in both stages was significantly lower than that in the control and antibiotic groups, indicating that CFA was better than antibiotics to improve growth and decrease diarrhea rate for broilers. Pathogenic E. coli challenge significantly increased diarrhea rates and decreased ADG for broilers; however, CFA addition could alleviate the above negative responses by increasing gut Lactobacillus abundance and decreasing Shigella abundance. It can be concluded that CFA can replace antibiotics to regulate intestinal microbiota, reduce diarrhea rate, and improve broiler growth.
Collapse
Affiliation(s)
- Jingyan Chen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Ping Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Chaoqi Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Qingqiang Yin
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.
| | - Juan Chang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Lijun Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Sanjun Jin
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Ting Zhou
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada
| | - Qun Zhu
- Henan Delin Biological Product Co. Ltd., Xinxiang 453000, China
| | - Fushan Lu
- Henan Puai Feed Co., Ltd., Zhoukou 466000, China
| |
Collapse
|
7
|
Wang W, Xie R, Cao Q, Ye H, Zhang C, Dong Z, Feng D, Zuo J. Effects of glucose oxidase on growth performance, clinical symptoms, serum parameters, and intestinal health in piglets challenged by enterotoxigenic Escherichia coli. Front Microbiol 2022; 13:994151. [PMID: 36267185 PMCID: PMC9578003 DOI: 10.3389/fmicb.2022.994151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/03/2022] [Indexed: 12/02/2022] Open
Abstract
Glucose oxidase (GOD) could benefit intestinal health and growth performance in animals. However, it is unknown whether GOD can protect piglets against bacterial challenge. This study aimed to evaluate the protective effects of GOD on growth performance, clinical symptoms, serum parameters, and intestinal health in piglets challenged by enterotoxigenic Escherichia coli (ETEC). A total of 44 male weaned piglets around 38 days old were divided into four groups (11 replicates/group): negative control (NC), positive control (PC), CS group (PC piglets +40 g/t colistin sulfate), and GOD group (PC piglets +200 g/t GOD). All piglets except those in NC were challenged with ETEC (E. coli K88) on the 11th day of the experiment. Parameter analysis was performed on the 21st day of the experiment. The results showed that the ETEC challenge elevated (p < 0.05) the rectal temperature and fecal score of piglets at certain time-points post-challenge, reduced (p < 0.05) serum glucose and IgG levels but increased (p < 0.05) serum alanine aminotransferase activity, as well as caused (p < 0.05) intestinal morphology impairment and inflammation. Supplemental GOD could replace CS to reverse (p < 0.05) the above changes and tended to increase (p = 0.099) average daily gain during the ETEC challenge. Besides, GOD addition reversed ETEC-induced losses (p < 0.05) in several beneficial bacteria (e.g., Lactobacillus salivarius) along with increases (p < 0.05) in certain harmful bacteria (e.g., Enterobacteriaceae and Escherichia/Shigella). Functional prediction of gut microbiota revealed that ETEC-induced upregulations (p < 0.05) of certain pathogenicity-related pathways (e.g., bacterial invasion of epithelial cells and shigellosis) were blocked by GOD addition, which also normalized the observed downregulations (p < 0.05) of bacterial pathways related to the metabolism of sugars, functional amino acids, nucleobases, and bile acids in challenged piglets. Collectively, GOD could be used as a potential antibiotic alternative to improve growth and serum parameters, as well as attenuate clinical symptoms and intestinal disruption in ETEC-challenged piglets, which could be associated with its ability to mitigate gut microbiota dysbiosis. Our findings provided evidence for the usage of GOD as an approach to restrict ETEC infection in pigs.
Collapse
|
8
|
Li X, Wang M, Liu S, Chen X, Qiao Y, Yang X, Yao J, Wu S. Paternal transgenerational nutritional epigenetic effect: A new insight into nutritional manipulation to reduce the use of antibiotics in animal feeding. ANIMAL NUTRITION 2022; 11:142-151. [PMID: 36204282 PMCID: PMC9527621 DOI: 10.1016/j.aninu.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 07/10/2022] [Accepted: 07/14/2022] [Indexed: 11/15/2022]
Abstract
The use of antibiotics in animal feeding has been banned in many countries because of increasing concerns about the development of bacterial resistance to antibiotics and potential issues on food safety. Searching for antibiotic substitutes is essential. Applying transgenerational epigenetic technology to animal production could be an alternative. Some environmental changes can be transferred to memory-like responses in the offspring through epigenetic mechanisms without changing the DNA sequence. In this paper, we reviewed those nutrients and non-nutritional additives that have transgenerational epigenetic effects, including some amino acids, vitamins, and polysaccharides. The paternal transgenerational nutritional epigenetic regulation was particularly focused on mechanism of the substantial contribution of male stud animals to the animal industries. We illustrated the effects of paternal transgenerational epigenetics on the metabolism and immunity in farming animals and proposed strategies to modulate male breeding livestock or poultry.
Collapse
Affiliation(s)
- Xinyi Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Department of Medicine, Karolinska Institutet, Solna, Stockholm 17165, Sweden
| | - Mengya Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shimin Liu
- Institute of Agriculture, University of Western Australia, Crawley, WA 6009, Australia
| | - Xiaodong Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yu Qiao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Department of Animal Engineering, Yangling Vocational and Technical College, Yangling, Shaanxi 712100, China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Corresponding authors.
| | - Shengru Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Corresponding authors.
| |
Collapse
|
9
|
Liang Z, Yan Y, Zhang W, Luo H, Yao B, Huang H, Tu T. Review of glucose oxidase as a feed additive: production, engineering, applications, growth-promoting mechanisms, and outlook. Crit Rev Biotechnol 2022:1-18. [PMID: 35723581 DOI: 10.1080/07388551.2022.2057275] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The regulation and prohibition of antibiotics used as growth promoters (AGP) in the feed field are increasing because they cause antimicrobial resistance and drug residue issues and threaten community health. Recently, glucose oxidase (GOx) has attracted increasing interest in the feed industry as an alternative to antibiotics. GOx specifically catalyzes the production of gluconic acid (GA) and hydrogen peroxide (H2O2) by consuming molecular oxygen, and plays an important role in relieving oxidative stress, preserving health, and promoting animal growth. To expand the application of GOx in the feed field, considerable efforts have been made to mine new genetic resources. Efforts have also been made to heterologously overexpress relevant genes to reduce production costs and to engineer proteins by modifying enzyme properties, both of which are bottleneck problems that limit industrial feed applications. Herein, the: different sources, diverse biochemical properties, distinct structural features, and various strategies of GOx engineering and heterologous overexpression are summarized. The mechanism through which GOx promotes growth in animal production, including the improvement of antioxidant capacity, maintenance of intestinal microbiota homeostasis, and enhancement of gut function, are also systematically addressed. Finally, a new perspective is provided for the future development of GOx applications in the feed field.
Collapse
Affiliation(s)
- Ziqi Liang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yaru Yan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huiying Luo
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bin Yao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huoqing Huang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tao Tu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
10
|
Meng Y, Huo H, Zhang Y, Bai S, Wang R, Zhang K, Ding X, Wang J, Zeng Q, Peng H, Xuan Y. Effects of Dietary Glucose Oxidase Supplementation on the Performance, Apparent Ileal Amino Acids Digestibility, and Ileal Microbiota of Broiler Chickens. Animals (Basel) 2021; 11:ani11102909. [PMID: 34679930 PMCID: PMC8532941 DOI: 10.3390/ani11102909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Glucose oxidase was used as a potential additive to improve intestinal health in livestock and poultry industry. This study aimed to investigate the effects of glucose oxidase supplementation on performance, ileal microbiota, ileal short-chain fatty acids profile, and apparent ileal digestibility in grower broilers. Our findings will provide a valuable insight into the possibility of glucose oxidase as an alternative of antibiotic growth promoters in broiler diets. Abstract This study aimed to investigate the effects of glucose oxidase (GOD) supplementation on growth performance, apparent ileal digestibility (AID) of nutrients, intestinal morphology, and short-chain fatty acids (SCFAs) and microbiota in the ileum of broilers. Six hundred 1-day-old male broilers were randomly allotted to four groups of 10 replicates each with 15 birds per replicate cage. The four treatments included the basal diet without antibiotics (Control) and the basal diet supplemented with 250, 500, or 1000 U GOD/kg diet (E250, E500 or E1000). The samples of different intestinal segments, ileal mucosa, and ileal digesta were collected on d 42. Dietary GOD supplementation did not affect daily bodyweight gain (DBWG) and the ratio of feed consumption and bodyweight gain (FCR) during d 1-21 (p > 0.05); however, the E250 treatment increased DBWG (p = 0.03) during d 22–42 as compared to control. Dietary GOD supplementation increased the AIDs of arginine, isoleucine, lysine, methionine, threonine, cysteine, serine, and tyrosine (p < 0.05), while no significant difference was observed among the GOD added groups. The E250 treatment increased the villus height of the jejunum and ileum. The concentrations of secreted immunoglobulin A (sIgA) in ileal mucosa and the contents of acetic acid and butyric acid in ileal digesta were higher in the E250 group than in the control (p < 0.05), whereas no significant differences among E500, E1000, and control groups. The E250 treatment increased the richness of ileal microbiota, but E500 and E100 treatment did not significantly affect it. Dietary E250 treatment increased the relative abundance of Firmicutes phylum and Lactobacillus genus, while it decreased the relative abundance of genus Escherichina-Shigella (p < 0.05). Phylum Fusobacteria only colonized in the ileal digesta of E500 treated broilers and E500 and E1000 did not affect the relative abundance of Firmicutes phylum and Lactobacillus and Escherichina-Shigella genera as compared to control. These results suggested that dietary supplementation of 250 U GOD/kg diet improves the growth performance of broilers during d 22–42, which might be associated with the alteration of the intestinal morphology, SCFAs composition, and ileal microbiota composition.
Collapse
Affiliation(s)
- Yong Meng
- Feed Engineering Research Centre of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.M.); (H.H.); (K.Z.); (X.D.); (J.W.); (Q.Z.); (H.P.); (Y.X.)
- Mianyang Habio Bioengineering Co., Ltd., Mianyang 610000, China;
| | - Haonan Huo
- Feed Engineering Research Centre of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.M.); (H.H.); (K.Z.); (X.D.); (J.W.); (Q.Z.); (H.P.); (Y.X.)
| | - Yang Zhang
- Mianyang Habio Bioengineering Co., Ltd., Mianyang 610000, China;
| | - Shiping Bai
- Feed Engineering Research Centre of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.M.); (H.H.); (K.Z.); (X.D.); (J.W.); (Q.Z.); (H.P.); (Y.X.)
- Correspondence: ; Tel.: +86-28-86290922
| | - Ruisheng Wang
- Chongqing Academy of Animal Science, Chongqiang 402460, China;
| | - Keying Zhang
- Feed Engineering Research Centre of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.M.); (H.H.); (K.Z.); (X.D.); (J.W.); (Q.Z.); (H.P.); (Y.X.)
| | - Xuemei Ding
- Feed Engineering Research Centre of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.M.); (H.H.); (K.Z.); (X.D.); (J.W.); (Q.Z.); (H.P.); (Y.X.)
| | - Jianping Wang
- Feed Engineering Research Centre of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.M.); (H.H.); (K.Z.); (X.D.); (J.W.); (Q.Z.); (H.P.); (Y.X.)
| | - Qiufeng Zeng
- Feed Engineering Research Centre of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.M.); (H.H.); (K.Z.); (X.D.); (J.W.); (Q.Z.); (H.P.); (Y.X.)
| | - Huanwei Peng
- Feed Engineering Research Centre of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.M.); (H.H.); (K.Z.); (X.D.); (J.W.); (Q.Z.); (H.P.); (Y.X.)
| | - Yue Xuan
- Feed Engineering Research Centre of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.M.); (H.H.); (K.Z.); (X.D.); (J.W.); (Q.Z.); (H.P.); (Y.X.)
| |
Collapse
|
11
|
Dang DX, Liu Y, Chen N, Kim IH. Dietary supplementation of Aspergillus niger-expressed glucose oxidase ameliorates weaning stress and improves growth performance in weaning pigs. J Anim Physiol Anim Nutr (Berl) 2021; 106:258-265. [PMID: 34075632 DOI: 10.1111/jpn.13576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/03/2021] [Accepted: 05/07/2021] [Indexed: 12/16/2022]
Abstract
Weaning is one of the most stressful events in the pig's life, which disrupts physiological balance and leads to oxidative stress. It is reported that glucose oxidase supplementation could alleviate oxidative stress in animals by increasing the concentration of antioxidant enzymes in vivo. The purpose of this study was to evaluate the effects of dietary supplementation of Aspergillus niger-expressed glucose oxidase (AN-GOX) on growth performance, nutrient digestibility, faecal microbiota, faecal gas emission and serum antioxidant enzyme parameters in weaning pigs. A total of 120 21-day-old weaning pigs [(Yorkshire ×Landrace) × Duroc] with an initial body weight of 6.54 ± 0.55 kg were used in a 21-day experiment (phase 1, days 1-7; phase 2, days 8-21) with a completely randomized block design. Pigs were randomly divided into 4 treatment groups with 6 replicate pens per treatment and 5 pigs per pen (2 barrows and 3 gilts). Dietary treatments were corn-soybean meal-based basal diet supplemented with 0, 0.01, 0.03 or 0.05% AN-GOX (1000 unit/g). The results of this study showed that average daily gain during days 1-7 and 1-21 and the concentrations of serum glutathione peroxidase and glutathione increased linearly at graduated doses of AN-GOX increased in the diet. However, dietary supplementation of AN-GOX had no effects on the apparent nutrient digestibility, faecal microbiota and faecal gas emission. In conclusion, supplementing AN-GOX to the diet of weaning pigs ameliorated weaning stress, which manifested as the increase in serum antioxidant enzyme levels, thus improving growth performance. The suitable dosage of AN-GOX used in the diet of weaning pigs was 0.05%.
Collapse
Affiliation(s)
- De Xin Dang
- Department of Animal Resource & Science, Dankook University, Cheonan, South Korea
| | - Yanjie Liu
- Jinan Bestzyme-Bio Engineering Co, LTD, Jinan, China
| | - Ningbo Chen
- Jinan Bestzyme-Bio Engineering Co, LTD, Jinan, China
| | - In Ho Kim
- Department of Animal Resource & Science, Dankook University, Cheonan, South Korea
| |
Collapse
|
12
|
Zhang L, Gu X, Wang J, Liao S, Duan Y, Li H, Song Z, He X, Fan Z. Effects of Dietary Isomaltooligosaccharide Levels on the Gut Microbiota, Immune Function of Sows, and the Diarrhea Rate of Their Offspring. Front Microbiol 2021; 11:588986. [PMID: 33488538 PMCID: PMC7820075 DOI: 10.3389/fmicb.2020.588986] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 12/11/2020] [Indexed: 02/02/2023] Open
Abstract
To investigate the effects of dietary isomaltooligosaccharide (IMO) levels on the gut microbiota, immune function of sows, and the diarrhea rate of their offspring, 120 multiparous gestating pig improvement company (PIC) sows with similar body conditions were selected and fed 1 of 6 diets: a basal diet with no supplement (control, CON), or a diet supplemented with 2.5 g/kg, 5.0 g/kg, 10.0 g/kg, 20.0 g/kg, or 40.0 g/kg IMO (IMO1, IMO2, IMO3, IMO4, or IMO5 group, respectively). Results showed that dietary treatments did not affect the reproductive performance and colostrum composition of sows (P > 0.05). However, compared to the CON, IMO reduced the diarrhea rate of suckling piglets (P < 0.05) and improved the concentrations of colostrum IgA, IgG, and IgM (P < 0.05). Moreover, IMO decreased the concentrations of serum D-lactate (D-LA) and lipopolysaccharides (LPS) at farrowing and day 18 of lactation (L18) (P < 0.05). High-throughput pyrosequencing of the 16S rRNA demonstrated that IMO shaped the composition of gut microbiota in different reproductive stages (day 107 of gestation, G107; day 10 of lactation, L10) (P < 0.05). At the genus level, the relative abundance of g_Parabacteroides and g_Slackia in G107 and g_Unclassified_Peptostreptococcaceae, g_Turicibacter, g_Sarcina, and g_Coprococcus in L10 was increased in IMO groups but the g_YRC22 in G107 was decreased in IMO groups relative to the CON group (P < 0.05). Furthermore, the serum D-LA and LPS were negatively correlated with the genus g_Akkermansia and g_Parabacteroides but positively correlated with the genus g_YRC22 and g_Unclassified_Peptostreptococcaceae. Additionally, the colostrum IgA, IgG, and IgM of sows were positively correlated with the genus g_Parabacteroides, g_Sarcina, and g_Coprococcus but negatively correlated with the genus g_YRC22. These findings indicated that IMO could promote the immune activation and had a significant influence in sows' gut microbiota during perinatal period, which may reduce the diarrhea rate of their offspring.
Collapse
Affiliation(s)
- Longlin Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha, China
| | - Xueling Gu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha, China
| | - Jie Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha, China
| | - Shuang Liao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha, China
| | - Yehui Duan
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, China
| | - Hao Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha, China
| | - Zehe Song
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha, China
| | - Xi He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha, China
| | - Zhiyong Fan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha, China
| |
Collapse
|