1
|
Yang L, Chen S, Zhao W, Zhang G, Zhang H, Zhang T, Xue L, Tian J, Gu Y, Li L, Wang H, Zhang J. Genome-wide association analysis reveals genetic loci and candidate genes for white diarrhea in Jingyuan chickens. Res Vet Sci 2025; 186:105568. [PMID: 39951879 DOI: 10.1016/j.rvsc.2025.105568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/10/2024] [Accepted: 02/08/2025] [Indexed: 02/17/2025]
Abstract
In order to investigate the basic genetic structure of dysentery in Jingyuan chickens and to explore the genetic markers associated with dysentery resistance in chickens, the present study was based on the genome-wide association analysis (GWAS) technique to investigate the candidate SNPs and genes associated with dysentery resistance in Jingyuan chickens, and a total of 12 SNPs were associated with dysentery resistance in Jingyuan chickens. In addition, some important candidate genes inciuding frizzled class receptor 4 (FZD4), DDB1 and CUL4 associated factor 13(DCAF13), regulating synaptic membrane exocytosis 2 (RIMS2), transmembrane protein 8C (TMEM8C), and RIC1 homolog (RIC1) were identified by selection signal analysis, gene annotation, and enrichment analysis. These results can be used as potential molecular selection markers for chicken dysentery resistance in Jingyuan chickens in order to improve the breeding of disease resistance in Jingyuan chickens.
Collapse
Affiliation(s)
- Lijuan Yang
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Siyu Chen
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Wei Zhao
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Guojun Zhang
- Pengyang County Animal Disease Prevention and Control Center, Guyuan, China
| | - Hu Zhang
- Pengyang County Animal Disease Prevention and Control Center, Guyuan, China
| | - Tong Zhang
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Lin Xue
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Jinli Tian
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Yaling Gu
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Lanlan Li
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Hu Wang
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Juan Zhang
- College of Animal Science and Technology, Ningxia University, Yinchuan, China.
| |
Collapse
|
2
|
da Silva J, Andrade L, Rodrigues P, Cordeiro L, Lima G, Lopes J, Castillo E, Martins R, Assunção A, Vieira J, Busalaf M, Adamec J, Sartori J, Padilha P. Plasma Proteome Alterations of Laying Hens Subjected to Heat Stress and Fed a Diet Supplemented with Pequi Oil ( Caryocar brasiliense Camb.): New Insights in the Identification of Heat Stress Biomarkers. Biomolecules 2024; 14:1424. [PMID: 39595600 PMCID: PMC11591700 DOI: 10.3390/biom14111424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/24/2024] [Accepted: 11/03/2024] [Indexed: 11/28/2024] Open
Abstract
Heat stress can disrupt the balance between the heat poultry release into the environment and the heat they generate. Pequi oil has antioxidant properties, which may mitigate the heat stress effects. This study aimed to investigate the response of laying hens to pequi oil supplementation under heat stress using a proteomic approach. A total of 96 Lohmann White laying hens with 26 weeks old were housed in a completely randomized design with a 2 × 2 factorial arrangement. They were housed in two climate chambers, thermal comfort temperature ± 24.04 °C with the relative humidity ± 66.35 and heat stress (HS) ± 31.26 °C with the relative humidity ± 60.62. They were fed two diets: a control diet (CON), basal diet (BD) without additives, and with Pequi oil (PO), BD + 0.6% PO. After 84 days, plasma samples were analyzed using Shotgun and LC-MS/MS. Proteins related to anti-inflammation, transport, and the immune system were differentially expressed in hens fed PO and CON under heat stress compared to those in thermoneutral environments. This helps protect against oxidative stress and may support the body's ability to manage heat-induced damage, stabilizing protein expression under stress conditions. The ovotransferrin proteins, fibrinogen isoforms, apolipoprotein A-I, Proteasome activator subunit 4, Transthyretin, and the enzyme serine Peptidase Inhibitor_Kazal Type 5, which presented Upregulated (Up) equal to 1, present characteristics that may be crucial for enhancing the adaptive responses of hens to thermal stress, thereby increasing their tolerance and minimizing the negative effects of heat on egg production. The data presented in this manuscript provides new insights into the plasma proteome alterations of laying hens fed a diet supplemented with pequi oil during heat stress challenges.
Collapse
Affiliation(s)
- Joyce da Silva
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil; (J.d.S.); (L.A.); (P.R.); (L.C.); (G.L.); (J.L.); (E.C.); (R.M.); (A.A.); (J.S.)
| | - Luane Andrade
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil; (J.d.S.); (L.A.); (P.R.); (L.C.); (G.L.); (J.L.); (E.C.); (R.M.); (A.A.); (J.S.)
| | - Paola Rodrigues
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil; (J.d.S.); (L.A.); (P.R.); (L.C.); (G.L.); (J.L.); (E.C.); (R.M.); (A.A.); (J.S.)
| | - Laís Cordeiro
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil; (J.d.S.); (L.A.); (P.R.); (L.C.); (G.L.); (J.L.); (E.C.); (R.M.); (A.A.); (J.S.)
| | - Gabrieli Lima
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil; (J.d.S.); (L.A.); (P.R.); (L.C.); (G.L.); (J.L.); (E.C.); (R.M.); (A.A.); (J.S.)
| | - Júlia Lopes
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil; (J.d.S.); (L.A.); (P.R.); (L.C.); (G.L.); (J.L.); (E.C.); (R.M.); (A.A.); (J.S.)
| | - Elis Castillo
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil; (J.d.S.); (L.A.); (P.R.); (L.C.); (G.L.); (J.L.); (E.C.); (R.M.); (A.A.); (J.S.)
| | - Renata Martins
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil; (J.d.S.); (L.A.); (P.R.); (L.C.); (G.L.); (J.L.); (E.C.); (R.M.); (A.A.); (J.S.)
| | - Andrey Assunção
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil; (J.d.S.); (L.A.); (P.R.); (L.C.); (G.L.); (J.L.); (E.C.); (R.M.); (A.A.); (J.S.)
| | - José Vieira
- Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-693, SP, Brazil;
| | - Marília Busalaf
- Faculty of Dentistry of Bauru (FOB), University of São Paulo (USP), Bauru 17012-901, SP, Brazil;
| | - Jiri Adamec
- School of Medicine, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA 70112, USA;
| | - José Sartori
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil; (J.d.S.); (L.A.); (P.R.); (L.C.); (G.L.); (J.L.); (E.C.); (R.M.); (A.A.); (J.S.)
| | - Pedro Padilha
- Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-693, SP, Brazil;
| |
Collapse
|
3
|
Di Luca A, Bennato F, Ianni A, Martino C, Henry M, Meleady P, Martino G. Label-free liquid chromatography mass spectrometry analysis of changes in broiler liver proteins under transport stress. PLoS One 2024; 19:e0311539. [PMID: 39466737 PMCID: PMC11515959 DOI: 10.1371/journal.pone.0311539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 09/19/2024] [Indexed: 10/30/2024] Open
Abstract
Transportation duration and distance are significant concerns for animal welfare, particularly in the poultry industry. However, limited proteomic studies have investigated the impact of transport duration on poultry welfare. In this study, mass spectrometry based bottom up proteomics was employed to sensitively and impartially profile the liver tissue proteome of chickens, addressing the issue of animal stress and welfare in response to transportation before slaughter. The liver exudates obtained from Ross 508 chickens exposed to either short or long road transportation underwent quantitative label-free LC-MS proteomic profiling. This method identified a total of 1,368 proteins, among which 35 were found to be significantly different (p < 0.05) and capable of distinguishing between short and long road transportation conditions. Specifically, 23 proteins exhibited up-regulation in the non stressed group, while 12 proteins showed up-regulation in the stressed group. The proteins identified in this pilot study encompassed those linked to homeostasis and cellular energetic balance, including heat shock proteins and the 5'-nucleotidase domain-containing family. These results contribute to a deeper understanding of the proteome in broiler liver tissues, shedding light on poultry adaptability to transport stress. Furthermore, the identified proteins present potential as biomarkers, suggesting promising approaches to enhance poultry care and management within the industry.
Collapse
Affiliation(s)
- Alessio Di Luca
- Department of Bioscience and Technology for Food Agro-Food and Environmental Technology, University of Teramo, Teramo, Italy
| | - Francesca Bennato
- Department of Bioscience and Technology for Food Agro-Food and Environmental Technology, University of Teramo, Teramo, Italy
| | - Andrea Ianni
- Department of Bioscience and Technology for Food Agro-Food and Environmental Technology, University of Teramo, Teramo, Italy
| | - Camillo Martino
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Giuseppe Martino
- Department of Bioscience and Technology for Food Agro-Food and Environmental Technology, University of Teramo, Teramo, Italy
| |
Collapse
|
4
|
Hu W, Du L, Shao J, Qu Y, Zhang L, Zhang D, Cao L, Chen H, Bi S. Molecular and metabolic responses to immune stress in the jejunum of broiler chickens: transcriptomic and metabolomic analysis. Poult Sci 2024; 103:103621. [PMID: 38507829 PMCID: PMC10966091 DOI: 10.1016/j.psj.2024.103621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/17/2024] [Accepted: 03/01/2024] [Indexed: 03/22/2024] Open
Abstract
In the large poultry industry, where farmed chickens are fed at high density, the prevalence of pathogens and repeated vaccinations induce immune stress, which can significantly decrease the production performance and increase the mortality. This study was designed to shed light on the molecular mechanisms and metabolic pathways involved in immune stress through an in-depth analysis of transcriptomic and metabolomic changes in jejunum samples from the broilers. Two groups were established for the experiment: a control group and an LPS group. LPS group received an intraperitoneal injection of LPS solution at a dose of 250 μg per kg at 12, 14, 33, and 35 d of age, whereas the control group received a sterile saline injection. The severity of immune stress was assessed using the Disease Activity Index. A jejunal section was collected to measure the intestinal villus structure (villus length and crypt depth). RNA sequencing and metabolomics data analysis were conducted to reveal differentially expressed genes and metabolites. The results showed that the DAI index was increased and jejunal villus height/crypt depth was decreased in the LPS group. A total of 96 differentially expressed genes and 672 differentially accumulating metabolites were detected in the jejunum by LPS group compared to the control group. The comprehensive analysis of metabolomic and transcriptomic data showed that 23 pathways were enriched in the jejunum and that appetite, nutrient absorption, energy and substance metabolism disorders and ferroptosis play an important role in immune stress in broilers. Our findings provide a deeper understanding of the molecular and metabolic responses in broilers to LPS-induced immune stress, suggesting potential targets for therapeutic strategies to improve the production performance of broiler chickens.
Collapse
Affiliation(s)
- Weidong Hu
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, P. R. China
| | - Lin Du
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, P. R. China
| | - Jianjian Shao
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, P. R. China
| | - Yiwen Qu
- Bureau of Agricultural and Rural of Guanghan City, Guanghan, Sichuan, 618399, P. R. China
| | - Li Zhang
- Hanzhong Animal Disease Prevention and Control Center, Hanzhong, Shanxi, 723099, P. R. China
| | - Dezhi Zhang
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, P. R. China
| | - Liting Cao
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, P. R. China
| | - Hongwei Chen
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, P. R. China
| | - Shicheng Bi
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, P. R. China; Institute of Traditional Chinese Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, P. R. China.
| |
Collapse
|
5
|
Feng Y, Wu Y, Duan R, Wang P, Zhong X, Wu X. Structural characterization and anti-inflammatory effects of Enteromorpha prolifera polysaccharide-Fe/Zn complexes. Int J Biol Macromol 2023; 253:127166. [PMID: 37778595 DOI: 10.1016/j.ijbiomac.2023.127166] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/07/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
The structure of polysaccharide has a great influence on its biological functions, and the chelation with metal ions is an effective way to change polysaccharide structural configuration. Herein, the structure of Enteromorpha prolifera polysaccharide (EP)-Fe/Zn complexes were characterized and the results showed that the iron (III) existed in form of β-FeOOH in EP-Fe (III) complex and the zinc (II) existed in form of C-O-Zn in EP-Zn (II) complex. Besides, the chelation with iron (III) or zinc (II) completely changed the apparent forms, and improved the thermal stability of EP. Furthermore, the anti-inflammatory activities of EP, EP-Fe and EP-Zn were proved by a lipopolysaccharide (LPS)-induced RAW264.7 macrophages model. The results showed that EP, EP-Fe (III) and EP-Zn (II) could decrease the mitochondrial membrane potential and the secretion of NO and cytokines induced by LPS. One of the anti-inflammatory mechanisms of EP, EP-Fe (III) and EP-Zn (II) was that they could inhibit mitogen-activated protein kinase (MAPK) signaling pathway via increasing its inhibitor content in cells. Collectively, the research suggested that the chelation with iron (III) or zinc (II) could change the structure and improve the anti-inflammatory activities of EP.
Collapse
Affiliation(s)
- Yingying Feng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yuying Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Ran Duan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Peng Wang
- Qingdao Seawin Biotech Group Co., LTD, Qingdao 266071, China
| | - Xiang Zhong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Changsha, Hunan 410125, China.
| |
Collapse
|
6
|
Shen S, Wang X, Zhu X, Rasam S, Ma M, Huo S, Qian S, Zhang M, Qu M, Hu C, Jin L, Tian Y, Sethi S, Poulsen D, Wang J, Tu C, Qu J. High-quality and robust protein quantification in large clinical/pharmaceutical cohorts with IonStar proteomics investigation. Nat Protoc 2023; 18:700-731. [PMID: 36494494 PMCID: PMC10673696 DOI: 10.1038/s41596-022-00780-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 09/22/2022] [Indexed: 12/14/2022]
Abstract
Robust, reliable quantification of large sample cohorts is often essential for meaningful clinical or pharmaceutical proteomics investigations, but it is technically challenging. When analyzing very large numbers of samples, isotope labeling approaches may suffer from substantial batch effects, and even with label-free methods, it becomes evident that low-abundance proteins are not reliably measured owing to unsufficient reproducibility for quantification. The MS1-based quantitative proteomics pipeline IonStar was designed to address these challenges. IonStar is a label-free approach that takes advantage of the high sensitivity/selectivity attainable by ultrahigh-resolution (UHR)-MS1 acquisition (e.g., 120-240k full width at half maximum at m/z = 200) which is now widely available on ultrahigh-field Orbitrap instruments. By selectively and accurately procuring quantitative features of peptides within precisely defined, very narrow m/z windows corresponding to the UHR-MS1 resolution, the method minimizes co-eluted interferences and substantially enhances signal-to-noise ratio of low-abundance species by decreasing noise level. This feature results in high sensitivity, selectivity, accuracy and precision for quantification of low-abundance proteins, as well as fewer missing data and fewer false positives. This protocol also emphasizes the importance of well-controlled, robust experimental procedures to achieve high-quality quantification across a large cohort. It includes a surfactant cocktail-aided sample preparation procedure that achieves high/reproducible protein/peptide recoveries among many samples, and a trapping nano-liquid chromatography-mass spectrometry strategy for sensitive and reproducible acquisition of UHR-MS1 peptide signal robustly across a large cohort. Data processing and quality evaluation are illustrated using an example dataset ( http://proteomecentral.proteomexchange.org ), and example results from pharmaceutical project and one clinical project (patients with acute respiratory distress syndrome) are shown. The complete IonStar pipeline takes ~1-2 weeks for a sample cohort containing ~50-100 samples.
Collapse
Affiliation(s)
- Shichen Shen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Xue Wang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, USA
- AbbVie Bioresearch Center, Worcester, MA, USA
| | - Xiaoyu Zhu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Sailee Rasam
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Min Ma
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Shihan Huo
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Shuo Qian
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Ming Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Miao Qu
- Department of Neurology, Xuanwu Hospital, Beijing, China
| | - Chenqi Hu
- AbbVie Bioresearch Center, Worcester, MA, USA
| | - Liang Jin
- AbbVie Bioresearch Center, Worcester, MA, USA
| | - Yu Tian
- AbbVie Bioresearch Center, Worcester, MA, USA
| | - Sanjay Sethi
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - David Poulsen
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Jianmin Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Chengjian Tu
- BioProduction Group, Thermo Fisher Scientific, Buffalo, NY, USA
| | - Jun Qu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
7
|
Wang X, Liu X, Liu S, Qu J, Ye M, Wang J, Li X, Yuan Z, Wu J, Yi J, Wen L, Li R. Effects of anti-stress agents on the growth performance and immune function in broiler chickens with vaccination-induced stress. Avian Pathol 2023; 52:12-24. [PMID: 35980124 DOI: 10.1080/03079457.2022.2114874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 05/04/2022] [Accepted: 08/15/2022] [Indexed: 12/24/2022]
Abstract
The aim of this study was to evaluate the effects of anti-stress agents on the growth performance and immune function of broilers under immune stress conditions induced by vaccination. A total of 128, 1-day-old Arbor Acres broilers were randomly divided into four groups. Group normal control (NC) was the control group. Group vaccination control (VC), T 0.5%, and T 1% were the treatment groups, which were nasally vaccinated with two doses of the Newcastle disease virus (NDV) vaccine. The chicks in groups T 0.5% and T 1% were fed conventional diets containing 0.5% and 1% anti-stress agents. Thereafter, these broilers were slaughtered on 1, 7, 14, and 21 days post-vaccination. The results indicated that anti-stress agents could significantly reduce serum adrenocorticotropic hormone (ACTH) (P < 0.01) and cortisol (CORT) (P < 0.05) levels, and improve the growth performance (P < 0.05) and immune function of broilers (P < 0.05); However, the levels of malondialdehyde (MDA) (P < 0.05) were decreased, and the decreased total antioxidant capacity (T-AOC) (P < 0.01) levels mediated by vaccination were markedly improved. In addition, anti-stress agents could attenuate apoptosis in spleen lymphocytes (P < 0.01) by upregulating the ratio of Bcl-2 to BAX (P < 0.01) and downregulating the expression of caspase-3 and -9 (P < 0.01), which might be attributed to the inhibition of the enzymatic activities of caspase-3 and -9 (P < 0.05). In conclusion, anti-stress agents may improve growth performance and immune function in broilers under immune-stress conditions.RESEARCH HIGHLIGHTS Investigation of effects and mechanism of immune stress induced by vaccination.Beneficial effect of anti-stress agents on growth performance, immune function, oxidative stress, and regulation of lymphocyte apoptosis.Demonstration of the effects of apoptosis on immune function in the organism.
Collapse
Affiliation(s)
- Xianglin Wang
- Laboratory of Animal Clinical Toxicology, College of Veterinary Medicine, Hunan Agricultural University, Changsha City, People's Republic of China
| | - Xiangyan Liu
- Laboratory of Animal Clinical Toxicology, College of Veterinary Medicine, Hunan Agricultural University, Changsha City, People's Republic of China
| | - Sha Liu
- Laboratory of Animal Clinical Toxicology, College of Veterinary Medicine, Hunan Agricultural University, Changsha City, People's Republic of China
| | - Jianyu Qu
- Laboratory of Animal Clinical Toxicology, College of Veterinary Medicine, Hunan Agricultural University, Changsha City, People's Republic of China
| | - Mengke Ye
- Laboratory of Animal Clinical Toxicology, College of Veterinary Medicine, Hunan Agricultural University, Changsha City, People's Republic of China
| | - Ji Wang
- Laboratory of Animal Clinical Toxicology, College of Veterinary Medicine, Hunan Agricultural University, Changsha City, People's Republic of China
| | - Xiaowen Li
- Laboratory of Animal Clinical Toxicology, College of Veterinary Medicine, Hunan Agricultural University, Changsha City, People's Republic of China
| | - Zhihang Yuan
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha City, People's Republic of China
| | - Jing Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha City, People's Republic of China
| | - Jine Yi
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha City, People's Republic of China
| | - Lixin Wen
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha City, People's Republic of China
| | - Rongfang Li
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha City, People's Republic of China
| |
Collapse
|
8
|
Hu W, Bi S, Shao J, Qu Y, Zhang L, Li J, Chen S, Ma Y, Cao L. Ginsenoside Rg1 and Re alleviates inflammatory responses and oxidative stress of broiler chicks challenged by lipopolysaccharide. Poult Sci 2023; 102:102536. [PMID: 36764136 PMCID: PMC9929597 DOI: 10.1016/j.psj.2023.102536] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Previous study showed that ginsenoside Rg1 (Rg1) and ginsenoside Re (Re) alleviated growth inhibition of broiler chicks with immune stress. The aim of this study was to investigate the effect of Rg1 and Re on inflammatory responses, oxidative stress, and apoptosis in liver of broilers with immune stress induced by lipopolysaccharide (LPS). Forty broiler chicks were randomly divided into 4 groups, each group consisting of 10 chickens. The model group, Rg1 group, and Re group were received continuously interval injection of 250 μg/kg body weight LPS at the age of 12, 14, 33, and 35 days to induce immune stress. Control group was injected with an equivalent amount of sterile saline. Then broilers in Rg1 group and Re group were given 1mg/kg body weight Rg1 and Re intraperitoneally 2 h after the LPS challenge respectively. Blood samples were collected for the detection of hormone levels, inflammatory mediators, and antioxidant parameters. Hepatic tissues were taken for pathological observation. Total RNA was extracted from the liver for real-time quantitative polymerase chain reaction analysis. Our results showed that Rg1 or Re could alleviate histological changes of liver, reduce production of stress-related hormones, inhibit inflammatory responses, and enhance antioxidant capacity in broilers challenged by immune stress. In addition, Rg1 or Re treatment upregulated mRNA expression of antioxidant-related genes and downregulated mRNA expression of inflammation-related factors and apoptosis-related genes in the liver of immune-stressed broilers. The results suggest that the plant extracts containing Rg1 and Re can be used for ameliorating hepatic oxidative stress and inflammation and controlling immune stress in broiler chicks.
Collapse
Affiliation(s)
- Weidong Hu
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, P. R. China
| | - Shicheng Bi
- Immunology Research Center, Medical Research Institute, Southwest University, Rongchang, Chongqing 402460, P. R. China
| | - Jianjian Shao
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, P. R. China
| | - Yiwen Qu
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, P. R. China
| | - Li Zhang
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, P. R. China
| | - Jun Li
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, P. R. China
| | - Sihuai Chen
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, P. R. China
| | - Yue Ma
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, P. R. China
| | - Liting Cao
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, P. R. China.
| |
Collapse
|
9
|
Compound mycotoxin detoxifier alleviating aflatoxin B 1 toxic effects on broiler growth performance, organ damage and gut microbiota. Poult Sci 2022; 102:102434. [PMID: 36586389 PMCID: PMC9811249 DOI: 10.1016/j.psj.2022.102434] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
The aim of this study was to evaluate the effects of compound mycotoxin detoxifier (CMD) on alleviating the toxic effect of aflatoxin B1 (AFB1) for broiler growth performance. One-kilogram CMD consists of 667 g aflatoxin B1-degrading enzyme (ADE, 1,467 U/g), 200 g montmorillonite and 133 g compound probiotics (CP). The feeding experiment was divided into 2 stages (1-21 d and 22-42 d). In the early stage, a total of 300 one-day-old Ross broilers were randomly divided into 6 groups, 5 replications for each group, 10 broilers (half male and half female) in each replication. In the later feeding stage, about 240 twenty-two-day-old Ross broilers were randomly divided into 6 groups, 8 replications for each group, 5 broilers in each replication. Group A: basal diet; group B: basal diet with 40 μg/kg AFB1; group C: basal diet with 1 g/kg CMD; groups D, E, and F: basal diet with 40 μg/kg AFB1 plus 0.5, 1.0 and 1.5 g/kg CMD, respectively. The results indicated that AFB1 significantly decreased average daily gain (ADG), protein metabolic rate, organ index of thymus, bursa of Fabricius (BF), superoxide dismutase (SOD), glutathione peroxidase (GSH-PX) and catalase activities in serum, and increased AFB1 residues in serum and liver (P < 0.05). Hematoxylin-Eosin (HE) staining analysis of jejunum, liver and kidney showed that AFB1 caused the main pathological changes with different degrees of inflammatory cell infiltration. However, CMD additions could alleviate the negative effects of AFB1 on the above parameters. The gut microbiota analysis indicated that AFB1 could significantly increase the abundances of Staphylococcus-xylosu, Esherichia-coli-g-Escherichia-Shigella, and decrease Lactobacillus-aviarius abundance (P < 0.05), but which were adjusted to almost the same levels as the control group by CMD addition. The correlative analysis showed that Lactobacillus-aviarius abundance was positively correlated with ADG, SOD and BF (P < 0.05), whereas Staphylococcus-xylosus abundance was positively correlated with AFB1 residues in serum and liver (P < 0.05). In conclusion, CMD could keep gut microbiota stable, alleviate histological lesions, increase growth performance, and reduce mycotoxin toxicity. The optimal CMD addition should be 1 g/kg in AFB1-contaminated broilers diet.
Collapse
|
10
|
Bi S, Shao J, Qu Y, Xu W, Li J, Zhang L, Shi W, Cao L. Serum metabolomics reveal pathways associated with protective effect of ginsenoside Rg3 on immune stress. Poult Sci 2022; 101:102187. [PMID: 36215740 PMCID: PMC9554815 DOI: 10.1016/j.psj.2022.102187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 11/03/2022] Open
Abstract
Our previous study has demonstrated that administration of ginsenoside Rg3 ameliorates immune stress by inhibiting inflammatory responses, reducing oxidative damage and upregulating mRNA expression of mTOR, SOD-1, and HO-1. However, the specific mechanism in relation to the protective effect of ginsenoside Rg3 on stressed broilers especially the metabolites alteration remains obscure. The present study aimed to investigate the underlined mechanism in relation to the pathogenesis and protective effect of ginsenoside Rg3 on stressed broilers using liquid chromatograph-mass spectrometry profiling. Eighteen broiler chicks were randomly allocated to 3 treatments: Control, Model and Rg3. Chickens in Rg3 group received intraperitoneally administered 1 mg/kg Rg3 2 h before LPS challenge. Then the broilers were intraperitoneally injection of 250 µg/kg LPS at the age of 12, 14, 33, and 35 d to induce immune stress. Control group was injected with an equivalent amount of sterile saline. At the end of the experiment, the serum was obtained for metabolomics analysis. The changes in serum metabolic profiles were investigated with the application of metabolomics approach. Distinct changes in metabolite patterns in serum were observed by orthogonal partial least square-discriminate analysis. In total, 35 metabolites were identified, among which 17 differential metabolites were found between Control and Model group, and 18 differential metabolites were identified between Model and Rg3 group. Metabolic pathway analysis revealed potential serum metabolites involved in oxidative stress and inflammation, degradation of lipid and protein in broiler chicks with immune stress. In addition, the protective effect of Rg3 on the stressed chicks may be largely mediated by BCAA metabolism, apoptosis and mTOR signaling pathway. These results suggested the potential biomarkers involved in pathogenesis and prevention of stress induced by Escherichia coli lipopolysaccharide.
Collapse
|
11
|
Bi S, Shao J, Qu Y, Hu W, Ma Y, Cao L. Hepatic transcriptomics and metabolomics indicated pathways associated with immune stress of broilers induced by lipopolysaccharide. Poult Sci 2022; 101:102199. [PMID: 36257073 PMCID: PMC9579410 DOI: 10.1016/j.psj.2022.102199] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/01/2022] [Accepted: 09/19/2022] [Indexed: 10/29/2022] Open
|
12
|
Laghouaouta H, Fraile L, Suárez-Mesa R, Ros-Freixedes R, Estany J, Pena RN. A genome-wide screen for resilient responses in growing pigs. Genet Sel Evol 2022; 54:50. [PMID: 35787790 PMCID: PMC9251948 DOI: 10.1186/s12711-022-00739-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 06/21/2022] [Indexed: 11/18/2022] Open
Abstract
Background There is a growing interest to decipher the genetic background of resilience and its possible improvement through selective breeding. The objective of the present study was to provide new insights into the genetic make-up of resilience in growing pigs by identifying genomic regions and candidate genes associated with resilience indicators. Commercial Duroc pigs were challenged with an attenuated Aujeszky vaccine at 12 weeks of age. Two resilience indicators were used: deviation from the expected body weight at 16 weeks of age given the growth curve of non-vaccinated pigs (∆BW) and the increase in acute-phase protein haptoglobin at four days post-vaccination (∆HP). Genome-wide association analyses were carried out on 445 pigs, using genotypes at 41,165 single nucleotide polymorphisms (SNPs) and single-marker and Bayesian multiple-marker regression approaches. Results Genomic regions on pig chromosomes 2, 8, 9, 11 (∆BW) and 8, 9, 13 (∆HP) were found to be associated with the resilience indicators and explained high proportions of their genetic variance. The genomic regions that were associated explained 27 and 5% of the genetic variance of ∆BW and ∆HP, respectively. These genomic regions harbour promising candidate genes that are involved in pathways related to immune response, response to stress, or signal transduction (CD6, PTGDR2, IKZF1, RNASEL and MYD88), and growth (GRB10 and LCORL). Conclusions Our study identified novel genomic regions that are associated with two resilience indicators (∆BW and ∆HP) in pigs. These associated genomic regions harbour potential candidate genes involved in immune response and growth pathways, which emphasise the strong relationship between resilience and immune response. Supplementary Information The online version contains supplementary material available at 10.1186/s12711-022-00739-1.
Collapse
Affiliation(s)
- Houda Laghouaouta
- Department of Animal Science, University of Lleida-Agrotecnio-CERCA Center, 25198, Lleida, Catalonia, Spain
| | - Lorenzo Fraile
- Department of Animal Science, University of Lleida-Agrotecnio-CERCA Center, 25198, Lleida, Catalonia, Spain
| | - Rafael Suárez-Mesa
- Department of Animal Science, University of Lleida-Agrotecnio-CERCA Center, 25198, Lleida, Catalonia, Spain
| | - Roger Ros-Freixedes
- Department of Animal Science, University of Lleida-Agrotecnio-CERCA Center, 25198, Lleida, Catalonia, Spain
| | - Joan Estany
- Department of Animal Science, University of Lleida-Agrotecnio-CERCA Center, 25198, Lleida, Catalonia, Spain
| | - Ramona Natacha Pena
- Department of Animal Science, University of Lleida-Agrotecnio-CERCA Center, 25198, Lleida, Catalonia, Spain.
| |
Collapse
|
13
|
Niu X, Ding Y, Chen S, Gooneratne R, Ju X. Effect of Immune Stress on Growth Performance and Immune Functions of Livestock: Mechanisms and Prevention. Animals (Basel) 2022; 12:ani12070909. [PMID: 35405897 PMCID: PMC8996973 DOI: 10.3390/ani12070909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/19/2022] [Accepted: 03/26/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Immune stress is an important stressor in domestic animals that leads to decreased feed intake, slow growth, and reduced disease resistance of pigs and poultry. Especially in high-density animal feeding conditions, the risk factor of immune stress is extremely high, as they are easily harmed by pathogens, and frequent vaccinations are required to enhance the immunity function of the animals. This review mainly describes the causes, mechanisms of immune stress and its prevention and treatment measures. This provides a theoretical basis for further research and development of safe and efficient prevention and control measures for immune stress in animals. Abstract Immune stress markedly affects the immune function and growth performance of livestock, including poultry, resulting in financial loss to farmers. It can lead to decreased feed intake, reduced growth, and intestinal disorders. Studies have shown that pathogen-induced immune stress is mostly related to TLR4-related inflammatory signal pathway activation, excessive inflammatory cytokine release, oxidative stress, hormonal disorders, cell apoptosis, and intestinal microbial disorders. This paper reviews the occurrence of immune stress in livestock, its impact on immune function and growth performance, and strategies for immune stress prevention.
Collapse
Affiliation(s)
- Xueting Niu
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang 524088, China; (X.N.); (Y.D.); (S.C.)
- Marine Medical Research and Development Centre, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518018, China
| | - Yuexia Ding
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang 524088, China; (X.N.); (Y.D.); (S.C.)
| | - Shengwei Chen
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang 524088, China; (X.N.); (Y.D.); (S.C.)
- Marine Medical Research and Development Centre, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518018, China
| | - Ravi Gooneratne
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand;
| | - Xianghong Ju
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang 524088, China; (X.N.); (Y.D.); (S.C.)
- Marine Medical Research and Development Centre, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518018, China
- Correspondence:
| |
Collapse
|