1
|
Guan L, Hu A, Ma S, Liu J, Yao X, Ye T, Han M, Yang C, Zhang R, Xiao X, Wu Y. Lactiplantibacillus plantarum postbiotic protects against Salmonella infection in broilers via modulating NLRP3 inflammasome and gut microbiota. Poult Sci 2024; 103:103483. [PMID: 38354474 PMCID: PMC10875300 DOI: 10.1016/j.psj.2024.103483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/16/2024] Open
Abstract
Salmonella infection is a major concern in poultry production which poses potential risks to food safety. Our previous study confirmed that Lactiplantibacillus plantarum (LP) postbiotic exhibited a strong antibacterial capacity on Salmonella in vitro. This study aimed to investigate the beneficial effects and underlying mechanism of LP postbiotic on Salmonella-challenged broilers. A total of 240 one-day-old male yellow-feathered broilers were pretreated with 0.8% deMan Rogosa Sharpe (MRS) medium or 0.8% LP postbiotic (LP cell-free culture supernatant, LPC) in drinking water for 28 d, and then challenged with 1×109 CFU Salmonella enterica serovar Enteritidis (SE). Birds were sacrificed 3 d postinfection. Results showed that LPC maintained the growth performance by increasing body weight (BW), average daily gain (ADG), and average daily feed intake (ADFI) in broilers under SE challenge. LPC significantly attenuated SE-induced intestinal mucosal damage. Specifically, it decreased the intestinal injury score, increased villus length and villus/crypt, regulated the expression of intestinal injury-related genes (Villin, matrix metallopeptidase 3 [MMP3], intestinal fatty acid-binding protein [I-FABP]), and enhanced tight junctions (zona occludens-1 [ZO-1] and Claudin-1). SE infection caused a dramatic inflammatory response, as indicated by the up-regulated concentrations of interleukin (IL)-1β, IL-6, TNF-α, and the downregulation of IL-10, while LPC pretreatment markedly reversed this trend. We then found that LPC inhibited the activation of NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome by decreasing the gene expression of Caspase-1, IL-lβ, and IL-18. Furthermore, LPC suppressed NLRP3 inflammasome activation by inhibiting nuclear factor-kappa B (NF-κB) signaling pathway (the reduced levels of toll-like receptor 4 [TLR4], myeloid differentiation factor 88 [MyD88], and NF-κB). Finally, our results showed that LPC regulated gut microbiota by enhancing the percentage of Ligilactobacillus and decreasing Alistipes and Barnesiella. In summary, we found that LP postbiotic was effective to protect broilers against Salmonella infection, possibly through suppressing NLRP3 inflammasome and optimizing gut microbiota. Our study provides the potential of postbiotics on prevention of Salmonella infection in poultry.
Collapse
Affiliation(s)
- Leqi Guan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Aixin Hu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Shiyue Ma
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Jinsong Liu
- Zhejiang Vegamax Biotechnology Co., Ltd., Huzhou 313300, China
| | - Xianci Yao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Ting Ye
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Meng Han
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Caimei Yang
- Zhejiang Vegamax Biotechnology Co., Ltd., Huzhou 313300, China
| | - Ruiqiang Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Xiao Xiao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Yanping Wu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Zhejiang Vegamax Biotechnology Co., Ltd., Huzhou 313300, China.
| |
Collapse
|
2
|
Lan Y, Hu Y, Guo Y, Ali F, Amjad N, Ouyang Q, Almutairi MH, Wang D. Microbiome analysis reveals the differences in gut fungal community between Dutch Warmblood and Mongolian horses. Microb Pathog 2024; 188:106566. [PMID: 38309310 DOI: 10.1016/j.micpath.2024.106566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/27/2024] [Accepted: 01/31/2024] [Indexed: 02/05/2024]
Abstract
Similar to gut bacterial community, gut fungal community are also an important part of the gut microbiota and play crucial roles in host immune regulation and metabolism. However, most studies have focused on the gut bacterial community, and research on the gut fungal community has been limited. Dutch Warmblood (DWH) and Mongolian horses (MGH) are important equine breeds, but little research has been done on their gut fungal community. Here, we assessed differences in gut fungal community between two horse species. Results showed that a total of 2159 OTUs were found in the Dutch Warmblood and Mongolian horses, of which 308 were common. Between-group analyzes of microbial diversity showed no differences in the alpha and beta diversity of gut fungal community between the two horse species. Microbiological taxonomic surveys showed that the dominant fungal phyla (Neocallimastigomycota and Ascomycota) and genera (unclassified_Neocallimastigaceae and Anaeromyces) were the same without being affected by species. Although the types of dominant fungal phyla did not change, the abundances of some fungal genera changed significantly. Results of Metastats analysis showed that there were a total of 206 fungal genera that were significantly different between the two horses, among which 78 genera showed an increase and 127 genera significantly decreased in Dutch Warmblood horses compared with Mongolian horses. In conclusion, this study investigated the composition and structure of the gut fungal community of Dutch Warmblood and Mongolian horses and found significant differences in gut fungal community between both breeds. Notably, this is the first exploration of the differences in the gut fungal community of both breeds, which may help to understand the distribution characteristics of the gut fungal community of different breeds of horses and reveal the differences in the traits of different horses.
Collapse
Affiliation(s)
- Yanfang Lan
- Wuhan Business University, Wuhan, 430100, China
| | - Yunyun Hu
- Wuhan Business University, Wuhan, 430100, China
| | | | - Farah Ali
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Nouman Amjad
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | | | - Mikhlid H Almutairi
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Dongjing Wang
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Regional Academy of Agricultural Sciences, Lhasa City, Tibet, 850009, China; State Key Laboratory of Highland Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa City, Tibet, 850009, China.
| |
Collapse
|
3
|
Jan TR, Lin CS, Yang WY. Differential cytokine profiling and microbial species involved in cecal microbiota modulations in SPF chicks immunized with a dual vaccine against Salmonella Typhimurium infection. Poult Sci 2024; 103:103334. [PMID: 38104411 PMCID: PMC10765113 DOI: 10.1016/j.psj.2023.103334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/19/2023] Open
Abstract
Salmonella Typhimurium (ST) infection in laying hens is a significant threat to public health and food safety. Host resistance against enteric pathogen invasion primarily relies on immunity and gut barrier integrity. This study applied the ST infection model and a dual live vaccine containing Salmonella Enteritidis (SE) strain Sm24/Rif12/Ssq and ST strain Nal2/Rif9/Rtt to investigate the cellular cytokine expression profiles and the differential community structure in the cecal microbiota of specific-pathogen-free (SPF) chicks and field-raised layers. The results showed that ST challenge significantly upregulated expressions of IL-1β in SPF chicks. Vaccination, on the other hand, led to an elevation in IFNγ expression and restrained IL-1β levels. In the group where vaccination preceded the ST challenge (S.STvc), heightened expressions of IL-1β, IL-6, IL-10, and IL-12β were observed, indicating active involvement of both humoral and cell-mediated immunity in the defense against ST. Regarding the cecal microbiota, the vaccine did not affect alpha diversity nor induce a significant shift in the microbial community. Conversely, ST infection significantly affected the alpha and beta diversity in the cecal microbiota, reducing beneficial commensal genera, such as Blautia and Subdoligranulum. MetagenomeSeq analysis reveals a significant increase in the relative abundance of Faecalibacterium prausnitzii in the groups (S.STvc and STvc) exhibiting protection against ST infection. LEfSe further demonstrated Faecalibacterium prausnitzii as the prominent biomarker within the cecal microbiota of SPF chicks and field layers demonstrating protection. Another biomarker identified in the S.STvc group, Eubacterium coprostanoligenes, displayed an antagonistic relationship with Faecalibacterium prausnitzii, suggesting the limited biological significance of the former in reducing cloacal shedding and tissue invasion. In conclusion, the application of AviPro Salmonella DUO vaccine stimulates host immunity and modulates cecal microbiota to defend against ST infection. Among the microbial modulations observed in SPF chicks and field layers with protection, Faecalibacterium prausnitzii emerges as a significant species in the ceca. Further research is warranted to elucidate its role in protecting layers against ST infection.
Collapse
Affiliation(s)
- Tong-Rong Jan
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei City 106, Taiwan
| | - Chen-Si Lin
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei City 106, Taiwan; Zoonoses Research Center and School of Veterinary Medicine, National Taiwan University, Taipei City 106, Taiwan
| | - Wen-Yuan Yang
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei City 106, Taiwan; Zoonoses Research Center and School of Veterinary Medicine, National Taiwan University, Taipei City 106, Taiwan.
| |
Collapse
|
4
|
Kogut MH, Fernandez Miyakawa ME. Phenotype Alterations in the Cecal Ecosystem Involved in the Asymptomatic Intestinal Persistence of Paratyphoid Salmonella in Chickens. Animals (Basel) 2023; 13:2824. [PMID: 37760224 PMCID: PMC10525526 DOI: 10.3390/ani13182824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
The gastrointestinal ecosystem involves interactions between the host, gut microbiota, and external environment. To colonize the gut of poultry, Salmonella must surmount barriers levied by the intestine including mucosal innate immune responses and microbiota-mediated niche restrictions. Accordingly, comprehending Salmonella intestinal colonization in poultry requires an understanding of how the pathogen interacts with the intestinal ecosystem. In chickens, the paratyphoid Salmonella have evolved the capacity to survive the initial immune response and persist in the avian ceca for months without triggering clinical signs. The persistence of a Salmonella infection in the avian host involves both host defenses and tolerogenic defense strategies. The initial phase of the Salmonella-gut ecosystem interaction is characteristically an innate pro-inflammatory response that controls bacterial invasion. The second phase is initiated by an expansion of the T regulatory cell population in the cecum of Salmonella-infected chickens accompanied by well-defined shifts in the enteric neuro-immunometabolic pathways that changes the local phenotype from pro-inflammatory to an anti-inflammatory environment. Thus, paratyphoid Salmonella in chickens have evolved a unique survival strategy that minimizes the inflammatory response (disease resistance) during the initial infection and then induces an immunometabolic reprogramming in the cecum that alters the host defense to disease tolerance that provides an environment conducive to drive asymptomatic carriage of the bacterial pathogen.
Collapse
Affiliation(s)
- Michael H. Kogut
- Southern Plains Agricultural Research Center, USDA-ARS, College Station, TX 77845, USA
| | - Mariano Enrique Fernandez Miyakawa
- Instituto de Patobiología, Instituto Nacional de Tecnología, Nicolas Repetto y Los Reseros S/N, Hurlingham 1686, Buenos Aires, Argentina;
| |
Collapse
|
5
|
Willson NL, Chousalkar K. Dominant Salmonella Serovars in Australian Broiler Breeder Flocks and Hatcheries: a Longitudinal Study. Appl Environ Microbiol 2023; 89:e0062723. [PMID: 37466445 PMCID: PMC10467335 DOI: 10.1128/aem.00627-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/01/2023] [Indexed: 07/20/2023] Open
Abstract
A longitudinal study was conducted to determine the dominance and prevalence of Salmonella enterica subsp in Australian broiler breeder flocks and hatcheries. Twenty-two flocks (n = 3339 samples) were sampled over 6 time points beginning at placement until week 40. Hatcheries (n = 274 samples) were sampled following removal of chicks hatched from eggs originating from the 22 donor parent flocks. The percent of positive flocks (36%) and frequency of positive samples (15.6%) were highest during rearing at week 7. The frequency of positive samples decreased over the 40 weeks; however, the number of positive flocks remained relatively consistent. Geographical location had a greater influence on Salmonella detection frequency than company sample origin, despite differing management and vaccination protocols within and between companies. Twelve serovars were detected in total. The predominant serovars during rearing were Salmonella Mbandaka (32%), S. Saintpaul (27%), and S. Liverpool (18%). The predominant serovars detected during production were S. Cubana (27%), S. Saintpaul (24%), and S. Havana (13%). Salmonella Typhimurium, S. Ohio, and S. Hessarek were detected in the hatcheries. Of the serovars detected, only S. Typhimurium and S. Ohio were found in both broiler breeder flocks and hatcheries. However, detection did not correspond to the status of the flock eggs feeding into the hatchery. This study provides an up-to-date capture of the current Salmonella serovars circulating in the broiler breeder industry. Continued surveillance within the Australian Chicken Meat industry is imperative to mitigate and reduce the risk of salmonellosis in the community related to chicken meat. IMPORTANCE This study identified prevalent and dominant Salmonella enterica subsp in Australian Broiler Breeder flocks, as well as in hatcheries post chick hatch and removal, from eggs originating from these donor parent flocks. The captured Salmonella data was further compared to the most common Salmonella serovars isolated from broilers, as well as human salmonellosis notification data, which is useful for consideration of the circulating serovars within the chicken meat industry and their significance in public health. As there are multiple entry points for Salmonella during the entire chicken meat production chain that can lead to carcass contamination, it is important to distinguish serovars present between the different stages of vertical integration to implement and enable Salmonella control strategies.
Collapse
Affiliation(s)
- N.-L. Willson
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia
| | - K. Chousalkar
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia
| |
Collapse
|
6
|
Lyimu WM, Leta S, Everaert N, Paeshuyse J. Influence of Live Attenuated Salmonella Vaccines on Cecal Microbiome Composition and Microbiota Abundances in Young Broiler Chickens. Vaccines (Basel) 2023; 11:1116. [PMID: 37376505 DOI: 10.3390/vaccines11061116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Salmonellosis is a global food safety challenge caused by Salmonella, a gram-negative bacterium of zoonotic importance. Poultry is considered a major reservoir for the pathogen, and humans are exposed through consumption of raw or undercooked products derived from them. Prophylaxis of Salmonella in poultry farms generally mainly involves biosecurity measures, flock testing and culling, use of antibiotics, and vaccination programs. For decades, the use of antibiotics has been a common practice to limit poultry contamination with important pathogenic bacteria such as Salmonella at the farm level. However, due to an increasing prevalence of resistance, non-therapeutic use of antibiotics in animal production has been banned in many parts of the world. This has prompted the search for non-antimicrobial alternatives. Live vaccines are among the developed and currently used methods for Salmonella control. However, their mechanism of action, particularly the effect they might have on commensal gut microbiota, is not well understood. In this study, three different commercial live attenuated Salmonella vaccines (AviPro® Salmonella Vac T, AviPro® Salmonella DUO, and AviPro® Salmonella Vac E) were used to orally vaccinate broiler chickens, and cecal contents were collected for microbiomes analysis by 16S rRNA next generation sequencing. Quantitative real-time PCR (qPCR) was used to study the cecal immune-related genes expression in the treatment groups, while Salmonella-specific antibodies were analyzed from sera and cecal extracts by enzyme-linked immunosorbent assay (ELISA). We show that vaccination with live attenuated Salmonella vaccines had a significant influence on the variability of the broiler cecal microbiota (p = 0.016). Furthermore, the vaccines AviPro® Salmonella Vac T and AviPro® Salmonella DUO, but not AviPro® Salmonella Vac E, had a significant effect (p = 0.024) on microbiota composition. This suggests that the live vaccine type used can differently alter the microbiota profiles, driving the gut colonization resistance and immune responses to pathogenic bacteria, and might impact the overall chicken health and productivity. Further investigation is, however, required to confirm this.
Collapse
Affiliation(s)
- Wilfred Michael Lyimu
- Laboratory of Host-Pathogen Interactions in Livestock, Division of Animal and Human Health Engineering, Department of Biosystems, KU Leuven, 3001 Leuven, Belgium
| | - Samson Leta
- Laboratory of Host-Pathogen Interactions in Livestock, Division of Animal and Human Health Engineering, Department of Biosystems, KU Leuven, 3001 Leuven, Belgium
- Department of Biomedical Sciences, College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu P.O. Box 34, Ethiopia
| | - Nadia Everaert
- The Nutrition and Animal Microbiota Ecosystems Laboratory, Division of Animal and Human Health Engineering, Department of Biosystems, KU Leuven, 3001 Leuven, Belgium
| | - Jan Paeshuyse
- Laboratory of Host-Pathogen Interactions in Livestock, Division of Animal and Human Health Engineering, Department of Biosystems, KU Leuven, 3001 Leuven, Belgium
| |
Collapse
|
7
|
Wang Y, Xu B, Chen H, Yang F, Huang J, Jiao X, Zhang Y. Environmental factors and gut microbiota: Toward better conservation of deer species. Front Microbiol 2023; 14:1136413. [PMID: 36960286 PMCID: PMC10027939 DOI: 10.3389/fmicb.2023.1136413] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/16/2023] [Indexed: 03/09/2023] Open
Abstract
Thousands of microbial species inhabiting the animal gut, collectively known as the gut microbiota, play many specific roles related to host nutrient metabolism and absorption, immune regulation, and protection from pathogenic bacteria. Gut microbiota composition is affected by several internal and external factors, such as the host genotype, dietary intake, breeding environment, and antibiotic exposure. As deer species are important members for maintaining ecosystem balance, understanding the effects of multiple factors on the gut microbiota of deer species, particularly endangered ones, is crucial. In this review, we summarize and discuss the factors that significantly affect the gut microbiota of deer and present the impacts of these factors on microbial composition. In particular, we focused on the changes in gut microbiota due to dietary differences under different conditions, including seasonal changes, different geographical locations, and captivity, as well as weaning and pathogen disturbance. Understanding the correlations between gut microbiota composition and its driving factors is important for evaluating and improving the captive breeding environment for better conservation of endangered deer species, and reintroducing wild deer populations in the future.
Collapse
Affiliation(s)
- Yu Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Bo Xu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Huan Chen
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Fang Yang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Jinlin Huang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Xin’an Jiao
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
- Xin’an Jiao,
| | - Yunzeng Zhang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
- *Correspondence: Yunzeng Zhang,
| |
Collapse
|
8
|
Sheets TR, Wickware CL, Snyder AM, Weimer SL, Johnson TA. Ileal and cecal microbiota response to Salmonella Typhimurium challenge in conventional and slow-growing broilers. Front Physiol 2022; 13:971255. [PMID: 36267582 PMCID: PMC9577007 DOI: 10.3389/fphys.2022.971255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/24/2022] [Indexed: 12/03/2022] Open
Abstract
Despite the negative impacts of Salmonella intestinal colonization on human health, Salmonella is a natural colonizer of the gastrointestinal tract and is not overtly pathogenic to the avian host. It is of interest to understand the impacts and colonization rates of Salmonella across selected genetic lines such as slow-growing (SG) and conventional (CONV) broilers. The objective of this study was to characterize the relationship between Salmonella enterica serovar Typhimurium challenge and selected broiler genetic lines on the ileal and cecal microbiome. Male chicks of two broiler breeds (n = 156/breed) were cohoused in an open floor pen until day 7. On day 13, the chicks were then separated into 12 isolators per breed (4 rooms, 6 isolators/room, 11 chicks/isolator). On day 14, chicks in the 12 treatment isolators (6 isolators/breed, 108 total) were challenged with Salmonella Typhimurium (ST) (1 × 108 CFU/ml) via oral gavage while the remaining chicks (n = 108) were given an oral gavage of sterile tryptic soy broth control (C). Ileal and cecal contents were collected on day 7 from 24 chicks of each breed, and on days 13, 17, 21, and 24 from two chicks per isolator. Samples underwent DNA extraction and PCR amplification to obtain 16S rRNA amplicons that were sequenced with Illumina MiSeq. Salmonella Typhimurium colonization in the cecum was not different in the two broiler breeds. The main effect of breed had the greatest impact on the ileum microbiota of broilers 7 days of age where SG broilers had significantly lower diversity and richness compared to CONV broilers (p < 0.05). Salmonella Typhimurium challenge consistently caused a change in beta diversity. Regardless of day or intestinal location, challenged broilers had many amplicon sequence variants (ASVs) with decreased abundance of likely beneficial bacteria such as Mollicutes RF39, Shuttleworthia, Flavonifractor, and Oscillibacter compared to broilers that were unchallenged with Salmonella Typhimurium (p < 0.05). Additionally, there was a difference in the timing of when the microbiota alpha and beta diversity of each breed responded to Salmonella Typhimurium challenge. Thus, both broiler breed and Salmonella Typhimurium can impact the intestinal microbiota.
Collapse
Affiliation(s)
- Tessa R. Sheets
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Carmen L. Wickware
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Ashlyn M. Snyder
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| | - Shawna L. Weimer
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| | - Timothy A. Johnson
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
- *Correspondence: Timothy A. Johnson,
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Nontyphoidal Salmonella is a major food safety concern in developed and developing countries. Table eggs are often linked to cases of foodborne gastrointestinal disease. This review is focused on the latest findings on foodborne Salmonella infections acquired from poultry products and their implications on food safety. RECENT FINDINGS Salmonella Enteritidis (SE) and Salmonella Typhimurium (ST) are the predominant Salmonella serovars associated with human Salmonellosis. In Australia, ST is the predominant serovar but SE has been recently detected in some commercial free-range egg flocks. The Salmonella shedding in poultry flocks can be highly variable across different flocks and farms; as a result, the level of product contamination is largely attributed to the flock management. The microevolution in the ST genome after in-vivo passaging may have clinical significance. On farm use of Salmonella vaccines and/or interventions during the processing of the product can influence the bacterial load. The refrigeration of the product also influences the safety of the poultry product. SUMMARY Many interventions are in place for the control of Salmonella from farm to fork. However, given the biosecurity challenges because of the increase in public demand for free-range products, the emergence of Salmonella virulent types and expensive diagnostics, ongoing collaborative efforts from farmers, regulators and public health officials are required.
Collapse
|
10
|
Koutsoumanis K, Allende A, Álvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Ru G, Simmons M, Skandamis P, Suffredini E, Argüello‐Rodríguez H, Dohmen W, Magistrali CF, Padalino B, Tenhagen B, Threlfall J, García‐Fierro R, Guerra B, Liébana E, Stella P, Peixe L. Transmission of antimicrobial resistance (AMR) during animal transport. EFSA J 2022; 20:e07586. [PMID: 36304831 PMCID: PMC9593722 DOI: 10.2903/j.efsa.2022.7586] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The transmission of antimicrobial resistance (AMR) between food-producing animals (poultry, cattle and pigs) during short journeys (< 8 h) and long journeys (> 8 h) directed to other farms or to the slaughterhouse lairage (directly or with intermediate stops at assembly centres or control posts, mainly transported by road) was assessed. Among the identified risk factors contributing to the probability of transmission of antimicrobial-resistant bacteria (ARB) and antimicrobial resistance genes (ARGs), the ones considered more important are the resistance status (presence of ARB/ARGs) of the animals pre-transport, increased faecal shedding, hygiene of the areas and vehicles, exposure to other animals carrying and/or shedding ARB/ARGs (especially between animals of different AMR loads and/or ARB/ARG types), exposure to contaminated lairage areas and duration of transport. There are nevertheless no data whereby differences between journeys shorter or longer than 8 h can be assessed. Strategies that would reduce the probability of AMR transmission, for all animal categories include minimising the duration of transport, proper cleaning and disinfection, appropriate transport planning, organising the transport in relation to AMR criteria (transport logistics), improving animal health and welfare and/or biosecurity immediately prior to and during transport, ensuring the thermal comfort of the animals and animal segregation. Most of the aforementioned measures have similar validity if applied at lairage, assembly centres and control posts. Data gaps relating to the risk factors and the effectiveness of mitigation measures have been identified, with consequent research needs in both the short and longer term listed. Quantification of the impact of animal transportation compared to the contribution of other stages of the food-production chain, and the interplay of duration with all risk factors on the transmission of ARB/ARGs during transport and journey breaks, were identified as urgent research needs.
Collapse
|
11
|
A balanced gut microbiota is essential to maintain health in captive sika deer. Appl Microbiol Biotechnol 2022; 106:5659-5674. [PMID: 35922588 DOI: 10.1007/s00253-022-12111-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 11/02/2022]
Abstract
Certain animals harbor a high proportion of pathogens, particular the zoonotic pathogens, in their gut microbiome but are usually asymptomic; however, their carried pathogens may seriously threaten the public health. By understanding how the microbiome overcomes the negative effects of pathogens to maintain host health, we can develop novel solutions to control animal-mediated pathogen transmission including identification and application of beneficial microbes. Here, we analyzed the gut microbiota of 10 asymptomic captive sika deer individuals by full-length 16S rDNA sequencing. Twenty-nine known pathogens capable of infecting humans were identified, and the accumulated proportions of the identified pathogens were highly variable among individuals (2.33 to 39.94%). The relative abundances of several beneficial bacteria, including Lactobacillus and Bifidobacterium, were found to be positively correlated with the relative abundances of accumulated pathogens. Whole-genome metagenomic analysis revealed that the beneficial- and pathogenic-associated functions, such as genes involved in the synthesis of short chain fatty acids and virulence factors, were also positively correlated in the microbiome, indicating that the beneficial and pathogenic functions were maintained at a relatively balanced ratio. Furthermore, the bacteriophages that target the identified pathogens were found to be positively correlated with the pathogenic content in the microbiome. Several high-quality genomes of beneficial bacteria affiliated with Lactobacillus and Bifidobacterium and bacteriophages were recovered from the metagenomic data. Overall, this study provides novel insights into the interplay between beneficial and pathogenic content to ensure maintenance of a healthy gut microbiome, and also contributes to discovery of novel beneficial microbes and functions that control pathogens. KEY POINTS: • Certain asymptomic captive sika deer individuals harbor relatively high amounts of zoonotic pathogens. • The beneficial microbes and the beneficial functions are balanced with the pathogenic contents in the gut microbiome. • Several high-quality genomes of beneficial bacteria and bacteriophages are recovered by metagenomics.
Collapse
|
12
|
Khan S, Chousalkar KK. Functional enrichment of gut microbiome by early supplementation of Bacillus based probiotic in cage free hens: a field study. Anim Microbiome 2021; 3:50. [PMID: 34315535 PMCID: PMC8314476 DOI: 10.1186/s42523-021-00112-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/07/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The chicken gut microbiota passes through different stages of maturation; therefore, strengthening it with well characterised probiotics increases its resilience required for optimum gut health and wellbeing. However, there is limited information on the interaction of Bacillus based probiotics with gut microbial community members in cage free laying chickens both in rearing and production phases of life. In the current study, we investigated the changes in the gut microbiome of free range hens in the field after Bacillus based probiotic supplementation. RESULTS Overall, at phylum level, probiotic supplementation increased the populations of Bacteroidetes and Proteobacteria mainly at the expense of Firmicutes. The population of Bacteroidetes significantly increased during the production as compared to the rearing phase, and its higher population in the probiotic-supplemented chickens reflects the positive role of Bacillus based probiotic in gut health. Core differences in the beta diversity suggest that probiotic supplementation decreased microbial compositionality. The non-significant difference in alpha diversity between the probiotic and control chickens showed that the composition of community structure did not change. No Salmonella spp. were isolated from the probiotic supplemented birds. Egg internal quality was significantly higher, while egg production and body weight did not differ. Functional prediction data showed that probiotic supplementation enriched metabolic pathways, such as vitamin B6 metabolism, phenylpropanoid biosynthesis, monobactam biosynthesis, RNA degradation, retinol metabolism, pantothenate and CoA biosynthesis, phosphonate and phosphinate metabolism, AMPK signaling pathway, cationic antimicrobial peptide (CAMP) resistance and tyrosine metabolism. CONCLUSIONS Overall, age was the main factor affecting the composition and diversity of gut microbiota, where probiotic supplementation improved the abundance of many useful candidates in the gut microbial communities. The generated baseline data in the current study highlights the importance of the continuous use of Bacillus based probiotic for optimum gut health and production.
Collapse
Affiliation(s)
- Samiullah Khan
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, 5371, Australia
| | - Kapil K Chousalkar
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, 5371, Australia.
| |
Collapse
|