1
|
Li Y, Gu Y, Ao X. Nano selenium and plant extracts supplementation enhanced reproductive performance of parity-2 sows. Sci Rep 2025; 15:9678. [PMID: 40113837 PMCID: PMC11926131 DOI: 10.1038/s41598-025-92981-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 03/04/2025] [Indexed: 03/22/2025] Open
Abstract
To investigate the effects of nano selenium (nano-Se), curcumin (CUR), and glycyrrhiza extracts (GE) on reproductive performance, antioxidant and immune functions of primiparous sows and parity-2 sows, 54 primiparous sows (Landrace × Yorkshire) were randomly divided into three groups (18 sows per group): (1) CON group, basal diet (0.30 mg·kg-1 Se, sodium selenite); (2) CUR group, basal diet + 0.20 mg·kg-1 Se (nano-Se) + 300 mg·kg-1 CUR; (3) GE group, basal diet + 0.20 mg·kg-1 Se (nano-Se) + 500 mg·kg-1 GE. The trial lasted for approximately 180 days from day 90 of gestation of primiparous sows to parity-2 sows. There were no significant differences in reproductive performance among three groups (p > 0.05), but the litter weight gain of piglets from primiparous sows in the GE group was 16.49% higher than that in the CON group (p < 0.05). Compared with the CON group, the serum SOD and GSH-Px levels of primiparous sows in the GE group were significantly increased, and the MDA content was extremely decreased. The concentrations of serum IL-6 and IL-1β (p < 0.05) of primiparous sows in the GE group were significantly lower than those in the CON group, and the serum IL-10 and TNF-α concentrations (p < 0.05) was significantly higher. The combination of nano-Se and CUR decreased the serum IL-1β level and increased the TNF-α concentration (p < 0.05). In conclusion, the addition of nano-Se along with CUR or GE in the diet of primiparous sows significantly increased the antioxidant and immune levels in the serum of primiparous sows at parturition, enhanced their stress resistance, and thus improved growth performance of offspring piglets and reproductive performance of parity-2 sows.
Collapse
Affiliation(s)
- Yuanfeng Li
- College of Agriculture and Biology, Liaocheng University, Liaocheng, 252000, China
| | - Yan Gu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiang Ao
- Faculty of Quality Management and Inspection & Quarantine, Yibin University, Yibin, 644000, China.
| |
Collapse
|
2
|
Huang S, Li J, Ye H, Huang Z, Wu J, Liu L, Ma S, Luo H, Wei T, Liu K, Deng J, Liu D, Tan C. Increased proline intake during gestation alleviates obesity-related impaired fetal development and placental function in gilts. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2025; 20:355-365. [PMID: 40034458 PMCID: PMC11872664 DOI: 10.1016/j.aninu.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 10/25/2024] [Accepted: 10/31/2024] [Indexed: 03/05/2025]
Abstract
Maternal proline (Pro) supplementation enhances fetal survival and placental development in mice. However, the effect of Pro on fetal and placental development in gilts remains to be investigated, particularly in the context of obesity-induced impaired pregnancy. Here, we investigated the effect of dietary Pro on fetal and placental development in obese gilts. Exp.1: On day 60 of gestation, 48 gilts with similar delivery times were selected and followed up until delivery to determine the relationship between maternal obesity, litter performance, and Pro abundance in term placentae. The results showed that impaired reproductive performance was associated with body condition parameters and inadequate placental Pro availability of gilts. Exp. 2: A total of 114 gilts were then used in a 2 × 3 factorial design to investigate the interaction between body condition (factor I: normal or obese gilts) and dietary Pro levels (factor II: low [0.89%, L-Pro], medium [1.39%, M-Pro], and high [1.89%, H-Pro]) on farrowing performance and placental angiogenesis. This resulted in six treatment combinations: normal-L-Pro, obese-L-Pro, normal-M-Pro, obese-M-Pro, normal-H-Pro, and obese-H-Pro. The effective number of replicates per group was 17, 21, 19, 21, 18, and 18, respectively (1 gilt per replicate). The results showed that increasing Pro intake increased piglet birth weight (P = 0.001), litter weight (P < 0.001), placental efficiency (P = 0.036) and placental vascular density (P < 0.001), and decreased the number of mummified fetuses (P = 0.001), the rate of low-birth-weight piglets (P = 0.005), and the rate of invalid piglets (P = 0.029). Interaction effects were observed between body condition and dietary Pro levels on piglet birth weight (P = 0.046), within-litter birth weight variation (P = 0.012), and placental vascular density (P = 0.007). Moreover, the beneficial effect of Pro on farrowing performance may be related to the improvement of sirtuin 1-superoxide dismutase 2-mitochondrial reactive oxygen species axis homeostasis and angiogenesis in the placenta. Our results suggest that gestation diets need to provide adequate Pro to meet the needs of fetal and placental development, particularly in obese gilts.
Collapse
Affiliation(s)
- Shuangbo Huang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jinfeng Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Hongxuan Ye
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Zihao Huang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Junyi Wu
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Liudan Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Shuo Ma
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Hefeng Luo
- Dekon Food and Agriculture Group, Chengdu 610225, China
| | - Tanghong Wei
- Dekon Food and Agriculture Group, Chengdu 610225, China
| | - Kai Liu
- Guangdong Foodstuffs IMP&EXP (Group) Corp, Guangzhou 510642, China
| | - Jinping Deng
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Dingfa Liu
- Guangdong Foodstuffs IMP&EXP (Group) Corp, Guangzhou 510642, China
| | - Chengquan Tan
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
3
|
Long DW, Long BD, Nawaratna GI, Wu G. Oral Administration of L-Arginine Improves the Growth and Survival of Sow-Reared Intrauterine Growth-Restricted Piglets. Animals (Basel) 2025; 15:550. [PMID: 40003032 PMCID: PMC11851912 DOI: 10.3390/ani15040550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Neonatal piglets with intrauterine growth restriction (IUGR) exhibit reduced rates of growth and survival. The present study tested the hypothesis that L-arginine supplementation can mitigate this problem. One hundred and twelve (112) IUGR piglets (with a mean birth weight of 0.84 kg) from 28 sows (four IUGR piglets/sow) were assigned randomly into one of four groups. Piglets were nursed by sows and orally administered 0, 0.1, 0.2, or 0.4 g L-arginine (in the form of L-arginine-HCl) per kg body weight (BW) twice daily between 0 and 14 days of age. The total doses of L-arginine were 0, 0.2, 0.4, or 0.8 g/kg BW/day. Appropriate amounts of L-alanine were added to L-arginine solutions so that all groups of piglets received the same amount of nitrogen. Piglets were weighed on days 0, 7, and 14 of age. On day 14, blood samples (5 mL) were obtained from the jugular vein of piglets at 1 h after suckling, and their milk consumption was measured over a 10-h period using the weigh-suckle-weigh technique. Milk intake did not differ (p > 0.05) among the four groups of piglets. Oral administration of 0.4 g L-arginine/kg BW/day increased (p < 0.05) the circulating levels of arginine, creatine, and anabolic hormones (insulin, growth hormone, and insulin-like growth factor-I), but decreased (p < 0.05) plasma concentrations of ammonia and cortisol (a catabolic hormone). Compared to the control group, IUGR piglets administered 0.2 and 0.4 g L-arginine/kg BW/day increased (p < 0.05) weight gain by 19% and 31%, respectively. Growth did not differ (p > 0.05) between the control and 0.8 g L-arginine/kg BW/day groups. The survival rates of IUGR piglets were 50%, 75%, 89%, and 89%, respectively, for the 0, 0.2, 0.4, and 0.8 g L-arginine/kg BW/day groups. Collectively, these results indicate that the growth and survival of IUGR piglets can be improved through L-arginine supplementation.
Collapse
Affiliation(s)
| | | | | | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
4
|
Bakoev S, Getmantseva L, Kolosova M, Bakoev F, Kolosov A, Romanets E, Shevtsova V, Romanets T, Kolosov Y, Usatov A. Identifying Significant SNPs of the Total Number of Piglets Born and Their Relationship with Leg Bumps in Pigs. BIOLOGY 2024; 13:1034. [PMID: 39765701 PMCID: PMC11673605 DOI: 10.3390/biology13121034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/26/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025]
Abstract
The aim of this study was to identify genetic variants and pathways associated with the total number of piglets born and to investigate the potential negative consequences of the intensive selection for reproductive traits, particularly the formation of bumps on the legs of pigs. We used genome-wide association analysis and methods for identifying selection signatures. As a result, 47 SNPs were identified, localized in genes that play a significant role during sow pregnancy. These genes are involved in follicle growth and development (SGC), early embryonic development (CCDC3, LRRC8C, LRFN3, TNFRSF19), endometrial receptivity and implantation (NEBL), placentation, and embryonic development (ESRRG, GHRHR, TUSC3, NBAS). Several genes are associated with disorders of the nervous system and brain development (BCL11B, CDNF, ULK4, CC2D2A, KCNK2). Additionally, six SNPs are associated with the formation of bumps on the legs of pigs. These variants include intronic variants in the CCDC3, ULK4, and MINDY4 genes, as well as intergenic variants, regulatory region variants, and variants in the exons of non-coding transcripts. The results suggest important biological pathways and genetic variants associated with sow fertility and highlight the potential negative impacts on the health and physical condition of pigs.
Collapse
Affiliation(s)
- Siroj Bakoev
- Biotechnological Faculty, Don State Agrarian University, Persianovsky 346493, Russia; (S.B.); (M.K.); (F.B.); (E.R.); (T.R.); (Y.K.)
| | - Lyubov Getmantseva
- Biotechnological Faculty, Don State Agrarian University, Persianovsky 346493, Russia; (S.B.); (M.K.); (F.B.); (E.R.); (T.R.); (Y.K.)
| | - Maria Kolosova
- Biotechnological Faculty, Don State Agrarian University, Persianovsky 346493, Russia; (S.B.); (M.K.); (F.B.); (E.R.); (T.R.); (Y.K.)
| | - Faridun Bakoev
- Biotechnological Faculty, Don State Agrarian University, Persianovsky 346493, Russia; (S.B.); (M.K.); (F.B.); (E.R.); (T.R.); (Y.K.)
| | - Anatoly Kolosov
- All Russian Research Institute of Animal Breeding, Lesnye Polyany 141212, Russia;
| | - Elena Romanets
- Biotechnological Faculty, Don State Agrarian University, Persianovsky 346493, Russia; (S.B.); (M.K.); (F.B.); (E.R.); (T.R.); (Y.K.)
| | - Varvara Shevtsova
- Southern Scientific Center Russian Academy of Sciences, Rostov-on-Don 344006, Russia;
| | - Timofey Romanets
- Biotechnological Faculty, Don State Agrarian University, Persianovsky 346493, Russia; (S.B.); (M.K.); (F.B.); (E.R.); (T.R.); (Y.K.)
| | - Yury Kolosov
- Biotechnological Faculty, Don State Agrarian University, Persianovsky 346493, Russia; (S.B.); (M.K.); (F.B.); (E.R.); (T.R.); (Y.K.)
| | - Alexander Usatov
- Academy of Biology and Biotechnology Named After D.I. Ivanovsky, Southern Federal University, Rostov-on-Don 344006, Russia;
| |
Collapse
|
5
|
Phomvisith O, Muroya S, Otomaru K, Oshima K, Oshima I, Nishino D, Haginouchi T, Gotoh T. Maternal Undernutrition Affects Fetal Thymus DNA Methylation, Gene Expression, and, Thereby, Metabolism and Immunopoiesis in Wagyu (Japanese Black) Cattle. Int J Mol Sci 2024; 25:9242. [PMID: 39273192 PMCID: PMC11395129 DOI: 10.3390/ijms25179242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
We aimed to determine the effects of maternal nutrient restriction (MNR) on the DNA methylation and gene expression patterns associated with metabolism and immunopoiesis in the thymuses of fetal Wagyu cattle. Pregnant cows were allocated to two groups: a low-nutrition (LN; 60% nutritional requirement; n = 5) and a high-nutrition (HN; 120% nutritional requirement, n = 6) group, until 8.5 months of gestation. Whole-genome bisulfite sequencing (WGBS) and RNA sequencing were used to analyze DNA methylation and gene expression, while capillary electrophoresis-Fourier transform mass spectrometry assessed the metabolome. WGBS identified 4566 hypomethylated and 4303 hypermethylated genes in the LN group, with the intergenic regions most frequently being methylated. Pathway analysis linked hypoDMGs to Ras signaling, while hyperDMGs were associated with Hippo signaling. RNA sequencing found 94 differentially expressed genes (66 upregulated, 28 downregulated) in the LN group. The upregulated genes were tied to metabolic pathways and oxidative phosphorylation; the downregulated genes were linked to natural killer cell cytotoxicity. Key overlapping genes (GRIA1, CACNA1D, SCL25A4) were involved in cAMP signaling. The metabolomic analysis indicated an altered amino acid metabolism in the MNR fetuses. These findings suggest that MNR affects DNA methylation, gene expression, and the amino acid metabolism, impacting immune system regulation during fetal thymus development in Wagyu cattle.
Collapse
Affiliation(s)
- Ouanh Phomvisith
- Field Science Center for Northern Biosphere, Hokkaido University, N11W10, Kita, Sapporo 060-0811, Hokkaido, Japan
| | - Susumu Muroya
- Department of Animal Science, Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-8580, Kagoshima, Japan
| | - Konosuke Otomaru
- Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-8580, Kagoshima, Japan
| | - Kazunaga Oshima
- Division of Year-Round Grazing Research, NARO Western Region Agricultural Research Center, 60 Yoshinaga, Ohda 694-0013, Shimane, Japan
| | - Ichiro Oshima
- Department of Animal Science, Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-8580, Kagoshima, Japan
| | - Daichi Nishino
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Fukuoka, Japan
| | - Taketo Haginouchi
- Field Science Center for Northern Biosphere, Hokkaido University, N11W10, Kita, Sapporo 060-0811, Hokkaido, Japan
| | - Takafumi Gotoh
- Field Science Center for Northern Biosphere, Hokkaido University, N11W10, Kita, Sapporo 060-0811, Hokkaido, Japan
| |
Collapse
|
6
|
Zhou R, Zhe L, Lai SS, Wen HM, Hu L, Zhang XL, Zhuo Y, Xu SY, Lin Y, Feng B, Che LQ, Wu D, Fang ZF. Dietary sodium sulphate supplementation during mid-to-late gestation improves placental angiogenesis, bile acid metabolism, and serum amino acid concentrations of sows. Animal 2024; 18:101237. [PMID: 39053158 DOI: 10.1016/j.animal.2024.101237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Sulphate plays a vital role in the growth and development of the foetus. Sodium sulphate (Na2SO4) is utilised as a dietary protein nutrient factor and helps replenish sulphur elements in livestock and poultry. Therefore, this study aimed to investigate the effects of Na2SO4 supplementation in mid to late pregnancy on bile acid metabolism, amino acid metabolism, placental vascular development and antioxidant capacity of sows. At day 1 of gestation (G1), a total of twenty-six primiparous sows were carefully chosen and randomised into two groups: (1) control group, (2) Na2SO4 group (1.40 g/kg). Blood samples and placentas from sows were collected to measure biochemistry parameters, antioxidant indexes, placental vascular density, and indicators related to bile acid metabolism and amino acid concentrations, respectively. We found that dietary supplementation with Na2SO4 had a tendency for a reduction of incidence of stillborn at farrowing. Further observation showed that sows supplemented with Na2SO4 had decreased total bile acid level in cord blood, and increased placental gene expression of sulphotransferase and organic anion transport peptide. Na2SO4 supplementation increased catalase and total superoxide dismutase activity in cord blood, decreased placental malondialdehyde content, and enhanced placental protein expression of Sirtuin 1. Moreover, Na2SO4 consumption resulted in increased vascular density of placental stroma and elevated amino acid levels in sows and cord blood. Furthermore, maternal Na2SO4 consumption reduced serum urea concentrations of sows and umbilical cord blood at G114. In addition, dietary supplementation with Na2SO4 activated the protein expression of the placental mechanistic target of rapamycin complex 1. Collectively, these findings indicated that maternal supplementation with Na2SO4 during mid-to-late gestation elevated foetal survival via improving placental angiogenesis, bile acid metabolism and amino acid utilisation.
Collapse
Affiliation(s)
- R Zhou
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, People's Republic of China
| | - L Zhe
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, People's Republic of China
| | - S S Lai
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, People's Republic of China
| | - H M Wen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, People's Republic of China
| | - L Hu
- Key Laboratory of Agricultural Product Processing and Nutrition Health, Ministry of Agriculture and Rural Affairs, College of Food Science, Sichuan Agricultural University, Ya'an 625014, People's Republic of China
| | - X L Zhang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, People's Republic of China
| | - Y Zhuo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, People's Republic of China
| | - S Y Xu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, People's Republic of China
| | - Y Lin
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, People's Republic of China
| | - B Feng
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, People's Republic of China
| | - L Q Che
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, People's Republic of China
| | - D Wu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, People's Republic of China
| | - Z F Fang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, People's Republic of China; Key Laboratory of Agricultural Product Processing and Nutrition Health, Ministry of Agriculture and Rural Affairs, College of Food Science, Sichuan Agricultural University, Ya'an 625014, People's Republic of China.
| |
Collapse
|
7
|
Yang Y, Hou G, Ji F, Zhou H, Lv R, Hu C. Maternal Supplementation with Ornithine Promotes Placental Angiogenesis and Improves Intestinal Development of Suckling Piglets. Animals (Basel) 2024; 14:689. [PMID: 38473074 DOI: 10.3390/ani14050689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
The blood vessels of the placenta are crucial for fetal growth. Here, lower vessel density and ornithine (Orn) content were observed in placentae for low-birth-weight fetuses versus normal-birth-weight fetuses at day 75 of gestation. Furthermore, the Orn content in placentae decreased from day 75 to 110 of gestation. To investigate the role of Orn in placental angiogenesis, 48 gilts (Bama pig) were allocated into four groups. The gilts in the control group were fed a basal diet (CON group), while those in the experimental groups were fed a basal diet supplemented with 0.05% Orn (0.05% Orn group), 0.10% Orn (0.10% Orn group), and 0.15% Orn (0.15% Orn group), respectively. The results showed that 0.15% Orn and 0.10% Orn groups exhibited increased birth weight of piglets compared with the CON group. Moreover, the 0.15% Orn group was higher than the CON group in the blood vessel densities of placenta. Mechanistically, Orn facilitated placental angiogenesis by regulating vascular endothelial growth factor-A (VEGF-A). Furthermore, maternal supplementation with 0.15% Orn during gestation increased the jejunal and ileal villi height and the concentrations of colonic propionate and butyrate in suckling piglets. Collectively, these results showed that maternal supplementation with Orn promotes placental angiogenesis and improves intestinal development of suckling piglets.
Collapse
Affiliation(s)
- Yun Yang
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Guanyu Hou
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Fengjie Ji
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Hanlin Zhou
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Renlong Lv
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Chengjun Hu
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| |
Collapse
|
8
|
Huang Z, Yang Y, Ma S, Li J, Ye H, Chen Q, Li Z, Deng J, Tan C. KLF4 down-regulation underlies placental angiogenesis impairment induced by maternal glucose intolerance in late pregnancy. J Nutr Biochem 2024; 124:109509. [PMID: 37907170 DOI: 10.1016/j.jnutbio.2023.109509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/06/2023] [Accepted: 10/25/2023] [Indexed: 11/02/2023]
Abstract
Maternal glucose intolerance in late pregnancy can easily impair pregnancy outcomes and placental development. The impairment of placental angiogenesis is closely related to the occurrence of glucose intolerance during pregnancy, but the mechanism remains largely unknown. In this study, the pregnant mouse model of maternal high-fat diet and endothelial injury model of porcine vascular endothelial cells (PVECs) was used to investigate the effect of glucose intolerance on pregnancy outcomes and placental development. Feeding pregnant mice, a high-fat diet was shown to induce glucose intolerance in late pregnancy, and significantly increase the incidence of resorbed fetuses. Moreover, a decrease was observed in the proportion of blood sinusoids area and the expression level of CD31 in placenta, indicating that placental vascular development was impaired by high-fat diet. Considering that hyperglycemia is an important symptom of glucose intolerance, we exposed PVECs to high glucose (50 mM), which verified the negative effects of high glucose on endothelial function. Bioinformatics analysis further emphasized that high glucose exposure could significantly affect the angiogenesis-related functions of PVECs and predicted that Krüppel-like factor 4 (KLF4) may be a key mediator of these functional changes. The subsequent regulation of KLF4 expression confirmed that the inhibition of KLF4 expression was an important reason why high glucose impaired the endothelial function and angiogenesis of PVECs. These results indicate that high-fat diet can aggravate maternal glucose intolerance and damage pregnancy outcome and placental angiogenesis, and that regulating the expression of KLF4 may be a potential therapeutic strategy for maintaining normal placental angiogenesis.
Collapse
Affiliation(s)
- Zihao Huang
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yunyu Yang
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China; Department of Animal Science, Guangdong Maoming Agriculture & Forestry Technical College, Maoming, China
| | - Shuo Ma
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jinfeng Li
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Hongxuan Ye
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qiling Chen
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhishan Li
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jinping Deng
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.
| | - Chengquan Tan
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
9
|
Zhang L, Huang S, Ma K, Chen Y, Wei T, Ye H, Wu J, Liu L, Deng J, Luo H, Tan C. Retinoic Acid-PPARα Mediates β-Carotene Resistance to Placental Dysfunction Induced by Deoxynivalenol. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18696-18708. [PMID: 38012857 DOI: 10.1021/acs.jafc.3c06647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Deoxynivalenol (DON), one of the most polluted mycotoxins in the environment and food, has been proven to have strong embryonic and reproductive toxicities. However, the effects of DON on placental impairment and effective interventions are still unclear. This study investigated the effect of β-carotene on placental functional impairment and its underlying molecular mechanism under DON exposure. Adverse pregnancy outcomes were caused by intraperitoneal injection of DON from 13.5 to 15.5 days of gestation in mice, resulting in higher enrichment of DON in placenta than in other tissue samples. Interestingly, 0.1% β-carotene dietary supplementation could significantly alleviate DON-induced pregnancy outcomes. Additionally, in vivo and in vitro placental barrier models demonstrated the association of DON-induced placental function impairment with placental permeability barrier disruption, angiogenesis impairment, and oxidative stress induction. Moreover, β-carotene regulated DON-induced placental toxicity by activating the expressions of claudin 1, zonula occludens-1, and vascular endothelial growth factor-A through retinoic acid-peroxisome proliferator-activated receptor α signaling.
Collapse
Affiliation(s)
- Longmiao Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Shuangbo Huang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Kaidi Ma
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yiling Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Tanghong Wei
- Dekon Food and Agriculture Group, Chengdu, Sichuan 610225, China
| | - Hongxuan Ye
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Junyi Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Liudan Liu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jinping Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Hefeng Luo
- Dekon Food and Agriculture Group, Chengdu, Sichuan 610225, China
| | - Chengquan Tan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| |
Collapse
|
10
|
Zhang Y, Lv J, Fan YJ, Tao L, Xu J, Tang W, Sun N, Zhao LL, Xu DX, Huang Y. Evaluating the Effect of Gestational Exposure to Perfluorohexane Sulfonate on Placental Development in Mice Combining Alternative Splicing and Gene Expression Analyses. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:117011. [PMID: 37995155 PMCID: PMC10666825 DOI: 10.1289/ehp13217] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 10/26/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Perfluorohexane sulfonate (PFHxS) is a frequently detected per- and polyfluoroalkyl substance in most populations, including in individuals who are pregnant, a period critical for early life development. Despite epidemiological evidence of exposure, developmental toxicity, particularly at realistic human exposures, remains understudied. OBJECTIVES We evaluated the effect of gestational exposure to human-relevant body burden of PFHxS on fetal and placental development and explored mechanisms of action combining alternative splicing (AS) and gene expression (GE) analyses. METHODS Pregnant ICR mice were exposed to 0, 0.03, and 0.3 μ g / kg / day from gestational day 7 to day 17 via oral gavage. Upon euthanasia, PFHxS distribution was measured using liquid chromatography-tandem mass spectrometry. Maternal and fetal phenotypes were recorded, and histopathology was examined for placenta impairment. Multiomics was adopted by combining AS and GE analyses to unveil disruptions in mRNA quality and quantity. The key metabolite transporters were validated by quantitative real-time PCR (qRT-PCR) for quantification and three-dimensional (3D) structural simulation by AlphaFold2. Targeted metabolomics based on liquid chromatography-tandem mass spectrometry was used to detect amino acid and amides levels in the placenta. RESULTS Pups developmentally exposed to PFHxS exhibited signs of intrauterine growth restriction (IUGR), characterized by smaller fetal weight and body length (p < 0.01 ) compared to control mice. PFHxS concentration in maternal plasma was 5.01 ± 0.54 ng / mL . PFHxS trans-placenta distribution suggested dose-dependent transfer through placental barrier. Histopathology of placenta of exposed dams showed placental dysplasia, manifested with an attenuated labyrinthine layer area and deescalated blood sinus counts and placental vascular development index marker CD34. Combined GE and AS analyses pinpointed differences in genes associated with key biological processes of placental development, proliferation, metabolism, and transport in placenta of exposed dams compared to that of control dams. Further detection of placental key transporter gene expression, protein structure simulation, and amino acid and amide metabolites levels suggested that PFHxS exposure during pregnancy led to impairment of placental amino acid transportation. DISCUSSION The findings from this study suggest that exposure to human-relevant very-low-dose PFHxS during pregnancy in mice caused IUGR, likely via downregulating of placental amino acid transporters, thereby impairing placental amino acid transportation, resulting in impairment of placental development. Our findings confirm epidemiological findings and call for future attention on the health risk of this persistent yet ubiquitous chemical in the early developmental stage and provide a new approach for understanding gene expression from both quantitative and qualitative omics approaches in toxicological studies. https://doi.org/10.1289/EHP13217.
Collapse
Affiliation(s)
- Yihao Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Jia Lv
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Yi-Jun Fan
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
- Department of Gynecology and Obstetrics, Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Lin Tao
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Jingjing Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Weitian Tang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Nan Sun
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Ling-Li Zhao
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the PRC, Hefei, China
| | - Yichao Huang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the PRC, Hefei, China
| |
Collapse
|
11
|
Zhang C, Wu Z, Hu G, Zhang Y, Ao Z. Exploring characteristics of placental transcriptome and cord serum metabolome associated with low birth weight in Kele pigs. Trop Anim Health Prod 2023; 55:340. [PMID: 37770796 DOI: 10.1007/s11250-023-03733-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 09/12/2023] [Indexed: 09/30/2023]
Abstract
The neonate with low birth weight (LBW) resulted from intrauterine growth retardation (IUGR) exists a substantial risk of postpartum death. Placental insufficiency is responsible for inadequate fetal growth; however, the pathological mechanisms of placental dysfunction-induced IUGR in pigs remain unclear. In this study, the characteristics of placental morphology, placental transcriptome, and cord serum metabolome were explored between the Kele piglets with LBW and the ones with normal birth weight (NBW). Results showed that LBW was a common occurrence in Kele piglets. The LBW placentas showed inferior villus development and lower villi density compared to NBW placentas. There were 1024 differentially expressed genes (DEGs) identified by transcriptome analysis between the LBW and NBW placentas, of which 218 and 806 genes were up- and down-regulated in the LBW placentas, respectively. PPI network analysis showed that ITGB2, CD4, IL6, ITGB3, LCK, RAC2, CD8A, JAK3, TYROBP, and CXCR4 were hub genes in all DEGs. From GO and KEGG enrichment analysis, DEGs were primarily enriched in immunological response, cell adhesion, immune response, cytokine-cytokine receptor interaction, and PI3K-Akt signaling pathway. By using metabolomic analysis, a total of 115 differential metabolites in the cord serum of LBW and NBW piglets were found, mostly linked to amino acid metabolism and sphingolipid metabolism. In comparison to NBW piglets, LBW piglets had lower levels of arginine, isoleucine, and aspartic acid in the cord. Taken together, these data revealed dysplasia of the placental villus, insufficient supply of nutrients, and abnormal immune function of the placenta may be associated with the occurrence and development of LBW in Kele pigs.
Collapse
Affiliation(s)
- Caizai Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, 550025, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Zhimin Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, 550025, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Guangling Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, 550025, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Yiyu Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, 550025, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Zheng Ao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, 550025, China.
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
12
|
Guzewska MM, Myszczynski K, Heifetz Y, Kaczmarek MM. Embryonic signals mediate extracellular vesicle biogenesis and trafficking at the embryo-maternal interface. Cell Commun Signal 2023; 21:210. [PMID: 37596609 PMCID: PMC10436626 DOI: 10.1186/s12964-023-01221-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/11/2023] [Indexed: 08/20/2023] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) are membrane-coated nanoparticles secreted by almost all cell types in living organisms. EVs, as paracrine mediators, are involved in intercellular communication, immune response, and several reproductive events, including the maintenance of pregnancy. Using a domestic animal model (Sus scrofa) with an epitheliochorial, superficial type of placentation, we focused on EV biogenesis pathway at the embryo-maternal interface, when the embryonic signaling occurs for maternal recognition and the maintenance of pregnancy. RESULTS Transmission electron microscopy was used during early pregnancy to visualize EVs and apocrine and/or merocrine pathways of secretion. Immunofluorescent staining localized proteins responsible for EV biogenesis and cell polarization at the embryo-maternal interface. The expression profiles of genes involved in biogenesis and the secretion of EVs pointed to the possible modulation of endometrial expression by embryonic signals. Further in vitro studies showed that factors of embryonic origin can regulate the expression of the ESCRT-II complex and EV trafficking within endometrial luminal epithelial cells. Moreover, miRNA-mediated rapid negative regulation of gene expression was abolished by delivered embryonic signals. CONCLUSIONS Our findings demonstrated that embryonic signals are potent modulators of ESCRT-dependent EV-mediated secretory activity of the endometrium during the critical stages of early pregnancy. Video Abstract.
Collapse
Affiliation(s)
- Maria M Guzewska
- Department of Hormonal Action Mechanisms, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Kamil Myszczynski
- Molecular Biology Laboratory, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Yael Heifetz
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Monika M Kaczmarek
- Department of Hormonal Action Mechanisms, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland.
- Molecular Biology Laboratory, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland.
| |
Collapse
|
13
|
Placental Malfunction, Fetal Survival and Development Caused by Sow Metabolic Disorder: The Impact of Maternal Oxidative Stress. Antioxidants (Basel) 2023; 12:antiox12020360. [PMID: 36829919 PMCID: PMC9951909 DOI: 10.3390/antiox12020360] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The energy and metabolic state of sows will alter considerably over different phases of gestation. Maternal metabolism increases dramatically, particularly in late pregnancy. This is accompanied by the development of an increase in oxidative stress, which has a considerable negative effect on the maternal and the placenta. As the only link between the maternal and the fetus, the placenta is critical for the maternal to deliver nutrients to the fetus and for the fetus' survival and development. This review aimed to clarify the changes in energy and metabolism in sows during different pregnancy periods, as well as the impact of maternal oxidative stress on the placenta, which affects the fetus' survival and development.
Collapse
|
14
|
Wu Z, Nie J, Wu D, Huang S, Chen J, Liang H, Hao X, Feng L, Luo H, Tan C. Dietary adenosine supplementation improves placental angiogenesis in IUGR piglets by up-regulating adenosine A2a receptor. ANIMAL NUTRITION 2023; 13:282-288. [PMID: 37168450 PMCID: PMC10165186 DOI: 10.1016/j.aninu.2023.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 12/09/2022] [Accepted: 02/15/2023] [Indexed: 02/24/2023]
Abstract
Abnormal placental angiogenesis is associated with the occurrence of intrauterine growth restriction (IUGR) in piglets, and effective treatment strategies against this occurrence remain to be explored. Adenosine has been reported to play an important role in angiogenesis, but its role in placental angiogenesis is still unknown. Here, we investigated the effect of dietary adenosine supplementation on IUGR occurrence in piglets by analyzing the role of adenosine in placental angiogenesis for Normal and IUGR piglets. Specifically, 88 sows were allotted to 2 treatments (n = 44) and fed a basal diet supplemented with 0% or 0.1% of adenosine from day 65 of gestation until farrowing, followed by collecting the placental samples of Normal and IUGR piglets, and recording their characteristics. The results showed that adenosine supplementation increased the mean birth weight of piglets (P < 0.05) and placental efficiency (P < 0.05), while decreasing the IUGR piglet rate (P < 0.05). Expectedly, the placenta for IUGR neonates showed a down-regulated vascular density (P < 0.05) and angiogenesis as evidenced by the expression level of vascular cell adhesion molecule-1 (VCAM1) (P < 0.05). Notably, dietary adenosine supplementation promoted angiogenesis (P < 0.05) both in the Normal and IUGR placenta. More importantly, the expression level of adenosine A2a receptor (ADORA2A) was lower (P < 0.05) in the IUGR placenta than in Normal placenta, whereas adenosine treatment could significantly increase ADORA2A expression, and also had an interaction effect between factors IUGR and Ado. Collectively, placentae for IUGR piglets showed impaired angiogenesis and down-regulated expression level of ADORA2A, while dietary adenosine supplementation could activate ADORA2A expression, improve the placental angiogenesis, and ultimately decrease the occurrence of IUGR in piglets.
Collapse
Affiliation(s)
- Zifang Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jiawei Nie
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Deyuan Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Shuangbo Huang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jianzhao Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Huajin Liang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xiangyu Hao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Li Feng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Hefeng Luo
- Dekon Food and Agriculture Group, Chengdu, China
- Corresponding authors.
| | - Chengquan Tan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
- Corresponding authors.
| |
Collapse
|
15
|
Wu DY, Feng L, Hao XY, Huang SB, Wu ZF, Ma S, Yin YL, Tan CQ. Effects of dietary supplementation of gestating sows with adenosine 5 '-monophosphate or adenosine on placental angiogenesis and vitality of their offspring. J Anim Sci 2022; 100:6628671. [PMID: 35781577 DOI: 10.1093/jas/skac237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/01/2022] [Indexed: 11/12/2022] Open
Abstract
Our previous study found that dietary nucleotide supplementation, including adenosine 5 '-monophosphate (AMP), could increase AMP content in sow milk and promote piglet growth, but its effects on placental efficiency and piglet vitality remains unknown. This experiment aimed to investigate the effects of dietary AMP or its metabolite adenosine (ADO) supplementation on sow reproductive performance and placental angiogenesis. A total of 135 sows with a similar farrowing time were blocked by backfat and body weight (BW) at day 65 of gestation, and assigned to 1 of 3 dietary treatment groups (n = 45 per treatment): basal diet, basal diet supplemented with 0.1% AMP, or 0.1% ADO, respectively. Placental analysis and the characteristics of sows and piglets unveiled that compared with control (CON) group, AMP or ADO supplementation could improve sow placental efficiency (P<0.05) and newborn piglet vitality (P<0.05), increase piglet birth weight (P<0.05), and reduce stillbirth rate (P<0.05). More importantly, AMP or ADO supplementation could increase the contents of AMP, ADO, and their metabolites in placentae (P<0.05). Meanwhile, AMP or ADO supplementation could also increase placental vascular density (P<0.05) and the expression of vascular endothelial growth factor A (P<0.05), as well as promote the migration and tube formation of porcine iliac artery endothelial cells (P<0.05). Overall, maternal dietary AMP or ADO supplementation could increase their contents in the placenta, thereby improving placental angiogenesis and neonatal piglet vitality.
Collapse
Affiliation(s)
- D Y Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - L Feng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - X Y Hao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - S B Huang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Z F Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - S Ma
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Y L Yin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.,National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - C Q Tan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| |
Collapse
|
16
|
Vasquez R, Oh JK, Song JH, Kang DK. Gut microbiome-produced metabolites in pigs: a review on their biological functions and the influence of probiotics. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2022; 64:671-695. [PMID: 35969697 PMCID: PMC9353353 DOI: 10.5187/jast.2022.e58] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/23/2022] [Accepted: 07/04/2022] [Indexed: 11/20/2022]
Abstract
The gastrointestinal tract is a complex ecosystem that contains a large number of microorganisms with different metabolic capacities. Modulation of the gut microbiome can improve the growth and promote health in pigs. Crosstalk between the host, diet, and the gut microbiome can influence the health of the host, potentially through the production of several metabolites with various functions. Short-chain and branched-chain fatty acids, secondary bile acids, polyamines, indoles, and phenolic compounds are metabolites produced by the gut microbiome. The gut microbiome can also produce neurotransmitters (such as γ-aminobutyric acid, catecholamines, and serotonin), their precursors, and vitamins. Several studies in pigs have demonstrated the importance of the gut microbiome and its metabolites in improving growth performance and feed efficiency, alleviating stress, and providing protection from pathogens. The use of probiotics is one of the strategies employed to target the gut microbiome of pigs. Promising results have been published on the use of probiotics in optimizing pig production. This review focuses on the role of gut microbiome-derived metabolites in the performance of pigs and the effects of probiotics on altering the levels of these metabolites.
Collapse
Affiliation(s)
- Robie Vasquez
- Department of Animal Resources Science,
Dankook University, Cheonan 31116, Korea
| | - Ju Kyoung Oh
- Department of Animal Resources Science,
Dankook University, Cheonan 31116, Korea
| | - Ji Hoon Song
- Department of Animal Resources Science,
Dankook University, Cheonan 31116, Korea
| | - Dae-Kyung Kang
- Department of Animal Resources Science,
Dankook University, Cheonan 31116, Korea
| |
Collapse
|