1
|
Robles-Jimenez LE, Cardoso-Gutierrez E, Pino-Moreno JM, Renna M, Gasco L, Ghavipanje N, Dominguez-Vara IA, Gonzalez-Ronquillo M. Yellow mealworm as an alternative to conventional plant- and animal-based protein sources in feedlot lambs' diets: Implications on blood parameters, growth and slaughter performance, carcass traits, and meat quality. Meat Sci 2025; 225:109828. [PMID: 40245590 DOI: 10.1016/j.meatsci.2025.109828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 04/06/2025] [Accepted: 04/09/2025] [Indexed: 04/19/2025]
Abstract
This study evaluates the effects of Tenebrio molitor meal (TMM) as an alternative to conventional plant-based (soybean meal, SBM) and animal-based (fishmeal, FM) protein sources on blood parameters, growth and slaughter performance, carcass traits, and meat quality of feedlot lambs. A total of 24 Suffolk lambs [3 months of age, 21.4 ± 1.08 kg body weight (BW)] were allocated for 60 days to three treatments (8 lambs per treatment) in a completely randomized design, as follows: 1- SBM at 150 g/kg dry matter (DM)], 2- FM at 50 g/kg DM, and 3- TMM at 60 g/kg DM. Feed intake, BW, and blood samples were collected on days 0, 20, 40, and 60. At the end of the trial, the lambs were slaughtered for carcass evaluation and meat quality assessment. The average daily gain was higher for SBM-fed than for TMM-fed lambs (0.25 and 0.21 kg/d; P < 0.001). Plasma levels of creatinine were higher in FM-fed when compared to SBM-fed lambs, while TMM-fed lambs showed intermediate values (88.72, 85.69 and 87.57 μmol/L, respectively; P < 0.05). The hot and cold carcass weights (15.99 and 15.52 kg vs 18.49 and 18.03 kg) and yields (44.31 and 43.02 % vs 46.03 and 44.87 %) were lower in the TMM group compared with the SBM group (P < 0.05). The dietary treatment had no effect (P > 0.05) on meat pH, color, texture, water loss and contents of fat, protein, and moisture. Further research should evaluate optimal inclusion levels of TMM in combination with conventional protein sources to avoid negative economic implications.
Collapse
Affiliation(s)
- Lizbeth Esmeralda Robles-Jimenez
- Universidad Autónoma del Estado de México, Facultad de Medicina Veterinaria y Zootecnia, Instituto Literario 100, Toluca, Estado de México 50000, Mexico.
| | - Eduardo Cardoso-Gutierrez
- Universidad Autónoma del Estado de México, Facultad de Medicina Veterinaria y Zootecnia, Instituto Literario 100, Toluca, Estado de México 50000, Mexico.
| | - José Manuel Pino-Moreno
- Universidad Nacional Autonoma del Mexico, Instituto de Biologia, Departamento de Zoologia, Lab.de Entomologia. Cto. Zona Deportiva S/N, C.U., Coyoacán, 04510 Ciudad de México, CDMX, Mexico.
| | - Manuela Renna
- University of Turin, Department of Veterinary Sciences, L.go Braccini 2, 10095 Grugliasco, TO, Italy.
| | - Laura Gasco
- University of Turin, Department of Agricultural, Forest and Food Sciences, L.go Braccini 2, 10095 Grugliasco, TO, Italy.
| | - Navid Ghavipanje
- University of Birjand, Department of Animal Science, Faculty of Agriculture, Birjand 97175-331, South Khorasan, Iran.
| | - Ignacio Arturo Dominguez-Vara
- Universidad Autónoma del Estado de México, Facultad de Medicina Veterinaria y Zootecnia, Instituto Literario 100, Toluca, Estado de México 50000, Mexico.
| | - Manuel Gonzalez-Ronquillo
- Universidad Autónoma del Estado de México, Facultad de Medicina Veterinaria y Zootecnia, Instituto Literario 100, Toluca, Estado de México 50000, Mexico.
| |
Collapse
|
2
|
Nielsen FK, Hansen RJ, Muurmann AT, Bahrndorff S, Eriksen NT. Metabolic Performance of Mealworms and Black Soldier Fly Larvae Reared on Food and Agricultural Waste and By-Products. Animals (Basel) 2025; 15:233. [PMID: 39858233 PMCID: PMC11759143 DOI: 10.3390/ani15020233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/02/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Mealworms and black soldier fly (BSF) larvae are two of the most reared insects at an industrial scale. Both may feed on by-products from agricultural and food industries. Feed efficiency is one of the most important aspects of such processes and varies between species and feed substrates and depends on the metabolic performance of the larvae. Compared to each other, both species may hold advantageous capabilities affecting their feed efficiency, likely depending on the feed substrate. We reared mealworms and BSF larvae on a diverse selection of by-products from agricultural and food industries, quantified major metabolic rates across their life spans, and compared their performances. The type of feed substrates had stronger effects on the growth of mealworms than on black soldier fly larvae. Generally, BSF larvae were advantageous in terms of the highest maximal specific growth rate (0.50-0.77 day-1) and feed assimilation rate (0.81-1.16 day-1) and shortest development period (23-25 days) but disadvantageous in terms of metabolic maintenance cost (0.07-0.21 day-1). In mealworms, the maximal specific growth rates were 0.02-0.11 day-1, the highest feed assimilation rates were 0.16-0.37 day-1, and the development period was at least 65-93 days, while maintenance was only 0.02-0.05 day-1. In contrast to the BSF larvae, the specific maintenance rate was weight dependent in the mealworms and lowest in the largest individuals. The combined outcome of these metabolic rates resulted in an average carbon net growth efficiency, NGE*avg of 0.16-0.40 in mealworms and 0.33-0.56 in BSF larvae across their life span. It thus seems that BSF larvae are more versatile and somewhat more efficient at converting diverse feed substrates into growth than mealworms. Differences in NGE*avg affected the substrate conversion efficiencies (i.e., the ratio of the weight gain of the larvae to the reduced weight of feed substrates) and may thus impact the overall outcome of insect farming.
Collapse
Affiliation(s)
| | | | | | | | - Niels Thomas Eriksen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, DK-9220 Aalborg, Denmark; (F.K.N.); (R.J.H.); (A.T.M.); (S.B.)
| |
Collapse
|
3
|
Sanchez-Hernandez JC, Megharaj M. Insect farming: A bioeconomy-based opportunity to revalorize plastic wastes. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2025; 23:100521. [PMID: 39867963 PMCID: PMC11758129 DOI: 10.1016/j.ese.2024.100521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/19/2024] [Accepted: 12/19/2024] [Indexed: 01/28/2025]
Abstract
Managing plastic waste is one of the greatest challenges humanity faces in the coming years. Current strategies-landfilling, incineration, and recycling-remain insufficient or pose significant environmental concerns, failing to address the growing volume of plastic residues discharged into the environment. Recently, increasing attention has focused on the potential of certain insect larvae species to chew, consume, and partially biodegrade synthetic polymers such as polystyrene and polyethylene, offering novel biotechnological opportunities for plastic waste management. However, insect-assisted plastic depolymerization is incomplete, leaving significant amounts of microplastics in the frass (or manure), limiting its use as a soil amendment. In this perspective, we propose a novel two-step bioconversion system to overcome these limitations, using insects to sustainably manage plastic waste while revalorizing its by-products (frass). The first step involves pyrolyzing microplastic-containing frass from mealworms (Tenebrio molitor larvae) fed on plastic-rich diets to produce biochar with enhanced adsorptive properties. The second stage integrates this biochar into the entomocomposting of organic residues, such as food waste, using black soldier fly (Hermetia illucens) larvae to produce nutrient-rich substrates enriched with carbon and nitrogen. This integrated system offers a potential framework for large-scale industrial applications, contributing to the bioeconomy by addressing both plastic waste and organic residue management. We critically examine the advantages and limitations of the proposed system based on current literature on biochar technology and entomocomposting. Key challenges and research opportunities are identified, particularly concerning the physiological and toxicological processes involved, to guide future efforts aimed at ensuring the scalability and sustainability of this innovative approach.
Collapse
Affiliation(s)
- Juan C. Sanchez-Hernandez
- Laboratory of Ecotoxicology, Institute of Environmental Sciences, University of Castilla-La Mancha, 45071, Toledo, Spain
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
4
|
Lemke B, Röpper D, Arki A, Visscher C, Plötz M, Krischek C. Processing of Larvae of Alphitobius diaperinus and Tenebrio molitor in Cooked Sausages: Effects on Physicochemical, Microbiological, and Sensory Parameters. INSECTS 2024; 15:843. [PMID: 39590443 PMCID: PMC11594820 DOI: 10.3390/insects15110843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/28/2024]
Abstract
Proteins from insect production represent an interesting (environmentally friendly) option or supplement to commercial livestock farming. At present, however, the larval stages of T. molitor (mealworm) and A. diaperinus (buffalo worm) have been authorized as food for human consumption EU-wide, as have the nymph and adult stages of Locusta (L.) migratoria (Locusta migratoria, Linnaeus, 1758) and Acheta (A.) domesticus (house cricket, Acheta domesticus, Linnaeus, 1758). However, there is the problem that insects that are recognizable as a whole tend to be avoided by consumers, especially in the European region, as they are reminiscent of living things and can cause aversion and disgust in consumers. Against this background, in the present study, five batches of two types of cooked sausages were produced: on the one hand, with turkey, and on the other hand, with pork lean meat as a base. In different formulations, 10% and 20% of the meat contents (turkey or pork) in these meat products were replaced by deep-frozen, pulverized T. molitor and A. diaperinus larvae. The effects of the addition of these insects in the products on the microbiological and physicochemical parameters of these cooked sausages, compared to a product without insect content, directly after heating, were investigated. After production, a storage trial was also carried out to determine whether possible insect ingredients could influence the growth of inoculated bacterial species (Bacillus (B.) cereus, Escherichia (E.) coli, Listeria (L.) monocytogenes, and Campylobacter (C.) jejuni) and how the addition of insect larvae affectsthe sensory and physicochemical properties during storage. The study showed that the products with insects had reduced lightness (turkey p C = 0.025), increased yellowness (pork p S = 0.0009, p C < 0.0001 and turkey p C = 0.0027) and a reduced red color (pork p S < 0.0001, p C = 0.0001) after heating when compared to the cooked sausages without insects. However, no significant differences between the various cooked sausages with or without insects in terms of cooking loss, firmness, and protein, ash, and fat or water contents were found. The microbiological tests showed, on the one hand, that the prior microbial reduction (e.g., in the form of blanching) of the insect larvae was essential in order to guarantee the flawless microbiological quality of the cooked sausages and, on the other hand, that the addition of insects to the cooked sausages did not significantly affect the growth of the inoculated bacterial species and that no sensory differences could be detected during storage. Despite the significant color effects on the product, A. diaperinus and T. molitor larvae would be suitable as protein or meat alternatives in cooked sausages, but they would have to undergo pre-treatment, primarily with regard to microbiological safety. The extent to which a complete replacement of meat is possible has to be investigated in further studies.
Collapse
Affiliation(s)
- Barbara Lemke
- Institute of Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany (M.P.); (C.K.)
| | - Darleen Röpper
- Institute of Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany (M.P.); (C.K.)
| | - Anahita Arki
- Institute of Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany (M.P.); (C.K.)
| | - Christian Visscher
- Institute of Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Madeleine Plötz
- Institute of Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany (M.P.); (C.K.)
| | - Carsten Krischek
- Institute of Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany (M.P.); (C.K.)
| |
Collapse
|
5
|
Hassen H, Škvorová P, Pokhrel K, Kulma M, Piątkowska E, Kostogrys RB, Kouřimská L, Tarko T, Franczyk-Żarów M. Effect of Diets with the Addition of Edible Insects on the Development of Atherosclerotic Lesions in ApoE/LDLR -/- Mice. Int J Mol Sci 2024; 25:7256. [PMID: 39000363 PMCID: PMC11242574 DOI: 10.3390/ijms25137256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/22/2024] [Accepted: 06/29/2024] [Indexed: 07/16/2024] Open
Abstract
Foods enriched with insects can potentially prevent several health disorders, including cardiovascular diseases, by reducing inflammation and improving antioxidant status. In this study, Tenebrio molitor and Gryllus assimilis were selected to determine the effect on the development of atherosclerosis in ApoE/LDLR-/- mice. Animals were fed AIN-93G-based diets (control) with 10% Tenebrio molitor (TM) and 10% Gryllus assimilis (GA) for 8 weeks. The nutritional value as well as antioxidant activity of selected insects were determined. The lipid profile, liver enzyme activity, and the fatty acid composition of liver and adipose tissue of model mice were evaluated. Quantitative analysis of atherosclerotic lesions in the entire aorta was performed using the en face method, and for aortic roots, the cross-section method was used. The antioxidant status of the GA cricket was significantly higher compared to the TM larvae. The results showed that the area of atherosclerosis (en face method) was not significantly different between groups. Dietary GA reduced plaque formation in the aortic root; additionally, significant differences were observed in sections at 200 and 300 µm compared to other groups. Furthermore, liver enzyme ALT activity was lower in insect-fed groups compared to the control group. The finding suggests that a diet containing edible insect GA potentially prevents atherosclerotic plaque development in the aortic root, due to its high antioxidant activity.
Collapse
Affiliation(s)
- Hayat Hassen
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, A. Mickiewicz Av. 21, 31-120 Kraków, Poland; (H.H.); (E.P.); (R.B.K.)
- Department of Human Nutrition, Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar P.O. Box 26, Ethiopia
| | - Petra Škvorová
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha-Suchdol, Czech Republic; (P.Š.); (K.P.); (L.K.)
| | - Kshitiz Pokhrel
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha-Suchdol, Czech Republic; (P.Š.); (K.P.); (L.K.)
| | - Martin Kulma
- Department of Zoology and Fisheries, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha-Suchdol, Czech Republic;
| | - Ewa Piątkowska
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, A. Mickiewicz Av. 21, 31-120 Kraków, Poland; (H.H.); (E.P.); (R.B.K.)
| | - Renata B. Kostogrys
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, A. Mickiewicz Av. 21, 31-120 Kraków, Poland; (H.H.); (E.P.); (R.B.K.)
| | - Lenka Kouřimská
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha-Suchdol, Czech Republic; (P.Š.); (K.P.); (L.K.)
| | - Tomasz Tarko
- Department of Fermentation Technology and Microbiology, Faculty of Food Technology, University of Agriculture in Krakow, A. Mickiewicz Av. 21, 31-120 Kraków, Poland
| | - Magdalena Franczyk-Żarów
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, A. Mickiewicz Av. 21, 31-120 Kraków, Poland; (H.H.); (E.P.); (R.B.K.)
| |
Collapse
|
6
|
Zhang Q, Sun H, Gao Z, Zhao H, Peng Z, Zhang T. Evaluation of Effective Energy Values of Six Protein Ingredients Fed to Beagles and Predictive Energy Equations for Protein Feedstuff. Animals (Basel) 2024; 14:1599. [PMID: 38891646 PMCID: PMC11171298 DOI: 10.3390/ani14111599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
This study evaluated the nutrition composition, the nutrient digestibility, and the energy value of six protein ingredients used in pet food by the difference method in six beagles within a 7 × 6 incomplete Latin square design. The results showed that the apparent total tract digestibility of gross energy (GE) and organic matter (OM) in beagles fed the fish meal (FM) and corn gluten meal (CGM) diets was higher than for those fed the meat and bone meal (MBM), soybean meal (SBM), mealworm meal (MM), and yeast extract (YE) diets (p < 0.05). The digestible energy (DE), metabolizable energy (ME), and net energy (NE) of the MM diet were greater than the other diets, and MBM was the lowest (p < 0.05). The ME of protein ingredients was positively correlated with organic matter and negatively correlated with the ash content. The NE of protein ingredients was positively correlated with the crude protein content and negatively correlated with the ash content. The study resulted in predictive energy equations for protein ingredients that were more accurate than the NRC's predictive equation of ME when the ash content of the ingredient was more than 30% DM. In conclusion, the nutrient digestibility and energy value of corn gluten meal were similar to those of fish meal and those of soybean meal were similar to yeast extract. All predictive energy equations for six protein feedstuffs had slight differences with measured energy values.
Collapse
Affiliation(s)
| | | | | | | | | | - Tietao Zhang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agriculture Sciences, Changchun 130112, China; (Q.Z.); (H.S.); (Z.G.); (H.Z.); (Z.P.)
| |
Collapse
|
7
|
Ilijin L, Nikolić MV, Vasiljević ZZ, Todorović D, Mrdaković M, Vlahović M, Matić D, Tadić NB, Perić-Mataruga V. Sourcing chitin from exoskeleton of Tenebrio molitor fed with polystyrene or plastic kitchen wrap. Int J Biol Macromol 2024; 268:131731. [PMID: 38649081 DOI: 10.1016/j.ijbiomac.2024.131731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/15/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
In this work we have characterized and compared chitin sourced from exoskeleton of Tenebrio molitor larvae fed with polystyrene or plastic kitchen wrap combined with bran in the ratio 1: 1 with chitin sourced from larvae exoskeleton fed only with bran. Analysis of the frass by ATR-FTIR showed very similar spectra and confirmed degradation of the plastic feed components, while ATR-FTIR analysis of the exoskeleton verified the absence of any plastic residue. Deproteinization followed by demineralization produced 6.78-5.29 % chitin, showing that plastic (polystyrene or plastic kitchen wrap) in the larvae diet resulted in heavier insect exoskeleton, but yielded slightly less chitin, with the lowest value obtained for plastic kitchen wrap in the insect diet. The deacetylation degree of 98.17-98.61 % was determined from measured ATR-FTIR spectra. XRD analysis confirmed the presence of α-chitin with a crystallinity index of 66.5-62 % and crystallite size 4-5 nm. Thermogravimetric analysis showed similar degradation curves for all chitin samples, with two degradation steps. These results show that chitin sourced from exoskeleton of T. molitor larvae fed with plastic (polystyrene or plastic kitchen wrap) and contributing to significant biodegradation of major polluting materials can be a feasible and alternative source of chitin, further promoting a bio-circular economy.
Collapse
Affiliation(s)
- Larisa Ilijin
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Despot Stefan Blv. 142, 11060 Belgrade, Serbia.
| | - Maria Vesna Nikolić
- University of Belgrade - Institute for Multidisciplinary Research, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Zorka Z Vasiljević
- University of Belgrade - Institute for Multidisciplinary Research, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Dajana Todorović
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Despot Stefan Blv. 142, 11060 Belgrade, Serbia
| | - Marija Mrdaković
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Despot Stefan Blv. 142, 11060 Belgrade, Serbia
| | - Milena Vlahović
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Despot Stefan Blv. 142, 11060 Belgrade, Serbia
| | - Dragana Matić
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Despot Stefan Blv. 142, 11060 Belgrade, Serbia
| | - Nenad B Tadić
- University of Belgrade, Faculty of Physics, Studentski trg 12, 11000 Belgrade, Serbia
| | - Vesna Perić-Mataruga
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Despot Stefan Blv. 142, 11060 Belgrade, Serbia
| |
Collapse
|
8
|
Janković-Tomanić M, Petković B, Vranković JS, Perić-Mataruga V. Effects of high doses of zearalenone on some antioxidant enzymes and locomotion of Tenebrio molitor larvae (Coleoptera: Tenebrionidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2024; 24:6. [PMID: 38717261 PMCID: PMC11078044 DOI: 10.1093/jisesa/ieae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/04/2024] [Accepted: 04/18/2024] [Indexed: 05/12/2024]
Abstract
The mealworm Tenebrio molitor L. (Coleoptera: Tenebrionidae) feeds on wheat bran and is considered both a pest and an edible insect. Its larvae contain proteins and essential amino acids, fats, and minerals, making them suitable for animal and human consumption. Zearalenone (ZEA) is the mycotoxin most commonly associated with Fusarium spp. It is found in cereals and cereal products, so their consumption is a major risk for mycotoxin contamination. One of the most important effects of ZEA is the induction of oxidative stress, which leads to physiological and behavioral changes. This study deals with the effects of high doses of ZEA (10 and 20 mg/kg) on survival, molting, growth, weight gain, activity of antioxidant enzymes superoxide dismutase (SOD) and glutathione S-transferase (GST), and locomotion of mealworm larvae. Both doses of ZEA were found to (i) have no effect on survival, (ii) increase molting frequency, SOD, and GST activity, and (iii) decrease body weight and locomotion, with more pronounced changes at 20 mg/kg. These results indicated the susceptibility of T. molitor larvae to high doses of ZEA in feed.
Collapse
Affiliation(s)
- Milena Janković-Tomanić
- Department of Insect Physiology and Biochemistry, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Despot Stefan Blvd. 142, 11108 Belgrade, Serbia
| | - Branka Petković
- Department of Neurophysiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Despot Stefan Blvd. 142, 11108 Belgrade, Serbia
| | - Jelena S Vranković
- Department of Hydroecology and Water Protection, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Despot Stefan Blvd. 142, 11108 Belgrade, Serbia
| | - Vesna Perić-Mataruga
- Department of Insect Physiology and Biochemistry, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Despot Stefan Blvd. 142, 11108 Belgrade, Serbia
| |
Collapse
|
9
|
Kotsou K, Chatzimitakos T, Athanasiadis V, Bozinou E, Lalas SI. Exploiting Agri-Food Waste as Feed for Tenebrio molitor Larvae Rearing: A Review. Foods 2024; 13:1027. [PMID: 38611333 PMCID: PMC11011778 DOI: 10.3390/foods13071027] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/20/2024] [Accepted: 03/24/2024] [Indexed: 04/14/2024] Open
Abstract
The agri-food industry generates substantial amounts of waste, including by-products and residues. The increasing demand for sustainable and eco-friendly practices in the agri-food sector has sparked an interest in finding alternative uses for such waste materials. One promising approach is the utilization of waste from the agri-food industry as feed for the rearing of mealworms (Tenebrio molitor). Since agri-food waste is rich in proteins, carbohydrates, lipids, and vitamins, as well as other bioactive compounds, all of which are essential for insect growth and development, incorporating such waste into the diet of mealworms promotes sustainable insect production, reducing the economic and environmental problems associated with waste disposal. This practice can also be beneficial for the rearing of mealworms since their nutritional value can also be enhanced. To this end, various waste materials, such as fruit and vegetable peels, spent grains, and food processing residues, have been investigated as potential feed sources, leading to increased mass production, lower cost, and enhanced nutritional value. This review aims to highlight the potential of agri-food waste as a feed source for mealworms, as well as their potential to enhance their nutritional value. Furthermore, the potential applications of mealworms reared on agri-food waste are highlighted, including their potential as a sustainable protein source for human consumption and as feed ingredients in the livestock and aquaculture sectors.
Collapse
Affiliation(s)
- Konstantina Kotsou
- Department of Food Science and Nutrition, University of Thessaly, Terma N. Temponera Str., 43100 Karditsa, Greece; (T.C.); (V.A.); (E.B.); (S.I.L.)
| | | | | | | | | |
Collapse
|