1
|
Kevat S, Mistry A, Oza N, Majmudar M, Patel N, Shah R, Ramachandran AV, Chauhan R, Haque S, Parashar NC, Tuli HS, Parashar G. Cancer Stem Cell Regulation as a Target of Therapeutic Intervention: Insights into Breast, Cervical and Lung Cancer. Cell Biochem Biophys 2025; 83:1521-1535. [PMID: 39843681 DOI: 10.1007/s12013-025-01666-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2025] [Indexed: 01/24/2025]
Abstract
Cancer Stem Cells (CSCs) play an important role in the development, resistance, and recurrence of many malignancies. These subpopulations of tumor cells have the potential to self-renew, differentiate, and resist conventional therapy, highlighting their importance in cancer etiology. This review explores the regulatory mechanisms of CSCs in breast, cervical, and lung cancers, highlighting their plasticity, self-renewal, and differentiation capabilities. CD44+/CD24- cells are a known marker for breast CSCs. Markers like as CD133 and ALDH have been discovered in cervical cancer CSCs. Similarly, in lung cancer, CSCs identified by CD44, CD133, and ALDH are linked to aggressive tumor behavior and poor therapy results. The commonalities between these tumors highlight the general necessity of targeting CSCs in treatment efforts. However, the intricacies of CSC activity, such as their interaction with the tumor microenvironment and particular signaling pathways differ between cancer types, demanding specialized methods. Wnt/β-catenin, Notch, and Hedgehog pathways are one of the essential signaling pathways, targeting them, may show ameliorative effects on breast, lung and cervical carcinomas and their respective CSCs. Pre-clinical data suggests targeting specific signaling pathways can eliminate CSCs, but ongoing clinical trials are on utilizing signaling pathway inhibitors in patients. In recent studies it has been reported that CAR T based targeting of specific markers may be used as combination therapy. Ongoing research related to nanobiotechnology can also play a significant role in diagnosis and treatment purpose targeting CSCs, as nanomaterials can be used for precise targeting and identification of CSCs. Further research into the targeting of signaling pathways and its precursors could prove to be right step into directing therapies towards CSCs for cancer therapy.
Collapse
Affiliation(s)
- Sakshi Kevat
- Division of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, Gujarat, India
| | - Archie Mistry
- Division of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, Gujarat, India
| | - Naman Oza
- Division of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, Gujarat, India
| | - Mohit Majmudar
- Division of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, Gujarat, India
| | - Netra Patel
- Division of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, Gujarat, India
| | - Rushabh Shah
- Division of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, Gujarat, India
| | - A V Ramachandran
- Division of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, Gujarat, India
| | - Ritu Chauhan
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia
- School Of Medicine, Universidad Espiritu Santo, Samborondon, Ecuador
| | | | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to be University), Ambala, Haryana, India
| | - Gaurav Parashar
- Division of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, Gujarat, India.
| |
Collapse
|
2
|
Amin R, Dey BK, Darwin R, Cho WC, Sharifi-Rad J, Calina D. BCMA-targeted therapies in multiple myeloma: advances, challenges and future prospects. Med Oncol 2025; 42:204. [PMID: 40338452 DOI: 10.1007/s12032-025-02753-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Accepted: 04/28/2025] [Indexed: 05/09/2025]
Abstract
Multiple myeloma (MM) is hematological cancer characterized by the aberrant proliferation of plasma cells. The treatment of MM has historically presented challenges, with a limited number of patients achieving sustained remission. Recent advancements in the therapeutic landscape have been marked by the development of B-cell maturation antigen (BCMA)-targeted therapies. BCMA, a plasma cell surface protein, is instrumental in the proliferation and survival of myeloma cells. This review aims to critically assess recent developments in BCMA-targeted therapies. The focus is on evaluating their efficacy and accessibility, as well as discussing potential future directions in this field. Emphasis is placed on chimeric antigen receptor (CAR) T-cell therapy and bispecific antibodies as emerging therapeutic strategies. An extensive review of current clinical trials and studies was conducted, centering on BCMA-targeted therapies. This encompassed an analysis of CAR T-cell therapies, which involve the genetic modification of patient T-cells to target BCMA, and bispecific antibodies that bind to both BCMA on myeloma cells and CD3 on T-cells. Clinical trials have demonstrated the efficacy of BCMA-targeted therapies in MM, with some patients achieving complete remission. However, these therapies are associated with adverse effects such as cytokine release syndrome and neurotoxicity. Research efforts are ongoing to reduce these side effects and enhance overall therapeutic effectiveness. BCMA-targeted therapies signify a notable advancement in MM treatment, offering prospects for prolonged remission and potentially curative outcomes. Despite existing challenges, these therapies represent a significant shift in MM management. The review highlights the necessity of ongoing research to optimize these therapies, improve patient outcomes, and increase treatment accessibility.
Collapse
Affiliation(s)
- Ruhul Amin
- Rahman Institute of Pharmaceutical Sciences and Research (RIPSR), Kamarkuchi, Kamrup (M), Tepesia, Assam, 782402, India
| | - Biplab Kumar Dey
- Dooars Institute of Pharmaceutical Sciences and Research (DIPSAR), Ghoksadanga, Cooch Behar, West Bengal, 736171, India
| | - Ronald Darwin
- School of Pharmaceutical Sciences, Vels Institute of Science Technology & Advanced Studies, Chennai, 600117, India
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong, China.
| | - Javad Sharifi-Rad
- Universidad Espíritu Santo, Samborondón, 092301, Ecuador.
- Centro de Estudios Tecnológicos y Universitarios del Golfo, Veracruz, Mexico.
- Department of Medicine, College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| |
Collapse
|
3
|
Justiz-Vaillant A, Pandit BR, Unakal C, Vuma S, Akpaka PE. A Comprehensive Review About the Use of Monoclonal Antibodies in Cancer Therapy. Antibodies (Basel) 2025; 14:35. [PMID: 40265416 PMCID: PMC12015915 DOI: 10.3390/antib14020035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/14/2025] [Accepted: 04/09/2025] [Indexed: 04/24/2025] Open
Abstract
Monoclonal antibodies (mAbs) targeting various pathways in cancer therapy play crucial roles in enhancing the immune system's ability to recognise and eliminate tumour cells. These therapies are designed to either block inhibitory immune checkpoint pathways or to target specific tumour cell markers for direct destruction. Additionally, mAbs can modulate the tumour microenvironment, enhance antibody-dependent cellular cytotoxicity, and inhibit angiogenesis, further amplifying their therapeutic impact. Below is a summary of monoclonal antibodies targeting key pathways, along with their indications and mechanisms of action, which are reviewed based on therapeutic mechanisms.
Collapse
Affiliation(s)
| | | | | | | | - Patrick Eberechi Akpaka
- Department of Pathology/Microbiology & Pharmacology, The University of the West Indies, St. Augustine Campus, St. Augustine 330912, Trinidad and Tobago; (A.J.-V.); (B.R.P.); (C.U.); (S.V.)
| |
Collapse
|
4
|
Ai K, Liu B, Chen X, Huang C, Yang L, Zhang W, Weng J, Du X, Wu K, Lai P. Optimizing CAR-T cell therapy for solid tumors: current challenges and potential strategies. J Hematol Oncol 2024; 17:105. [PMID: 39501358 PMCID: PMC11539560 DOI: 10.1186/s13045-024-01625-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 10/18/2024] [Indexed: 11/08/2024] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy demonstrates substantial efficacy in various hematological malignancies. However, its application in solid tumors is still limited. Clinical studies report suboptimal outcomes such as reduced cytotoxicity of CAR-T cells and tumor evasion, underscoring the need to address the challenges of sliding cytotoxicity in CAR-T cells. Despite improvements from fourth and next-generation CAR-T cells, new challenges include systemic toxicity from continuously secreted proteins, low productivity, and elevated costs. Recent research targets genetic modifications to boost killing potential, metabolic interventions to hinder tumor progression, and diverse combination strategies to enhance CAR-T cell therapy. Efforts to reduce the duration and cost of CAR-T cell therapy include developing allogenic and in-vivo approaches, promising significant future advancements. Concurrently, innovative technologies and platforms enhance the potential of CAR-T cell therapy to overcome limitations in treating solid tumors. This review explores strategies to optimize CAR-T cell therapies for solid tumors, focusing on enhancing cytotoxicity and overcoming application restrictions. We summarize recent advances in T cell subset selection, CAR-T structural modifications, infiltration enhancement, genetic and metabolic interventions, production optimization, and the integration of novel technologies, presenting therapeutic approaches that could improve CAR-T cell therapy's efficacy and applicability in solid tumors.
Collapse
Affiliation(s)
- Kexin Ai
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Bowen Liu
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510280, Guangdong, China
| | - Xiaomei Chen
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510280, Guangdong, China
| | - Chuxin Huang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Liping Yang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Weiya Zhang
- Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, The Netherlands
| | - Jianyu Weng
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510280, Guangdong, China
| | - Xin Du
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510280, Guangdong, China
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
- Cancer Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.
| | - Peilong Lai
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510280, Guangdong, China.
| |
Collapse
|
5
|
Farokhi-Fard A, Rahmati S, Hashemi Aval NS, Barkhordari F, Bayat E, Komijani S, Aghamirza Moghim Aliabadi H, Davami F. Anti-IL-1RAP scFv-mSA-S19-TAT fusion carrier as a multifunctional platform for versatile delivery of biotinylated payloads to myeloid leukemia cells. Sci Rep 2024; 14:25080. [PMID: 39443595 PMCID: PMC11500005 DOI: 10.1038/s41598-024-76851-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive blood cancer with frequently poor clinical outcomes. This heterogeneous malignancy encompasses genetically, molecularly, and even clinically different subgroups. This makes it difficult to develop therapeutic agents that are effective for all subtypes of the disease. Therefore, a selective, universal, and adaptable delivery platform capable of carrying various types of anti-neoplastic agents is an unmet requirement in this area. Two multifunctional fusion proteins were designed for the delivery of biotinylated cargoes to human myeloid leukemia cells by fusing an anti-IL-1RAP single-chain antibody with streptavidin (tetramer or monomer), a cell-penetrating peptide (CPP), and an endosomolytic peptide in a single biomacromolecule. The designed fusions were analyzed primarily in silico, and the biofunctionality of the selected fusion was fully characterized via several binding assays, hemolysis assay, confocal microscopy and cell cytotoxicity assay after production via the Escherichia coli (E. coli) system. The refolded protein exhibited desirable binding activity to leukemic cells, pure antigen and biotinylated BSA. Further analyses revealed efficient cellular uptake, endosomolytic activity, and nuclear penetration without any detectable cytotoxicity toward normal epithelial cells. The described platform seems to have great potential for targeted delivery of different therapeutics to malignant myeloid cells.
Collapse
MESH Headings
- Humans
- Single-Chain Antibodies/immunology
- Single-Chain Antibodies/genetics
- Recombinant Fusion Proteins/genetics
- Biotinylation
- Cell-Penetrating Peptides/chemistry
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/therapy
- Cell Line, Tumor
- Drug Delivery Systems
- Streptavidin/chemistry
- Drug Carriers/chemistry
- Leukemia, Myeloid/immunology
- Leukemia, Myeloid/drug therapy
- Leukemia, Myeloid/therapy
Collapse
Affiliation(s)
- Aref Farokhi-Fard
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Saman Rahmati
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Division of Oncological Sciences, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | | | | | - Elham Bayat
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Samira Komijani
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | - Fatemeh Davami
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
- Pasteur Institute of Iran, No. 69, Pasteur Ave, Tehran, Iran.
| |
Collapse
|
6
|
Sui S, Zhong M, Zhong S, Peng X, Mao L, Chen C, Zeng C, Luo OJ, Li Y. BRD4 inhibitor reduces exhaustion and blocks terminal differentiation in CAR-T cells by modulating BATF and EGR1. Biomark Res 2024; 12:124. [PMID: 39407311 PMCID: PMC11476310 DOI: 10.1186/s40364-024-00667-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Exhaustion is a key factor that influences the efficacy of chimeric antigen receptor T (CAR-T) cells. Our previous study demonstrated that a bromodomain protein 4 (BRD4) inhibitor can revise the phenotype and function of exhausted T cells from leukemia patients. This study aims to elucidate the mechanism by which a BRD4 inhibitor reduces CAR-T cell exhaustion using single-cell RNA sequencing (scRNA-Seq). METHODS Exhausted CD123-specific CAR-T cells were prepared by co-culture with CD123 antigen-positive MV411 cells. After elimination of MV411 cells and upregulation of inhibitory receptors on the surface, exhausted CAR-T cells were treated with a BRD4 inhibitor (JQ1) for 72 h. The CAR-T cells were subsequently isolated, and scRNA-Seq was conducted to characterize phenotypic and functional changes in JQ1-treated cells. RESULTS Both the proportion of exhausted CD8+ CAR-T cells and the exhausted score of CAR-T cells decreased in JQ1-treated compared with control-treated cells. Moreover, JQ1 treatment led to a higher proportion of naïve, memory, and progenitor exhausted CD8+ CAR-T cells as opposed to terminal exhausted CD8+ CAR-T cells accompanied by enhanced proliferation, differentiation, and activation capacities. Additionally, with JQ1 treatment, BATF activity and expression in naïve, memory, and progenitor exhausted CD8+ CAR-T cells decreased, whereas EGR1 activity and expression increased. Interestingly, AML patients with higher EGR1 and EGR1 target gene ssGSEA scores, coupled with lower BATF and BATF target gene ssGSEA scores, had the best prognosis. CONCLUSIONS Our study reveals that a BRD4 inhibitor can reduce CAR-T cell exhaustion and block exhausted T cell terminal differentiation by downregulating BATF activity and expression together with upregulating EGR1 activity and expression, presenting an approach for improving the effectiveness of CAR-T cell therapy.
Collapse
Affiliation(s)
- Songnan Sui
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, China
- Central People's Hospital of Zhanjiang, Zhanjiang, China
- Zhanjiang Key Laboratory of Leukemia Pathogenesis and Targeted Therapy Research, Zhanjiang, China
| | - Mengjun Zhong
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
- Department of Hematology, Guangzhou First People's Hospital, Institute of Blood Transfusion and Hematology, Guangzhou Medical University, Guangzhou, China
| | - Shuxin Zhong
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Xueting Peng
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Lipeng Mao
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, China
| | - Cunte Chen
- Department of Hematology, Guangzhou First People's Hospital, Institute of Blood Transfusion and Hematology, Guangzhou Medical University, Guangzhou, China
| | - Chengwu Zeng
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Oscar Junhong Luo
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, China.
| | - Yangqiu Li
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China.
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
7
|
Sun X, Wu Y, Li H, Zhao A, Niu T. Harmonizing efficacy and safety: the potentials of CAR-NK in effectively addressing severe toxicities of CAR-T therapy in mantle cell lymphoma. Int J Surg 2024; 110:5871-5872. [PMID: 38801456 PMCID: PMC11392170 DOI: 10.1097/js9.0000000000001638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024]
Affiliation(s)
- Xu Sun
- Department of Hematology, West China Hospital, Sichuan University
| | - Yijun Wu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - He Li
- Department of Hematology, West China Hospital, Sichuan University
| | - Ailin Zhao
- Department of Hematology, West China Hospital, Sichuan University
| | - Ting Niu
- Department of Hematology, West China Hospital, Sichuan University
| |
Collapse
|
8
|
Cheng Z, Cui X, Li S, Liang Y, Yang W, Ouyang J, Wei M, Yan Z, Yu W. Harnessing cytokines to optimize chimeric antigen receptor-T cell therapy for gastric cancer: Current advances and innovative strategies. Biomed Pharmacother 2024; 178:117229. [PMID: 39096620 DOI: 10.1016/j.biopha.2024.117229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/20/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024] Open
Abstract
Enormous patients with gastric cancer (GC) are insensitive to chemotherapy and targeted therapy without the chance of radical surgery, so immunotherapy may supply a novel choice for them. Chimeric antigen receptor (CAR)-T cell therapy has the advantages of higher specificity, stronger lethality, and longer-lasting efficacy, and it has the potential for GC in the future. However, its application still faces numerous obstacles in terms of accuracy, efficacy, and safety. Cytokines can mediate the migration, proliferation, and survival of immune cells, regulate the duration and strength of immune responses, and are involved in the occurrence of severe side effects in CAR-T cell therapy. The expression levels of specific cytokines are associated with the genesis, invasion, metastasis, and prognosis of GC. Applications of cytokines and their receptors in CAR-T cell therapy have emerged, and various cytokines and their receptors have contributed to improving CAR-T cell anti-tumor capabilities. Large amounts of central cytokines in this therapy include chemokines, interleukins (ILs), transforming growth factor-β (TGF-β), and colony-stimulating factors (CSFs). Meanwhile, researchers have explored the combination therapy in treating GC, and several approaches applied to other malignancies can also be considered as references. Therefore, our review comprehensively outlines the biological functions and clinical significance of cytokines and summarizes current advances and innovative strategies for harnessing cytokines to optimize CAR-T cell therapy for GC.
Collapse
Affiliation(s)
- Zewei Cheng
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiaohan Cui
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Song Li
- Department of Medical Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yize Liang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Wenshuo Yang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jun Ouyang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Meng Wei
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Zhibo Yan
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Wenbin Yu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|