1
|
Thangadurai T, Dobretsov S, Aeby G. Exploring bacterial diversity in Acropora pharaonis: Implications for coral health and growth anomalies. Microb Pathog 2025; 205:107616. [PMID: 40294758 DOI: 10.1016/j.micpath.2025.107616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 03/07/2025] [Accepted: 04/17/2025] [Indexed: 04/30/2025]
Abstract
Coral growth anomalies (GA) affect many coral genera across the world, yet the etiology of GAs remains unknown, with limited knowledge of associated bacteria. In this study, we investigated bacterial associations between the growth anomalies (GAs) and healthy (H) portions of coral colonies in Acropora faraonis for two seasons to understand microbial dynamics. Additionally, we examined bacteria in water (W), which could be affecting coral bacterial communities. We found that alpha diversity remained consistent between healthy and GA coral tissues, but their relative abundances differed significantly. Notably, differential analysis revealed the abundance of Endozoicomonas spp., differed significantly between GA and H tissue, although it remains the dominant genus in both GA and H tissue. The high relative abundance of Endozoicomonas spp. in both GA and healthy tissue underscores its potential role in maintaining coral health. Structural modifications in GAs, such as changes in polyp sizes or densities, could be responsible for these differences in bacterial abundance. Similarly, microbial community composition remained consistent between seasons but differed in abundance again. We found differences between microbial communities of GAs and water, but no significant differences were observed between GAs and H, and no previously established bacterial pathogens were detected in GA tissue. These findings describe bacterial community patterns in GAs, but their potential role in its pathogenesis remains unknown. Further metagenomic and meta-transcriptomic analyses are needed to understand potential bacterial involvement in GAs. Additionally, investigating viruses and fungi in GA tissue is recommended to gain deeper insights into GA pathogenesis.
Collapse
Affiliation(s)
- Thinesh Thangadurai
- Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al Khoud 123 PO Box 34, Muscat, Oman
| | - Sergey Dobretsov
- Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al Khoud 123 PO Box 34, Muscat, Oman; UNESCO Chair in Marine Biotechnology, Center of Excellence in Marine Biotechnology, Sultan Qaboos University, Al Khoud 123 PO Box 50, Muscat, Oman.
| | - Greta Aeby
- Department of Biological and Environmental Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
2
|
Girija GK, Tseng LC, Muthu P, Chen YL, Ho YN, Hwang JS. Microbiome flexibility enhances the resilience of the potentially invasive coral Tubastraea aurea to abrupt environmental changes: Insights from a shallow water hydrothermal vent transplantation study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176792. [PMID: 39389143 DOI: 10.1016/j.scitotenv.2024.176792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/18/2024] [Accepted: 10/05/2024] [Indexed: 10/12/2024]
Abstract
To comprehend the effects of potentially invasive coral Tubastraea aurea on marine ecosystems, it is crucial to understand their adaptive strategies to survive environmental changes and perturbations. Therefore, a cross-transplantation study was conducted to assess the microbiome's role in the resilience of T. aurea to sudden environmental changes.Hydrographic analyses revealed distinct ecological conditions at two sites: a hydrothermal vent (HV) site, characterized by harsh environmental conditions serving as a natural laboratory for future oceanic changes, and a regular coastal site Fulong (FU). Both sites showed significant differences in pH, temperature, and dissolved oxygen. Using Oxford Nanopore Technologies, we examined bacterial dynamics in coral tissue, mucus and ambient sediment samples following cross-transplantation experiments. We observed a rapid shift in dominant bacterial groups post-transplantation with transplanted corals acquiring microbiomes similar to native corals from their respective sites within 16 days. The bacteria Endozoicomonas euniceicola and Ruegeria profundi were dominant in both native and transplanted corals, suggesting their critical role in coral resilience. Furthermore, the enrichment of certain bacterial taxa post-transplantation suggests that opportunistic species also contribute to host acclimatization. Functional profiling data indicated that there was site-specific adaptation because corals had acquired beneficial bacterial assemblages to assist them cope with environmental stressors. More specifically, there was a switch towards sulfur and nitrogen metabolism in corals that moved to high sulfidic environments, while corals transplanted into normal coastal environments showed enriched photoautotrophic processes due to their symbionts. Our study underscored the highly flexible microbiome of T. aurea and its pivotal role in facilitating host resilience to environmental perturbations, particularly in the context of its potential invasiveness. Hence, these findings contribute to the understanding of coral-microbiome dynamics and emphasize the necessity of considering microbially-mediated resilience in managing potentially invasive coral species in marine ecosystems around the world, especially as ocean conditions continue to change.
Collapse
Affiliation(s)
- Gowri Krishna Girija
- Institute of Marine Biology, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Li-Chun Tseng
- Institute of Marine Biology, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Priyanka Muthu
- Institute of Marine Biology, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Yu-Ling Chen
- Institute of Marine Biology, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Ying-Ning Ho
- Institute of Marine Biology, National Taiwan Ocean University, Keelung 202301, Taiwan; Centre of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202301, Taiwan; Taiwan Ocean Genome Center, National Taiwan Ocean University, Keelung 202301, Taiwan.
| | - Jiang-Shiou Hwang
- Institute of Marine Biology, National Taiwan Ocean University, Keelung 202301, Taiwan; Centre of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202301, Taiwan.
| |
Collapse
|
3
|
Smith GJ, van Alen TA, van Kessel MA, Lücker S. Simple, reference-independent assessment to empirically guide correction and polishing of hybrid microbial community metagenomic assembly. PeerJ 2024; 12:e18132. [PMID: 39529629 PMCID: PMC11552494 DOI: 10.7717/peerj.18132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 08/29/2024] [Indexed: 11/16/2024] Open
Abstract
Hybrid metagenomic assembly of microbial communities, leveraging both long- and short-read sequencing technologies, is becoming an increasingly accessible approach, yet its widespread application faces several challenges. High-quality references may not be available for assembly accuracy comparisons common for benchmarking, and certain aspects of hybrid assembly may benefit from dataset-dependent, empiric guidance rather than the application of a uniform approach. In this study, several simple, reference-free characteristics-particularly coding gene content and read recruitment profiles-were hypothesized to be reliable indicators of assembly quality improvement during iterative error-fixing processes. These characteristics were compared to reference-dependent genome- and gene-centric analyses common for microbial community metagenomic studies. Two laboratory-scale bioreactors were sequenced with short- and long-read platforms, and assembled with commonly used software packages. Following long read assembly, long read correction and short read polishing were iterated up to ten times to resolve errors. These iterative processes were shown to have a substantial effect on gene- and genome-centric community compositions. Simple, reference-free assembly characteristics, specifically changes in gene fragmentation and short read recruitment, were robustly correlated with advanced analyses common in published comparative studies, and therefore are suitable proxies for hybrid metagenome assembly quality to simplify the identification of the optimal number of correction and polishing iterations. As hybrid metagenomic sequencing approaches will likely remain relevant due to the low added cost of short-read sequencing for differential coverage binning or the ability to access lower abundance community members, it is imperative that users are equipped to estimate assembly quality prior to downstream analyses.
Collapse
Affiliation(s)
- Garrett J. Smith
- Department of Microbiology, The Ohio State University, Columbus, OH, United States of America
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, Netherlands
| | - Theo A. van Alen
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, Netherlands
| | - Maartje A.H.J. van Kessel
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, Netherlands
| | - Sebastian Lücker
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
4
|
Dong W, Chen J, Liao X, Chen X, Huang L, Huang J, Huang R, Zhong S, Zhang X. Biodiversity, Distribution and Functional Differences of Fungi in Four Species of Corals from the South China Sea, Elucidated by High-Throughput Sequencing Technology. J Fungi (Basel) 2024; 10:452. [PMID: 39057337 PMCID: PMC11278478 DOI: 10.3390/jof10070452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Recent studies have predominantly spotlighted bacterial diversity within coral microbiomes, leaving coral-associated fungi in the shadows of scientific inquiry. This study endeavors to fill this knowledge gap by delving into the biodiversity, distribution and functional differences of fungi associated with soft corals Cladiella krempfi and Sarcophyton tortuosum, gorgonian coral Dichotella gemmacea and stony coral Favia speciosa from the South China Sea. Leveraging high-throughput sequencing of fungal internal transcribed spacer-1 (ITS1) region of the rRNA gene, a total of 431 fungal amplicon sequence variants (ASVs) were identified in this study, which indicated that a large number of fungal communities were harbored in the South China Sea corals. Noteworthy among our findings is that 10 fungal genera are reported for the first time in corals, with Candolleomyces, Exophiala, Fomitopsis, Inaequalispora, Kneiffiella, Paraphaeosphaeria, and Yamadazyma belonging to the Ascomycota, and Cystobasidium, Psathyrella, and Solicoccozyma to the Basidiomycota. Moreover, significant differences (p < 0.05) of fungal communities were observed among the various coral species. In particular, the gorgonian coral D. gemmacea emerged as a veritable haven for fungal diversity, boasting 307 unique ASVs. Contrastingly, soft corals S. tortuosum and C. krempfi exhibited modest fungal diversity, with 36 and 21 unique ASVs, respectively, while the stony coral F. speciosa hosted a comparatively sparse fungal community, with merely 10 unique ASVs in total. These findings not only provide basic data on fungal diversity and function in the South China Sea corals, but also underscore the imperative of nuanced conservation and management strategies for coral reef ecosystems worldwide.
Collapse
Affiliation(s)
- Wenyu Dong
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (W.D.); (L.H.); (J.H.)
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jiatao Chen
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (W.D.); (L.H.); (J.H.)
| | - Xinyu Liao
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (W.D.); (L.H.); (J.H.)
| | - Xinye Chen
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (W.D.); (L.H.); (J.H.)
| | - Liyu Huang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (W.D.); (L.H.); (J.H.)
| | - Jiayu Huang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (W.D.); (L.H.); (J.H.)
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China;
| | - Saiyi Zhong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiaoyong Zhang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (W.D.); (L.H.); (J.H.)
| |
Collapse
|
5
|
Jariyasopit N, Khoomrung S. Mass spectrometry-based analysis of gut microbial metabolites of aromatic amino acids. Comput Struct Biotechnol J 2023; 21:4777-4789. [PMID: 37841334 PMCID: PMC10570628 DOI: 10.1016/j.csbj.2023.09.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/24/2023] [Accepted: 09/24/2023] [Indexed: 10/17/2023] Open
Abstract
Small molecules derived from gut microbiota have been increasingly investigated to better understand the functional roles of the human gut microbiome. Microbial metabolites of aromatic amino acids (AAA) have been linked to many diseases, such as metabolic disorders, chronic kidney diseases, inflammatory bowel disease, diabetes, and cancer. Important microbial AAA metabolites are often discovered via global metabolite profiling of biological specimens collected from humans or animal models. Subsequent metabolite identity confirmation and absolute quantification using targeted analysis enable comparisons across different studies, which can lead to the establishment of threshold concentrations of potential metabolite biomarkers. Owing to their excellent selectivity and sensitivity, hyphenated mass spectrometry (MS) techniques are often employed to identify and quantify AAA metabolites in various biological matrices. Here, we summarize the developments over the past five years in MS-based methodology for analyzing gut microbiota-derived AAA. Sample preparation, method validation, analytical performance, and statistical methods for correlation analysis are discussed, along with future perspectives.
Collapse
Affiliation(s)
- Narumol Jariyasopit
- Siriraj Center of Research Excellence in Metabolomics and Systems Biology (SiCORE-MSB), Faculty of Medicine Siriraj Hospital Mahidol University, Bangkok 10700, Thailand
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital Mahidol University, Bangkok 10700, Thailand
| | - Sakda Khoomrung
- Siriraj Center of Research Excellence in Metabolomics and Systems Biology (SiCORE-MSB), Faculty of Medicine Siriraj Hospital Mahidol University, Bangkok 10700, Thailand
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital Mahidol University, Bangkok 10700, Thailand
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
6
|
Wang X, Fei W, Zhou Z, Zhu M, Chang Y, Guo Q, Guo J, Wang C. Immobilization of Multivalent Titanium Cations on Magnetic Composite Microspheres for Highly Efficient DNA Extraction and Amplification. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42170-42181. [PMID: 37654059 DOI: 10.1021/acsami.3c05502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Magnetic-assisted DNA testing technology has attracted much attention in genetics, clinical diagnostics, environmental microbiology, and molecular biology. However, achieving satisfying DNA adsorption and desorption efficiency in real samples is still a big challenge. In this paper, a new kind of high-quality magnetic composite microsphere of MM@PGMA-PA-Ti4+ was designed and prepared for DNA extraction and detection based on the strong interaction of Ti4+ and phosphate groups. By taking the advantages of high magnetic susceptibility and high Ti4+ content, the MM@PGMA-PA-Ti4+ microspheres possessed remarkable extraction capacity for mimic biological samples (salmon sperm specimens) with saturated loadings up to 533.0 mg/g. When the DNA feeding amount was 100 μg and the MM@PGMA-PA-Ti4+ dosage was 1 mg, the adsorption and desorption efficiencies were 80 and 90%, respectively. The kinetic and equilibrium extraction data were found to fit well with the pseudo-second-order model and Freundlich isotherm model. Furthermore, the MM@PGMA-PA-Ti4+ microspheres were successfully employed for DNA extraction from mouse epithelial-like fibroblasts. The extraction ability (84 ± 4 μg/mg) and DNA purity were superior to the comparative commercial spin kits, as evaluated by electrophoresis assays and qPCR analysis. The experimental results suggest that the MM@PGMA-PA-Ti4+ microspheres possess great potential as an adsorbent for DNA purification from complex biological samples.
Collapse
Affiliation(s)
- Xiuli Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - Weiwei Fei
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - Zhifan Zhou
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - Mengjing Zhu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - Yinghao Chang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - Qilin Guo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - Jia Guo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - Changchun Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| |
Collapse
|
7
|
Patin NV, Goodwin KD. Capturing marine microbiomes and environmental DNA: A field sampling guide. Front Microbiol 2023; 13:1026596. [PMID: 36713215 PMCID: PMC9877356 DOI: 10.3389/fmicb.2022.1026596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/22/2022] [Indexed: 01/15/2023] Open
Abstract
The expanding interest in marine microbiome and eDNA sequence data has led to a demand for sample collection and preservation standard practices to enable comparative assessments of results across studies and facilitate meta-analyses. We support this effort by providing guidelines based on a review of published methods and field sampling experiences. The major components considered here are environmental and resource considerations, sample processing strategies, sample storage options, and eDNA extraction protocols. It is impossible to provide universal recommendations considering the wide range of eDNA applications; rather, we provide information to design fit-for-purpose protocols. To manage scope, the focus here is on sampling collection and preservation of prokaryotic and microeukaryotic eDNA. Even with a focused view, the practical utility of any approach depends on multiple factors, including habitat type, available resources, and experimental goals. We broadly recommend enacting rigorous decontamination protocols, pilot studies to guide the filtration volume needed to characterize the target(s) of interest and minimize PCR inhibitor collection, and prioritizing sample freezing over (only) the addition of preservation buffer. An annotated list of studies that test these parameters is included for more detailed investigation on specific steps. To illustrate an approach that demonstrates fit-for-purpose methodologies, we provide a protocol for eDNA sampling aboard an oceanographic vessel. These guidelines can aid the decision-making process for scientists interested in sampling and sequencing marine microbiomes and/or eDNA.
Collapse
Affiliation(s)
- Nastassia Virginia Patin
- Atlantic Oceanographic and Meteorological Laboratory, Ocean Chemistry and Ecosystems Division, National Oceanic and Atmospheric Administration, Miami, FL, United States,Cooperative Institute for Marine and Atmospheric Studies, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, United States,Stationed at Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA, United States,*Correspondence: Nastassia Virginia Patin,
| | - Kelly D. Goodwin
- Atlantic Oceanographic and Meteorological Laboratory, Ocean Chemistry and Ecosystems Division, National Oceanic and Atmospheric Administration, Miami, FL, United States,Stationed at Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA, United States
| |
Collapse
|
8
|
Brauer A, Bengtsson MM. DNA extraction bias is more pronounced for microbial eukaryotes than for prokaryotes. Microbiologyopen 2022; 11:e1323. [PMID: 36314757 PMCID: PMC9524606 DOI: 10.1002/mbo3.1323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 11/21/2022] Open
Abstract
DNA extraction and preservation bias is a recurring topic in DNA sequencing-based microbial ecology. The different methodologies can lead to distinct outcomes, which has been demonstrated especially in studies investigating prokaryotic community composition. Eukaryotic microbes are ubiquitous, diverse, and increasingly a subject of investigation in addition to bacteria and archaea. However, little is known about how the choice of DNA preservation and extraction methodology impacts perceived eukaryotic community composition. In this study, we compared the effect of two DNA preservation methods and six DNA extraction methods on the community profiles of both eukaryotes and prokaryotes in phototrophic biofilms on seagrass (Zostera marina) leaves from the Baltic Sea. We found that, whereas both DNA preservation and extraction method caused significant bias in perceived community composition for both eukaryotes and prokaryotes, extraction bias was more pronounced for eukaryotes than for prokaryotes. In particular, soft-bodied and hard-shelled eukaryotes like nematodes and diatoms, respectively, were differentially abundant depending on the extraction method. We conclude that careful consideration of DNA preservation and extraction methodology is crucial to achieving representative community profiles of eukaryotes in marine biofilms and likely all other habitats containing diverse eukaryotic microbial communities.
Collapse
Affiliation(s)
- Anne Brauer
- Institute of MicrobiologyUniversity of GreifswaldGreifswaldGermany
| | - Mia M. Bengtsson
- Institute of MicrobiologyUniversity of GreifswaldGreifswaldGermany
- Institute of Marine BiotechnologyGreifswaldGermany
| |
Collapse
|
9
|
Haydon TD, Suggett DJ, Siboni N, Kahlke T, Camp EF, Seymour JR. Temporal Variation in the Microbiome of Tropical and Temperate Octocorals. MICROBIAL ECOLOGY 2022; 83:1073-1087. [PMID: 34331071 DOI: 10.1007/s00248-021-01823-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Bacterial members of the coral holobiont play an important role in determining coral fitness. However, most knowledge of the coral microbiome has come from reef-building scleractinian corals, with far less known about the nature and importance of the microbiome of octocorals (subclass Octocorallia), which contribute significantly to reef biodiversity and functional complexity. We examined the diversity and structure of the bacterial component of octocoral microbiomes over summer and winter, with a focus on two temperate (Erythropodium hicksoni, Capnella gaboensis; Sydney Harbour) and two tropical (Sinularia sp., Sarcophyton sp.; Heron Island) species common to reefs in eastern Australia. Bacterial communities associated with these octocorals were also compared to common temperate (Plesiastrea versipora) and tropical (Acropora aspera) hard corals from the same reefs. Using 16S rRNA amplicon sequencing, bacterial diversity was found to be heterogeneous among octocorals, but we observed changes in composition between summer and winter for some species (C. gaboensis and Sinularia sp.), but not for others (E. hicksoni and Sarcophyton sp.). Bacterial community structure differed significantly between all octocoral species within both the temperate and tropical environments. However, on a seasonal basis, those differences were less pronounced. The microbiomes of C. gaboensis and Sinularia sp. were dominated by bacteria belonging to the genus Endozoicomonas, which were a key conserved feature of their core microbiomes. In contrast to previous studies, our analysis revealed that Endozoicomonas phylotypes are shared across different octocoral species, inhabiting different environments. Together, our data demonstrates that octocorals harbour a broad diversity of bacterial partners, some of which comprise 'core microbiomes' that potentially impart important functional roles to their hosts.
Collapse
Affiliation(s)
- Trent D Haydon
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - David J Suggett
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Nachshon Siboni
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Tim Kahlke
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Emma F Camp
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Justin R Seymour
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| |
Collapse
|
10
|
Silva DP, Epstein HE, Vega Thurber RL. Best practices for generating and analyzing 16S rRNA amplicon data to track coral microbiome dynamics. Front Microbiol 2022; 13:1007877. [PMID: 36891260 PMCID: PMC9987214 DOI: 10.3389/fmicb.2022.1007877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 12/30/2022] [Indexed: 02/22/2023] Open
Abstract
Over the past two decades, researchers have searched for methods to better understand the relationship between coral hosts and their microbiomes. Data on how coral-associated bacteria are involved in their host's responses to stressors that cause bleaching, disease, and other deleterious effects can elucidate how they may mediate, ameliorate, and exacerbate interactions between the coral and the surrounding environment. At the same time tracking coral bacteria dynamics can reveal previously undiscovered mechanisms of coral resilience, acclimatization, and evolutionary adaptation. Although modern techniques have reduced the cost of conducting high-throughput sequencing of coral microbes, to explore the composition, function, and dynamics of coral-associated bacteria, it is necessary that the entire procedure, from collection to sequencing, and subsequent analysis be carried out in an objective and effective way. Corals represent a difficult host with which to work, and unique steps in the process of microbiome assessment are necessary to avoid inaccuracies or unusable data in microbiome libraries, such as off-target amplification of host sequences. Here, we review, compare and contrast, and recommend methods for sample collection, preservation, and processing (e.g., DNA extraction) pipelines to best generate 16S amplicon libraries with the aim of tracking coral microbiome dynamics. We also discuss some basic quality assurance and general bioinformatic methods to analyze the diversity, composition, and taxonomic profiles of the microbiomes. This review aims to be a generalizable guide for researchers interested in starting and modifying the molecular biology aspects of coral microbiome research, highlighting best practices and tricks of the trade.
Collapse
Affiliation(s)
- Denise P Silva
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Hannah E Epstein
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | | |
Collapse
|
11
|
Zhang K, Qin X, Qiu J, Sun T, Qu K, Din AU, Yan W, Li T, Chen Y, Gu W, Rao X, Wang G. Desulfovibrio desulfuricans aggravates atherosclerosis by enhancing intestinal permeability and endothelial TLR4/NF-κB pathway in Apoe mice. Genes Dis 2021; 10:239-253. [PMID: 37013030 PMCID: PMC10066333 DOI: 10.1016/j.gendis.2021.09.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/27/2021] [Accepted: 09/23/2021] [Indexed: 10/20/2022] Open
Abstract
It is increasingly aware that gut microbiota is closely associated with atherosclerosis. However, which and how specific gut bacteria regulate the progression of atherosclerosis is still poorly understood. In this study, modified linear discriminant analysis was performed in comparing the gut microbiota structures of atherosclerotic and non-atherosclerotic mice, and Desulfovibrio desulfuricans (D. desulfuricans) was found to be associated with atherosclerosis. D. desulfuricans-treated Apoe -/- mice showed significantly aggravated atherosclerosis. The proatherogenic effect of D. desulfuricans was attributed to its ability to increase intestinal permeability and subsequent raise in the transit of lipopolysaccharide (LPS) from the intestine to the bloodstream. Excessive LPS in the blood can elicit local and systemic inflammation and activate Toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) signaling of endothelial cells. TAK-242, a specific inhibitor of TLR4, can ameliorate the development of D. desulfuricans-induced atherosclerosis by blocking the LPS-induced activation of TLR4/NF-κB signaling.
Collapse
|
12
|
Harrison XA, McDevitt AD, Dunn JC, Griffiths SM, Benvenuto C, Birtles R, Boubli JP, Bown K, Bridson C, Brooks DR, Browett SS, Carden RF, Chantrey J, Clever F, Coscia I, Edwards KL, Ferry N, Goodhead I, Highlands A, Hopper J, Jackson J, Jehle R, da Cruz Kaizer M, King T, Lea JMD, Lenka JL, McCubbin A, McKenzie J, de Moraes BLC, O'Meara DB, Pescod P, Preziosi RF, Rowntree JK, Shultz S, Silk MJ, Stockdale JE, Symondson WOC, de la Pena MV, Walker SL, Wood MD, Antwis RE. Fungal microbiomes are determined by host phylogeny and exhibit widespread associations with the bacterial microbiome. Proc Biol Sci 2021; 288:20210552. [PMID: 34403636 PMCID: PMC8370808 DOI: 10.1098/rspb.2021.0552] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/14/2021] [Indexed: 12/30/2022] Open
Abstract
Interactions between hosts and their resident microbial communities are a fundamental component of fitness for both agents. Though recent research has highlighted the importance of interactions between animals and their bacterial communities, comparative evidence for fungi is lacking, especially in natural populations. Using data from 49 species, we present novel evidence of strong covariation between fungal and bacterial communities across the host phylogeny, indicative of recruitment by hosts for specific suites of microbes. Using co-occurrence networks, we demonstrate marked variation across host taxonomy in patterns of covariation between bacterial and fungal abundances. Host phylogeny drives differences in the overall richness of bacterial and fungal communities, but the effect of diet on richness was only evident in the mammalian gut microbiome. Sample type, tissue storage and DNA extraction method also affected bacterial and fungal community composition, and future studies would benefit from standardized approaches to sample processing. Collectively these data indicate fungal microbiomes may play a key role in host fitness and suggest an urgent need to study multiple agents of the animal microbiome to accurately determine the strength and ecological significance of host-microbe interactions.
Collapse
Affiliation(s)
| | - Allan D. McDevitt
- School of Science, Engineering and Environment, University of Salford, UK
| | - Jenny C. Dunn
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, UK
| | - Sarah M. Griffiths
- Ecology and Environment Research Centre, Department of Natural Sciences, Manchester Metropolitan University, UK
| | - Chiara Benvenuto
- School of Science, Engineering and Environment, University of Salford, UK
| | - Richard Birtles
- School of Science, Engineering and Environment, University of Salford, UK
| | - Jean P. Boubli
- School of Science, Engineering and Environment, University of Salford, UK
| | - Kevin Bown
- School of Science, Engineering and Environment, University of Salford, UK
| | - Calum Bridson
- Ecology and Environment Research Centre, Department of Natural Sciences, Manchester Metropolitan University, UK
- Department of Earth and Environmental Sciences, University of Manchester, UK
| | - Darren R. Brooks
- School of Science, Engineering and Environment, University of Salford, UK
| | - Samuel S. Browett
- School of Science, Engineering and Environment, University of Salford, UK
| | - Ruth F. Carden
- School of Archaeology, University College Dublin, Ireland
- Wildlife Ecological and Osteological Consultancy, Wicklow, Ireland
| | - Julian Chantrey
- Institute of Veterinary Science, University of Liverpool, UK
| | - Friederike Clever
- Ecology and Environment Research Centre, Department of Natural Sciences, Manchester Metropolitan University, UK
- Smithsonian Tropical Research Institute, Ancon, Republic of Panama
| | - Ilaria Coscia
- School of Science, Engineering and Environment, University of Salford, UK
| | - Katie L. Edwards
- North of England Zoological Society, Chester Zoo, Upton-by-Chester, UK
| | - Natalie Ferry
- School of Science, Engineering and Environment, University of Salford, UK
| | - Ian Goodhead
- School of Science, Engineering and Environment, University of Salford, UK
| | - Andrew Highlands
- School of Science, Engineering and Environment, University of Salford, UK
| | - Jane Hopper
- The Aspinall Foundation, Port Lympne Reserve, Hythe, Kent, UK
| | - Joseph Jackson
- School of Science, Engineering and Environment, University of Salford, UK
| | - Robert Jehle
- School of Science, Engineering and Environment, University of Salford, UK
| | | | - Tony King
- The Aspinall Foundation, Port Lympne Reserve, Hythe, Kent, UK
- School of Anthropology and Conservation, University of Kent, UK
| | - Jessica M. D. Lea
- Department of Earth and Environmental Sciences, University of Manchester, UK
| | - Jessica L. Lenka
- School of Science, Engineering and Environment, University of Salford, UK
| | | | - Jack McKenzie
- School of Science, Engineering and Environment, University of Salford, UK
| | | | - Denise B. O'Meara
- School of Science and Computing, Waterford Institute of Technology, Ireland
| | - Poppy Pescod
- School of Science, Engineering and Environment, University of Salford, UK
| | - Richard F. Preziosi
- Ecology and Environment Research Centre, Department of Natural Sciences, Manchester Metropolitan University, UK
| | - Jennifer K. Rowntree
- Ecology and Environment Research Centre, Department of Natural Sciences, Manchester Metropolitan University, UK
| | - Susanne Shultz
- Department of Earth and Environmental Sciences, University of Manchester, UK
| | | | - Jennifer E. Stockdale
- School of Biosciences, University of Cardiff, UK
- School of Life Sciences, University of Nottingham, UK
| | | | | | - Susan L. Walker
- North of England Zoological Society, Chester Zoo, Upton-by-Chester, UK
| | - Michael D. Wood
- School of Science, Engineering and Environment, University of Salford, UK
| | - Rachael E. Antwis
- School of Science, Engineering and Environment, University of Salford, UK
| |
Collapse
|
13
|
Paniagua Voirol LR, Valsamakis G, Yu M, Johnston PR, Hilker M. How the 'kitome' influences the characterization of bacterial communities in lepidopteran samples with low bacterial biomass. J Appl Microbiol 2020; 130:1780-1793. [PMID: 33128818 DOI: 10.1111/jam.14919] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/02/2020] [Accepted: 10/23/2020] [Indexed: 12/26/2022]
Abstract
AIMS We aimed to elucidate whether the DNA extraction kit and bacteria therein affect the characterization of bacterial communities associated with butterfly samples harbouring different bacterial abundancies. METHODS AND RESULTS We analysed bacteria associated with eggs of Pieris brassicae and with adults of this butterfly, which were either untreated or treated with antibiotics (ABs). Three DNA extraction kits were used. Regardless of the extraction kit used, PCR amplification of the bacterial 16S rRNA gene detected very low bacterial presence in eggs and AB-treated butterflies. In untreated butterflies, bacterial signal intensity varied according to the kit and primers used. Sequencing (MiSeq) of the bacterial communities in untreated and AB-treated butterflies revealed a low alpha diversity in untreated butterflies because of the dominance of few bacteria genera, which were detectable regardless of the kit. However, a significantly greater alpha diversity was found in AB-treated butterflies, evidencing a true bias of the results due to bacterial contaminants in the kit. CONCLUSIONS The so-called 'kitome' can impact the profiling of Lepidoptera-associated bacteria in samples with low bacterial biomass. SIGNIFICANCE AND IMPACT OF THE STUDY Our study highlights the necessity of method testing and analysis of negative controls when investigating Lepidoptera-associated bacterial communities.
Collapse
Affiliation(s)
- L R Paniagua Voirol
- Applied Zoology/Animal Ecology, Institute of Biology, Freie Universitaet Berlin, Berlin, Germany
| | - G Valsamakis
- Applied Zoology/Animal Ecology, Institute of Biology, Freie Universitaet Berlin, Berlin, Germany
| | - M Yu
- Applied Zoology/Animal Ecology, Institute of Biology, Freie Universitaet Berlin, Berlin, Germany
| | - P R Johnston
- Evolutionary Biology, Institute of Biology, Freie Universitaet Berlin, Berlin, Germany.,Berlin Center for Genomics in Biodiversity Research (BeGenDiv), Berlin, Germany.,Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - M Hilker
- Applied Zoology/Animal Ecology, Institute of Biology, Freie Universitaet Berlin, Berlin, Germany
| |
Collapse
|
14
|
Connelly MT, McRae CJ, Liu PJ, Traylor-Knowles N. Lipopolysaccharide treatment stimulates Pocillopora coral genotype-specific immune responses but does not alter coral-associated bacteria communities. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 109:103717. [PMID: 32348787 DOI: 10.1016/j.dci.2020.103717] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
Corals are comprised of a coral host and associated microbes whose interactions are mediated by the coral innate immune system. The diversity of immune factors identified in the Pocillopora damicornis genome suggests that immunity is linked to maintaining microbial symbioses while also being able to detect pathogens. However, it is unclear which immune factors respond to specific microbe-associated molecular patterns and how these immune reactions simultaneously affect coral-associated bacteria. To investigate this, fragments of P. damicornis and P. acuta colonies from Taiwan were subjected to lipopolysaccharide (LPS) treatment to stimulate immune responses and measure bacteria community shifts. RNA-seq revealed genotype-specific immune responses to LPS involving the upregulation of immune receptors, transcription factors, and pore-forming toxins. Bacteria 16S sequencing revealed significantly different bacteria communities between coral genotypes but no differences in bacteria communities were caused by LPS. Our findings confirm that Pocillopora corals activate conserved immune factors in response to LPS and identify transcription factors coordinating Pocillopora corals' immune responses. Additionally, the strong effect of coral genotype on gene expression and bacteria communities highlights the importance of coral genotype in the investigation of coral host-microbe interactions.
Collapse
Affiliation(s)
- Michael T Connelly
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, 33145, USA
| | - Crystal J McRae
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada; Department of Natural Resources and Environmental Studies, National Dong Hwa University, Hualien, 974, Taiwan
| | - Pi-Jen Liu
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung, 944, Taiwan; National Museum of Marine Biology and Aquarium, Pingtung, 944, Taiwan
| | - Nikki Traylor-Knowles
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, 33145, USA.
| |
Collapse
|
15
|
Biagi E, Caroselli E, Barone M, Pezzimenti M, Teixido N, Soverini M, Rampelli S, Turroni S, Gambi MC, Brigidi P, Goffredo S, Candela M. Patterns in microbiome composition differ with ocean acidification in anatomic compartments of the Mediterranean coral Astroides calycularis living at CO 2 vents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 724:138048. [PMID: 32251879 DOI: 10.1016/j.scitotenv.2020.138048] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/02/2020] [Accepted: 03/17/2020] [Indexed: 06/11/2023]
Abstract
Coral microbiomes, the complex microbial communities associated with the different anatomic compartments of the coral, provide important functions for the host's survival, such as nutrient cycling at the host's surface, prevention of pathogens colonization, and promotion of nutrient uptake. Microbiomes are generally referred to as plastic entities, able to adapt their composition and functionality in response to environmental change, with a possible impact on coral acclimatization to phenomena related to climate change, such as ocean acidification. Ocean sites characterized by natural gradients of pCO2 provide models for investigating the ability of marine organisms to acclimatize to decreasing seawater pH. Here we compared the microbiome of the temperate, shallow water, non-symbiotic solitary coral Astroides calycularis that naturally lives at a volcanic CO2 vent in Ischia Island (Naples, Italy), with that of corals living in non-acidified sites at the same island. Bacterial DNA associated with the different anatomic compartments (mucus, tissue and skeleton) of A. calycularis was differentially extracted and a total of 68 samples were analyzed by 16S rRNA gene sequencing. In terms of phylogenetic composition, the microbiomes associated with the different coral anatomic compartments were different from each other and from the microbial communities of the surrounding seawater. Of all the anatomic compartments, the mucus-associated microbiome differed the most between the control and acidified sites. The differences detected in the microbial communities associated to the three anatomic compartments included a general increase in subdominant bacterial groups, some of which are known to be involved in different stages of the nitrogen cycle, such as potential nitrogen fixing bacteria and bacteria able to degrade organic nitrogen. Our data therefore suggests a potential increase of nitrogen fixation and recycling in A. calycularis living close to the CO2 vent system.
Collapse
Affiliation(s)
- Elena Biagi
- Unit of Holobiont Microbiome and Microbiome Engineering (HolobioME), Department of Pharmacy and Biotechnology, University of Bologna, via Belmeloro 6, 40126 Bologna, Italy
| | - Erik Caroselli
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, University of Bologna, via Selmi 3, 40126 Bologna, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, viale Adriatico 1/N, 61032 Fano, Pesaro Urbino, Italy
| | - Monica Barone
- Unit of Holobiont Microbiome and Microbiome Engineering (HolobioME), Department of Pharmacy and Biotechnology, University of Bologna, via Belmeloro 6, 40126 Bologna, Italy
| | - Martina Pezzimenti
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, University of Bologna, via Selmi 3, 40126 Bologna, Italy
| | - Nuria Teixido
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, 181 chemin du Lazaret, F-06230 Villefranche-sur-Mer, France; Villa Dohrn-Benthic Ecology Center, Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, 80077 Ischia (Naples), Italy
| | - Matteo Soverini
- Unit of Holobiont Microbiome and Microbiome Engineering (HolobioME), Department of Pharmacy and Biotechnology, University of Bologna, via Belmeloro 6, 40126 Bologna, Italy
| | - Simone Rampelli
- Unit of Holobiont Microbiome and Microbiome Engineering (HolobioME), Department of Pharmacy and Biotechnology, University of Bologna, via Belmeloro 6, 40126 Bologna, Italy
| | - Silvia Turroni
- Unit of Holobiont Microbiome and Microbiome Engineering (HolobioME), Department of Pharmacy and Biotechnology, University of Bologna, via Belmeloro 6, 40126 Bologna, Italy
| | - Maria Cristina Gambi
- Villa Dohrn-Benthic Ecology Center, Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, 80077 Ischia (Naples), Italy
| | - Patrizia Brigidi
- Unit of Holobiont Microbiome and Microbiome Engineering (HolobioME), Department of Pharmacy and Biotechnology, University of Bologna, via Belmeloro 6, 40126 Bologna, Italy
| | - Stefano Goffredo
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, University of Bologna, via Selmi 3, 40126 Bologna, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, viale Adriatico 1/N, 61032 Fano, Pesaro Urbino, Italy.
| | - Marco Candela
- Unit of Holobiont Microbiome and Microbiome Engineering (HolobioME), Department of Pharmacy and Biotechnology, University of Bologna, via Belmeloro 6, 40126 Bologna, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, viale Adriatico 1/N, 61032 Fano, Pesaro Urbino, Italy.
| |
Collapse
|
16
|
Lendvay B, Cartier LE, Gysi M, Meyer JB, Krzemnicki MS, Kratzer A, Morf NV. DNA fingerprinting: an effective tool for taxonomic identification of precious corals in jewelry. Sci Rep 2020; 10:8287. [PMID: 32427854 PMCID: PMC7237452 DOI: 10.1038/s41598-020-64582-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 04/17/2020] [Indexed: 11/09/2022] Open
Abstract
Precious coral species have been used to produce jewelry and ornaments since antiquity. Due to the high value and demand for corals, some coral beds have been heavily fished over past centuries. Fishing and international trade regulations were put in place to regulate fishing practices in recent decades. To this date, the control of precious coral exploitation and enforcement of trade rules have been somewhat impaired by the fact that different species of worked coral samples can be extremely difficult to distinguish, even for trained experts. Here, we developed methods to use DNA recovered from precious coral samples worked for jewelry to identify their species. We evaluated purity and quantity of DNA extracted using five different techniques. Then, a minimally invasive sampling protocol was tested, which allowed genetic analysis without compromising the value of the worked coral objects.The best performing DNA extraction technique applies decalcification of the skeletal material with EDTA in the presence of laurylsarcosyl and proteinase, and purification of the DNA with a commercial silica membrane. This method yielded pure DNA in all cases using 100 mg coral material and in over half of the cases when using "quasi non-destructive" sampling with sampled material amounts as low as 2.3 mg. Sequence data of the recovered DNA gave an indication that the range of precious coral species present in the trade is broader than previously anticipated.
Collapse
Affiliation(s)
- Bertalan Lendvay
- Zurich Institute of Forensic Medicine, University of Zurich, Winterthurerstrasse 190/52, CH-8057, Zurich, Switzerland. .,Swiss Gemmological Institute SSEF, Aeschengraben 26, CH-4051, Basel, Switzerland.
| | - Laurent E Cartier
- Swiss Gemmological Institute SSEF, Aeschengraben 26, CH-4051, Basel, Switzerland.,Institute of Earth Sciences, University of Lausanne, Géopolis, CH-1015, Lausanne, Switzerland
| | - Mario Gysi
- Zurich Institute of Forensic Medicine, University of Zurich, Winterthurerstrasse 190/52, CH-8057, Zurich, Switzerland
| | - Joana B Meyer
- Federal Office for the Environment FOEN, Worblentalstrasse 68, CH-3063, Ittigen, Switzerland
| | - Michael S Krzemnicki
- Swiss Gemmological Institute SSEF, Aeschengraben 26, CH-4051, Basel, Switzerland
| | - Adelgunde Kratzer
- Zurich Institute of Forensic Medicine, University of Zurich, Winterthurerstrasse 190/52, CH-8057, Zurich, Switzerland
| | - Nadja V Morf
- Zurich Institute of Forensic Medicine, University of Zurich, Winterthurerstrasse 190/52, CH-8057, Zurich, Switzerland
| |
Collapse
|
17
|
Meron D, Davidovich N, Ofek‐Lalzar M, Berzak R, Scheinin A, Regev Y, Diga R, Tchernov D, Morick D. Specific pathogens and microbial abundance within liver and kidney tissues of wild marine fish from the Eastern Mediterranean Sea. Microb Biotechnol 2020; 13:770-780. [PMID: 32059079 PMCID: PMC7111072 DOI: 10.1111/1751-7915.13537] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/09/2019] [Accepted: 01/06/2020] [Indexed: 11/26/2022] Open
Abstract
This study is an initial description and discussion of the kidney and liver microbial communities of five common fish species sampled from four sites along the Eastern Mediterranean Sea shoreline. The goals of the present study were to establish a baseline dataset of microbial communities associated with the tissues of wild marine fish, in order to examine species-specific microbial characteristics and to screen for candidate pathogens. This issue is especially relevant due to the development of mariculture farms and the possible transmission of pathogens from wild to farmed fish and vice versa. Although fish were apparently healthy, 16S rRNA NGS screening identified three potential fish bacterial pathogens: Photobacterium damselae, Vibrio harveyi and Streptococcus iniae. Based on the distribution patterns and relative abundance, 16 samples were classified as potential pathogenic bacteria-infected samples (PPBIS). Hence, PPBIS prevalence was significantly higher in kidneys than in liver samples and variation was found between the fish species. Significant differences were observed between fish species, organs and sites, indicating the importance of the environmental conditions on the fish microbiome. We applied a consistent sampling and analytical method for monitoring in long-term surveys which may be incorporated within other marine fish pathogens surveys around the world.
Collapse
Affiliation(s)
- Dalit Meron
- Morris Kahn Marine Research StationDepartment of Marine BiologyLeon H. Charney School of Marine SciencesUniversity of HaifaHaifaIsrael
| | | | | | - Ran Berzak
- Morris Kahn Marine Research StationDepartment of Marine BiologyLeon H. Charney School of Marine SciencesUniversity of HaifaHaifaIsrael
| | - Aviad Scheinin
- Morris Kahn Marine Research StationDepartment of Marine BiologyLeon H. Charney School of Marine SciencesUniversity of HaifaHaifaIsrael
| | - Yael Regev
- Morris Kahn Marine Research StationDepartment of Marine BiologyLeon H. Charney School of Marine SciencesUniversity of HaifaHaifaIsrael
| | - Rei Diga
- Morris Kahn Marine Research StationDepartment of Marine BiologyLeon H. Charney School of Marine SciencesUniversity of HaifaHaifaIsrael
| | - Dan Tchernov
- Morris Kahn Marine Research StationDepartment of Marine BiologyLeon H. Charney School of Marine SciencesUniversity of HaifaHaifaIsrael
| | - Danny Morick
- Morris Kahn Marine Research StationDepartment of Marine BiologyLeon H. Charney School of Marine SciencesUniversity of HaifaHaifaIsrael
| |
Collapse
|
18
|
Weber L, Apprill A. Diel, daily, and spatial variation of coral reef seawater microbial communities. PLoS One 2020; 15:e0229442. [PMID: 32160233 PMCID: PMC7065756 DOI: 10.1371/journal.pone.0229442] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 02/06/2020] [Indexed: 01/02/2023] Open
Abstract
Reef organisms influence microorganisms within the surrounding seawater, yet the spatial and temporal dynamics of seawater microbial communities located in proximity to corals are rarely investigated. To better understand reef seawater microbial community dynamics over time and space, we collected small-volume seawater samples during the day and night over a 72 hour period from three locations that differed in spatial distance from 5 Porites astreoides coral colonies on a shallow reef in St. John, U.S. Virgin Islands: near-coral (sampled 5 cm horizontally from each colony), reef-depth (sampled 2 m above each colony) and surface seawater (sampled 1 m from the seawater surface). At all time points and locations, we quantified abundances of microbial cells, sequenced small subunit rRNA genes of bacterial and archaeal communities, and measured inorganic nutrient concentrations. Prochlorococcus and Synechococcus cells were consistently elevated at night compared to day and these abundances changed over time, corresponding with temperature, nitrite, and silicate concentrations. During the day, bacterial and archaeal alpha diversity was significantly higher in reef-depth and near-coral seawater compared to the surface seawater, signifying that the reef influences the diversity of the seawater microorganisms. At night, alpha diversity decreased across all samples, suggesting that photosynthesis may favor a more taxonomically diverse community. While Prochlorococcus exhibited consistent temporal rhythmicity, additional taxa were enriched in reef seawater at night compared to day or in reef-depth compared to surface seawater based on their normalized sequence counts. There were some significant differences in nutrient concentrations and cell abundances between reef-depth and near-coral seawater but no clear trends. This study demonstrates that temporal variation supersedes small-scale spatial variation in proximity to corals in reef seawater microbial communities. As coral reefs continue to change in benthic composition worldwide, monitoring microbial composition in response to temporal changes and environmental fluctuations will help discern normal variability from longer lasting changes attributed to anthropogenic stressors and global climate change.
Collapse
Affiliation(s)
- Laura Weber
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, United States of America
- MIT-WHOI Joint PhD Program in Biological Oceanography, Woods Hole, MA, United States of America
| | - Amy Apprill
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, United States of America
- * E-mail:
| |
Collapse
|
19
|
Hernandez-Agreda A, Leggat W, Ainsworth TD. A place for taxonomic profiling in the study of the coral prokaryotic microbiome. FEMS Microbiol Lett 2020; 366:5426210. [PMID: 30939203 DOI: 10.1093/femsle/fnz063] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 04/01/2019] [Indexed: 12/29/2022] Open
Abstract
The enormous variability in richness, abundance and diversity of unknown bacterial organisms inhabiting the coral microbiome have challenged our understanding of their functional contribution to coral health. Identifying the attributes of the healthy meta-organism is paramount for contemporary approaches aiming to manipulate dysbiotic stages of the coral microbiome. This review evaluates the current knowledge on the structure and mechanisms driving bacterial communities in the coral microbiome and discusses two topics requiring further research to define the healthy coral microbiome. (i) We examine the necessity to establish microbial baselines to understand the spatial and temporal dynamics of the healthy coral microbiome and summarise conceptual and logistic challenges to consider in the design of these baselines. (ii) We propose potential mechanical, physical and chemical mechanisms driving bacterial distribution within coral compartments and suggest experiments to test them. Finally, we highlight aspects of the use of 16S amplicon sequencing requiring standardization and discuss its contribution to other multi-omics approaches.
Collapse
Affiliation(s)
- Alejandra Hernandez-Agreda
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, 1 James Cook Dr, Townsville, Queensland, 4811, Australia.,The College of Public Health, Medical and Veterinary Sciences, James Cook University, 1 James Cook Dr, Townsville, Queensland, 4811, Australia.,Invertebrate Zoology and Geology, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, California, 94118, USA
| | - William Leggat
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, 1 James Cook Dr, Townsville, Queensland, 4811, Australia.,The College of Public Health, Medical and Veterinary Sciences, James Cook University, 1 James Cook Dr, Townsville, Queensland, 4811, Australia.,School of Environmental and Life Sciences, The University of Newcastle, 10 Chittaway Road, Ourimbah, New South Wales, 2258, Australia
| | - Tracy D Ainsworth
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, 1 James Cook Dr, Townsville, Queensland, 4811, Australia.,School of Biological, Earth and Environmental Sciences, The University of New South Wales, Biological Sciences Building (D26), Randwick, New South Wales, 2052, Australia
| |
Collapse
|
20
|
Small CM, Currey M, Beck EA, Bassham S, Cresko WA. Highly Reproducible 16S Sequencing Facilitates Measurement of Host Genetic Influences on the Stickleback Gut Microbiome. mSystems 2019; 4:e00331-19. [PMID: 31409661 PMCID: PMC6697441 DOI: 10.1128/msystems.00331-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/19/2019] [Indexed: 12/18/2022] Open
Abstract
Multicellular organisms interact with resident microbes in important ways, and a better understanding of host-microbe interactions is aided by tools such as high-throughput 16S sequencing. However, rigorous evaluation of the veracity of these tools in a different context from which they were developed has often lagged behind. Our goal was to perform one such critical test by examining how variation in tissue preparation and DNA isolation could affect inferences about gut microbiome variation between two genetically divergent lines of threespine stickleback fish maintained in the same laboratory environment. Using careful experimental design and intensive sampling of individuals, we addressed technical and biological sources of variation in 16S-based estimates of microbial diversity. After employing a two-tiered bead beating approach that comprised tissue homogenization followed by microbial lysis in subsamples, we found an extremely minor effect of DNA isolation protocol relative to among-host microbial diversity differences. Abundance estimates for rare operational taxonomic units (OTUs), however, showed much lower reproducibility. Gut microbiome composition was highly variable across fish-even among cohoused siblings-relative to technical replicates, but a subtle effect of host genotype (stickleback line) was nevertheless detected for some microbial taxa.IMPORTANCE Our findings demonstrate the importance of appropriately quantifying biological and technical variance components when attempting to understand major influences on high-throughput microbiome data. Our focus was on understanding among-host (biological) variance in community metrics and its magnitude in relation to within-host (technical) variance, because meaningful comparisons among individuals are necessary in addressing major questions in host-microbe ecology and evolution, such as heritability of the microbiome. Our study design and insights should provide a useful example for others desiring to quantify microbiome variation at biological levels in the face of various technical factors in a variety of systems.
Collapse
Affiliation(s)
- Clayton M Small
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, USA
| | - Mark Currey
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, USA
| | - Emily A Beck
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, USA
| | - Susan Bassham
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, USA
| | - William A Cresko
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, USA
| |
Collapse
|
21
|
Woods DF, Kozak IM, Flynn S, O’Gara F. The Microbiome of an Active Meat Curing Brine. Front Microbiol 2019; 9:3346. [PMID: 30687300 PMCID: PMC6336708 DOI: 10.3389/fmicb.2018.03346] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 12/28/2018] [Indexed: 11/13/2022] Open
Abstract
Traditional food products are important to our culture and heritage, and to the continued success of the food industry. Many of the production processes associated with these products have not been subjected to an in-depth microbial compositional analysis. The traditional process of curing meat, both preserves a natural protein source, as well as increasing its organoleptic qualities. One of the most important salting processes is known as Wiltshire curing. The Wiltshire process involves injecting pork with a curing solution and immersing the meat into microbial-rich brine which promotes the development of the distinct organoleptic characteristics. The important microbial component of Wiltshire brine has not been extensively characterized. We analyzed the key microbial component of Wiltshire brine by performing microbiome analysis using Next Generation Sequencing (NGS) technologies. This analysis identified the genera, Marinilactibacillus, Carnobacterium, Leuconostoc, and Vibrio as the core microflora present in Wiltshire curing brine. The important food industrial applications of these bacteria were also assessed. The bacterial diversity of the brine was investigated, and the community composition of the brine was demonstrated to change over time. New knowledge on the characterization of key microbiota associated with a productive Wiltshire brine is an important development linked to promoting enhanced quality and safety of meat processing in the food industry.
Collapse
Affiliation(s)
- David F. Woods
- Biomerit Research Centre, School of Microbiology, University College Cork, Cork, Ireland
| | - Iwona M. Kozak
- Biomerit Research Centre, School of Microbiology, University College Cork, Cork, Ireland
| | - Stephanie Flynn
- Biomerit Research Centre, School of Microbiology, University College Cork, Cork, Ireland
| | - Fergal O’Gara
- Biomerit Research Centre, School of Microbiology, University College Cork, Cork, Ireland
- Telethon Kids Institute, Subiaco, WA, Australia
- Human Microbiome Programme, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| |
Collapse
|
22
|
Hernandez-Agreda A, Leggat W, Ainsworth TD. A Comparative Analysis of Microbial DNA Preparation Methods for Use With Massive and Branching Coral Growth Forms. Front Microbiol 2018; 9:2146. [PMID: 30245683 PMCID: PMC6137167 DOI: 10.3389/fmicb.2018.02146] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 08/21/2018] [Indexed: 12/24/2022] Open
Abstract
In the last two decades, over 100 studies have investigated the structure of the coral microbiome. However, as yet there are no standardized methods applied to sample preservation and preparation, with different studies using distinct methods. There have also been several comparisons made of microbiome data generated across different studies, which have not addressed the influence of the methodology employed over each of the microbiome datasets. Here, we assess three different preservation methods; salt saturated dimethyl sulfoxide (DMSO) – EDTA, snap freezing with liquid nitrogen and 4% paraformaldehyde solution, and two different preparation methodologies; bead beating and crushing, that have been applied to study the coral microbiome. We compare the resultant bacterial assemblage data for two coral growth forms, the massive coral Goniastrea edwardsi and the branching coral Isopora palifera. We show that microbiome datasets generated from differing preservation and processing protocols are comparable in composition (presence/absence). Significant discrepancies between preservation and homogenization methods are observed in structure (relative abundance), and in the occurrence and dominance of taxa, with rare (low abundance and low occurrence) phylotypes being the most variable fraction of the microbial community. Finally, we provide evidence to support chemical preservation with DMSO as effective as snap freezing samples for generating reliable and robust microbiome datasets. In conclusion, we recommend where possible a standardized preservation and extraction method be taken up by the field to provide the best possible practices for detailed assessments of symbiotic and conserved bacterial associations.
Collapse
Affiliation(s)
- Alejandra Hernandez-Agreda
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia.,College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | - William Leggat
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia.,College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia.,School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, NSW, Australia
| | - Tracy D Ainsworth
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia.,School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
23
|
Brener-Raffalli K, Clerissi C, Vidal-Dupiol J, Adjeroud M, Bonhomme F, Pratlong M, Aurelle D, Mitta G, Toulza E. Thermal regime and host clade, rather than geography, drive Symbiodinium and bacterial assemblages in the scleractinian coral Pocillopora damicornis sensu lato. MICROBIOME 2018; 6:39. [PMID: 29463295 PMCID: PMC5819220 DOI: 10.1186/s40168-018-0423-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 02/11/2018] [Indexed: 05/17/2023]
Abstract
BACKGROUND Although the term holobiont has been popularized in corals with the advent of the hologenome theory of evolution, the underlying concepts are still a matter of debate. Indeed, the relative contribution of host and environment and especially thermal regime in shaping the microbial communities should be examined carefully to evaluate the potential role of symbionts for holobiont adaptation in the context of global changes. We used the sessile, long-lived, symbiotic and environmentally sensitive reef-building coral Pocillopora damicornis to address these issues. RESULTS We sampled Pocillopora damicornis colonies corresponding to two different mitochondrial lineages in different geographic areas displaying different thermal regimes: Djibouti, French Polynesia, New Caledonia, and Taiwan. The community composition of bacteria and the algal endosymbiont Symbiodinium were characterized using high-throughput sequencing of 16S rRNA gene and internal transcribed spacer, ITS2, respectively. Bacterial microbiota was very diverse with high prevalence of Endozoicomonas, Arcobacter, and Acinetobacter in all samples. While Symbiodinium sub-clade C1 was dominant in Taiwan and New Caledonia, D1 was dominant in Djibouti and French Polynesia. Moreover, we also identified a high background diversity (i.e., with proportions < 1%) of A1, C3, C15, and G Symbiodinum sub-clades. Using redundancy analyses, we found that the effect of geography was very low for both communities and that host genotypes and temperatures differently influenced Symbiodinium and bacterial microbiota. Indeed, while the constraint of host haplotype was higher than temperatures on bacterial composition, we showed for the first time a strong relationship between the composition of Symbiodinium communities and minimal sea surface temperatures. CONCLUSION Because Symbiodinium assemblages are more constrained by the thermal regime than bacterial communities, we propose that their contribution to adaptive capacities of the holobiont to temperature changes might be higher than the influence of bacterial microbiota. Moreover, the link between Symbiodinium community composition and minimal temperatures suggests low relative fitness of clade D at lower temperatures. This observation is particularly relevant in the context of climate change, since corals will face increasing temperatures as well as much frequent abnormal cold episodes in some areas of the world.
Collapse
Affiliation(s)
- Kelly Brener-Raffalli
- IHPE, UMR 5244, University of Perpignan Via Domitia, CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - Camille Clerissi
- IHPE, UMR 5244, University of Perpignan Via Domitia, CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - Jeremie Vidal-Dupiol
- IHPE, UMR 5244, University of Perpignan Via Domitia, CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - Mehdi Adjeroud
- ENTROPIE, UMR 9220 & Laboratoire d’Excellence CORAIL, IRD, University of Perpignan Via Domitia, Perpignan, France
| | - François Bonhomme
- ISEM, UMR 5554, CNRS, University of Montpellier, IRD, EPHE, Sète, France
| | - Marine Pratlong
- IMBE, UMR 7263, Aix Marseille University, CNRS, IRD, Avignon University, Marseille, France
| | - Didier Aurelle
- IMBE, UMR 7263, Aix Marseille University, CNRS, IRD, Avignon University, Marseille, France
| | - Guillaume Mitta
- IHPE, UMR 5244, University of Perpignan Via Domitia, CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - Eve Toulza
- IHPE, UMR 5244, University of Perpignan Via Domitia, CNRS, IFREMER, University of Montpellier, Perpignan, France
| |
Collapse
|