1
|
Streb LM, Cholewińska P, Gschwendtner S, Geist J, Rath S, Schloter M. Age matters: exploring differential effects of antimicrobial treatment on gut microbiota of adult and juvenile brown trout (Salmo trutta). Anim Microbiome 2025; 7:28. [PMID: 40091084 PMCID: PMC11910850 DOI: 10.1186/s42523-025-00391-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 02/27/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND Antibiotics and antiparasitics are essential tools in controlling infectious disease outbreaks in commercial aquaculture. While the negative effects of antimicrobials on the gut microbiome of various farmed fish species are well documented, the influence of underlying host factors, such as age, on microbiome responses remains poorly understood. This is especially evident for peracetic acid, whose impact on the gut microbiome has not yet been studied. Understanding how microbiome dynamics vary by host age is critical to improving antibiotic stewardship in aquaculture. In this study, juvenile and sexually mature brown trout (Salmo trutta) were used as a model to investigate the age-dependent effects of florfenicol and peracetic acid on the gut microbiome using a 16S rRNA metabarcoding approach. RESULTS Fish age significantly shaped taxonomic composition and microbial co-occurrence network structure of the gut microbiome, regardless of treatment. Juvenile trout exhibited greater microbiome volatility and a stronger response to both florfenicol and peracetic acid compared to adult fish, with disruptions persisting up to 11 days post-treatment. Temporal dynamics were also evident, with microbial shifts characterized by a decline in beneficial commensals like Cetobacterium and Lactococcus. Although overall abundance recovered by 18 days post-treatment, network positions of key microbial community members remained altered, particularly in juvenile fish. Opportunistic pathogens, including Aeromonas and Streptococcus, were enriched and assumed more central roles within the microbial networks in treated fish. CONCLUSION The initial composition of the gut microbiome in brown trout is strongly influenced by fish age, which in turn affects the microbiome's response to antibiotic disruption. Juveniles displayed higher susceptibility to microbiome perturbation, and although recovery was observed at the community level, network properties remained altered. This study also provides the first evidence that external peracetic acid application can disrupt gut microbial communities. Since compositional shifts are often linked to functional alterations, even short-term disruptions may have important consequences for host health in developing fish. These findings emphasize the importance of considering gut microbial community structure in relation to fish age in aquaculture management practices.
Collapse
Affiliation(s)
- Lisa-Marie Streb
- Research Unit Comparative Microbiome Analysis, Helmholtz Munich, Neuherberg, Germany
| | - Paulina Cholewińska
- Chair for Fish Diseases and Fisheries Biology, Ludwig-Maximilian University, Munich, Germany
| | - Silvia Gschwendtner
- Research Unit Comparative Microbiome Analysis, Helmholtz Munich, Neuherberg, Germany
| | - Juergen Geist
- TUM School of Life Sciences, Chair of Aquatic Systems Biology, Technical University Munich, Freising, Germany
| | - Susanne Rath
- Institute for Chemistry, University of Campinas, Campinas, Brazil
| | - Michael Schloter
- Research Unit Comparative Microbiome Analysis, Helmholtz Munich, Neuherberg, Germany.
- TUM School of Life Sciences, Chair of Environmental Microbiology, Technical University Munich, Freising, Germany.
| |
Collapse
|
2
|
Toxqui-Rodríguez S, Estensoro I, Domingo-Bretón R, Del Pozo R, Pérez-Sánchez J, Sipkema D, Sitjà-Bobadilla A, Piazzon MC. Interactions between gilthead seabream intestinal transcriptome and microbiota upon Enteromyxum leei infection: a multi-omic approach. Anim Microbiome 2025; 7:22. [PMID: 40050956 PMCID: PMC11884135 DOI: 10.1186/s42523-025-00388-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 02/25/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND The enteric myxozoan parasite Enteromyxum leei is an important problem in gilthead seabream aquaculture invading the intestinal epithelium and leading to chronic intestinal inflammation, poor food conversion rates, cachexia, and mortalities, with no treatments available, resulting in significant economic losses. It is known that myxozoan infections are affected by factors such as temperature, duration of exposure, stocking densities, and seasonality. Gut microbiota has key effects on host health, including disease resistance and immune system training and development, tightly interacting with the host, affecting systemic and local physiological functions. This study aimed to gain insights into the host-microbiota-parasite interactions integrating metataxonomics, host transcriptomics, and metatranscriptomics within this disease model. RESULTS Exposure to E. leei together with temperature and age differences led to alterations in gilthead seabream intestinal microbiota. Samples from 240 g fish kept at 18ºC during a winter trial at 10 weeks post-parasite exposure showed the highest significant changes in their microbial composition with Proteobacteria increasing in abundance from 32.3% in the control group up to 89.8% in the infected group, while Firmicutes and Actinobacteria significantly decreased in relative abundance from 23% and 37.8-2.4% and 1.1%, respectively. After LEfSe analysis, Acinetobacter was identified as the best biomarker for the parasite-exposed group. Parasite exposure also altered the expression of 935 host genes, highlighting genes involved in immune responses such as pathways related to Interleukins, MHCI and Interferons. Microbial transcripts, also showed significant changes upon parasite infection. Integration of the results revealed differential effects on the host induced directly by the parasite or indirectly by parasite-induced microbial shift. CONCLUSIONS Intestinal microbiota and local host gene expression showed significant changes upon en enteromyxosis. The detected activation of the host immune response was not exclusively linked to the parasite infection but also to changes in microbiota, demonstrating the key role of the different components of the mucosal system during disease. These results provided different datasets of bacterial taxa and microbial and host transcripts that will allow a better understanding of host-microbiota-parasite interactions and can serve as starting points for studying and evaluating mucosal health in aquaculture during parasitosis or other diseases.
Collapse
Affiliation(s)
- Socorro Toxqui-Rodríguez
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS, CSIC), Castellón, Spain
- Nutrigenomics and Fish Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS, CSIC), Castellón, Spain
| | - Itziar Estensoro
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS, CSIC), Castellón, Spain
| | - Ricardo Domingo-Bretón
- Nutrigenomics and Fish Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS, CSIC), Castellón, Spain
| | - Raquel Del Pozo
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS, CSIC), Castellón, Spain
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS, CSIC), Castellón, Spain
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Ariadna Sitjà-Bobadilla
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS, CSIC), Castellón, Spain
| | - M Carla Piazzon
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS, CSIC), Castellón, Spain.
| |
Collapse
|
3
|
Haridevamuthu B, Sudhakaran G, Rajagopal R, Alfarhan A, Arshad A, Arockiaraj J. Host-Parasite Interactions and Integrated Management Strategies for Ecytonucleospora Hepatopenaei Infection in Shrimp. Acta Parasitol 2025; 70:67. [PMID: 40050501 DOI: 10.1007/s11686-025-01007-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/25/2025] [Indexed: 04/26/2025]
Abstract
BACKGROUND Ecytonucleospora hepatopenaei (EHP) is a major parasitic pathogen in shrimp causing hepatopancreatic microsporidiosis, which leads to significant growth retardation and global economic losses. This pathogen employs various immune evasion strategies that complicate treatment and management. PURPOSE This review examines the complex host-parasite interactions, focusing on the immune evasion mechanisms used by EHP. The study explores how EHP manipulates host immune pathways, including NF-κB, JAK/STAT, Toll, and IMD, to suppress immune responses, inhibit antimicrobial peptide production, and avoid detection, thus ensuring its persistence in the host. METHODS The authors reviewed recent research from databases like PubMed, Scopus, and Web of Science, including studies up to 2024. The keywords Ecytonucleospora hepatopenaei, immune evasion, EHP treatment, and associated words with topics were used in this search. RESULTS EHP induces oxidative stress, which weakens the host immune system while simultaneously upregulating antioxidant responses to favor its survival. The parasite also alters the gut microbiota and disrupts key cellular processes, such as cell cycle regulation, further enhancing its ability to sustain infection. CONCLUSION This review highlights the need for integrated management strategies, including disease-resistant breeding, microbiota modulation, and advanced diagnostics, to combat EHP. By providing an overview of EHP's immune evasion tactics, this study aims to advance knowledge in the field and support efforts to improve shrimp health and aquaculture sustainability.
Collapse
Affiliation(s)
- Balasubramanian Haridevamuthu
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, Chengalpattu District, Tamil Nadu, 603203, India
| | - Gokul Sudhakaran
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, Tamil Nadu, 602105, India
| | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ahmed Alfarhan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Aziz Arshad
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, Chengalpattu District, Tamil Nadu, 603203, India.
| |
Collapse
|
4
|
Yu W, Yang J, Teng LW, Zhao XL, Zhu ZY, Cui S, Du WG, Liu ZS, Zeng ZG. Reciprocal translocation experiments reveal gut microbiome plasticity and host specificity in a Qinghai-Xizang Plateau lizard. Zool Res 2025; 46:139-151. [PMID: 39846192 PMCID: PMC11891006 DOI: 10.24272/j.issn.2095-8137.2024.284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/20/2025] [Indexed: 01/24/2025] Open
Abstract
Animal adaptation to environmental challenges is a complex process involving intricate interactions between the host genotype and gut microbiome composition. The gut microbiome, highly responsive to external environmental factors, plays a crucial role in host adaptability and may facilitate local adaptation within species. Concurrently, the genetic background of host populations influences gut microbiome composition, highlighting the bidirectional relationship between host and microbiome. Despite this, our understanding of gut microbiome plasticity and its role in host adaptability remains limited, particularly in reptiles. To clarify this issue, we conducted a reciprocal translocation experiment with gravid females of the Qinghai toad-headed lizards ( Phrynocephalus vlangalii) between high-altitude (2 600 m a.s.l.) and superhigh-altitude (3 600 m a.s.l.) environments on Dangjin Mountain of the Qinghai-Xizang Plateau, China. One year later, we assessed the phenotypes and gut microbiomes of their offspring. Results revealed significant plasticity in gut microbiome diversity and structure in response to contrasting elevations. High-altitude conditions increased diversity, and maternal effects appeared to enable high-altitude lizards to maintain elevated diversity when exposed to superhigh-altitude environments. Additionally, superhigh-altitude lizards displayed distinct gut microbiome structures with notable host specificity, potentially linked to their lower growth rates. Overall, these findings underscore the importance of the gut microbiome in facilitating reptilian adaptation to rapid environmental changes across altitudinal gradients. Furthermore, this study provides critical insights into microbial mechanisms underpinning local adaptation and adaptative plasticity, offering a foundation for future research on host-microbiome interactions in evolutionary and ecological contexts.
Collapse
Affiliation(s)
- Wei Yu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, China
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Yang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Li-Wei Teng
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, China
- Key Laboratory of Conservation Biology, National Forestry and Grassland Administration, Harbin, Heilongjiang 150040, China
| | - Xiao-Long Zhao
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- School of Ecological and Environmental Sciences, Institute of Eco-Chongming, Shanghai Institute of Wildlife Epidemics, East China Normal University, Shanghai 200241, China
| | - Ze-Yu Zhu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, China
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuang Cui
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Wei-Guo Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhen-Sheng Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, China
- Key Laboratory of Conservation Biology, National Forestry and Grassland Administration, Harbin, Heilongjiang 150040, China. E-mail:
| | - Zhi-Gao Zeng
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China. E-mail:
| |
Collapse
|
5
|
Moroni F, Naya-Català F, Hafez AI, Domingo-Bretón R, Soriano B, Llorens C, Pérez-Sánchez J. Beyond Microbial Variability: Disclosing the Functional Redundancy of the Core Gut Microbiota of Farmed Gilthead Sea Bream from a Bayesian Network Perspective. Microorganisms 2025; 13:198. [PMID: 39858966 PMCID: PMC11767429 DOI: 10.3390/microorganisms13010198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
The significant microbiota variability represents a key feature that makes the full comprehension of the functional interaction between microbiota and the host an ongoing challenge. To overcome this limitation, in this study, fish intestinal microbiota was analyzed through a meta-analysis, identifying the core microbiota and constructing stochastic Bayesian network (BN) models with SAMBA. We combined three experiments performed with gilthead sea bream juveniles of the same hatchery batch, reared at the same season/location, and fed with diets enriched on processed animal proteins (PAP) and other alternative ingredients (NOPAP-PP, NOPAP-SCP). Microbiota data analysis disclosed a high individual taxonomic variability, a high functional homogeneity within trials and highlighted the importance of the core microbiota, clustering PAP and NOPAP fish microbiota composition. For both NOPAP and PAP BNs, >99% of the microbiota population were modelled, with a significant proportion of bacteria (55-69%) directly connected with the diet variable. Functional enrichment identified 11 relevant pathways expressed by different taxa across the different BNs, confirming the high metabolic plasticity and taxonomic heterogeneity. Altogether, these results reinforce the comprehension of the functional bacteria-host interactions and in the near future, allow the use of microbiota as a species-specific growth and welfare benchmark of livestock animals, and farmed fish in particular.
Collapse
Affiliation(s)
- Federico Moroni
- Institute of Aquaculture Torre de la Sal (IATS-CSIC), 12595 Ribera de Cabanes, Spain; (F.N.-C.); (R.D.-B.)
| | - Fernando Naya-Català
- Institute of Aquaculture Torre de la Sal (IATS-CSIC), 12595 Ribera de Cabanes, Spain; (F.N.-C.); (R.D.-B.)
| | - Ahmed Ibrahem Hafez
- Biotechvana, Parc Científic Universitat de València, 46980 Paterna, Spain; (A.I.H.); (B.S.); (C.L.)
| | - Ricardo Domingo-Bretón
- Institute of Aquaculture Torre de la Sal (IATS-CSIC), 12595 Ribera de Cabanes, Spain; (F.N.-C.); (R.D.-B.)
| | - Beatriz Soriano
- Biotechvana, Parc Científic Universitat de València, 46980 Paterna, Spain; (A.I.H.); (B.S.); (C.L.)
| | - Carlos Llorens
- Biotechvana, Parc Científic Universitat de València, 46980 Paterna, Spain; (A.I.H.); (B.S.); (C.L.)
| | - Jaume Pérez-Sánchez
- Institute of Aquaculture Torre de la Sal (IATS-CSIC), 12595 Ribera de Cabanes, Spain; (F.N.-C.); (R.D.-B.)
| |
Collapse
|
6
|
Domingo-Bretón R, Moroni F, Toxqui-Rodríguez S, Belenguer Á, Piazzon MC, Pérez-Sánchez J, Naya-Català F. Moving Beyond Oxford Nanopore Standard Procedures: New Insights from Water and Multiple Fish Microbiomes. Int J Mol Sci 2024; 25:12603. [PMID: 39684314 DOI: 10.3390/ijms252312603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Oxford Nanopore Technology (ONT) allows for the rapid profiling of aquaculture microbiomes. However, not all the experimental and downstream methodological possibilities have been benchmarked. Here, we aimed to offer novel insights into the use of different library preparation methods (standard-RAP and native barcoding-LIG), primers (V3-V4, V1-V3, and V1-V9), and basecalling models (fast-FAST, high-HAC, and super-accuracy-SUP) implemented in ONT to elucidate the microbiota associated with the aquatic environment and farmed fish, including faeces, skin, and intestinal mucus. Microbial DNA from water and faeces samples could be amplified regardless of the library-primer strategy, but only with LIG and V1-V3/V1-V9 primers in the case of skin and intestine mucus. Low taxonomic assignment levels were favoured by the use of full-length V1-V9 primers, though in silico hybridisation revealed a lower number of potential matching sequences in the SILVA database, especially evident with the increase in Actinobacteriota in real datasets. SUP execution allowed for a higher median Phred quality (24) than FAST (11) and HAC (17), but its execution time (6-8 h) was higher in comparison to the other models (0.6-7 h). Altogether, we optimised the use of ONT for water- and fish-related microbial analyses, validating, for the first time, the use of the LIG strategy. We consider that LIG-V1-V9-HAC is the optimal time/cost-effective option to amplify the microbial DNA from environmental samples. However, the use of V1-V3 could help to maximise the dataset microbiome diversity, representing an alternative when long amplicon sequences become compromised by microbial DNA quality and/or high host DNA loads interfere with the PCR amplification/sequencing procedures, especially in the case of gut mucus.
Collapse
Affiliation(s)
- Ricardo Domingo-Bretón
- Nutrigenomics and Fish Growth Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS, CSIC), 12595 Ribera de Cabanes, Castellón, Spain
| | - Federico Moroni
- Nutrigenomics and Fish Growth Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS, CSIC), 12595 Ribera de Cabanes, Castellón, Spain
| | - Socorro Toxqui-Rodríguez
- Nutrigenomics and Fish Growth Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS, CSIC), 12595 Ribera de Cabanes, Castellón, Spain
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS, CSIC), 12595 Ribera de Cabanes, Castellón, Spain
| | - Álvaro Belenguer
- Nutrigenomics and Fish Growth Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS, CSIC), 12595 Ribera de Cabanes, Castellón, Spain
| | - M Carla Piazzon
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS, CSIC), 12595 Ribera de Cabanes, Castellón, Spain
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS, CSIC), 12595 Ribera de Cabanes, Castellón, Spain
| | - Fernando Naya-Català
- Nutrigenomics and Fish Growth Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS, CSIC), 12595 Ribera de Cabanes, Castellón, Spain
| |
Collapse
|
7
|
Rimoldi S, Di Rosa AR, Oteri M, Chiofalo B, Hasan I, Saroglia M, Terova G. The impact of diets containing Hermetia illucens meal on the growth, intestinal health, and microbiota of gilthead seabream (Sparus aurata). FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1003-1024. [PMID: 38386264 PMCID: PMC11213805 DOI: 10.1007/s10695-024-01314-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 01/29/2024] [Indexed: 02/23/2024]
Abstract
The present study investigated the effect of replacing fishmeal (FM) with insect meal of Hermetia illucens (HI) in the diet of Sparus aurata farmed inshore on growth, gut health, and microbiota composition. Two isolipidic (18% as fed) and isoproteic (42% as fed) diets were tested at the farm scale: a control diet without HI meal and an experimental diet with 11% HI meal replacing FM. At the end of the 25-week feeding trial, final body weight, specific growth rate, feed conversion rate, and hepatosomatic index were not affected by the diet. Gross morphology of the gastrointestinal tract and the liver was unchanged and showed no obvious signs of inflammation. High-throughput sequencing of 16S rRNA gene amplicons (MiSeq platform, Illumina) used to characterize the gut microbial community profile showed that Proteobacteria, Fusobacteria, and Firmicutes were the dominant phyla of the gut microbiota of gilthead seabream, regardless of diet. Dietary inclusion of HI meal altered the gut microbiota by significantly decreasing the abundance of Cetobacterium and increasing the relative abundance of the Oceanobacillus and Paenibacillus genera. Our results clearly indicate that the inclusion of HI meal as an alternative animal protein source positively affects the gut microbiota of seabream by increasing the abundance of beneficial genera, thereby improving gut health and maintaining growth performance of S. aurata from coastal farms.
Collapse
Affiliation(s)
- Simona Rimoldi
- Department of Biotechnology and Life Sciences, University of Insubria, Via J.H. Dunant, 3, 21100, Varese, Italy
| | - Ambra Rita Di Rosa
- Department of Veterinary Sciences, University of Messina, Messina, Italy.
| | - Marianna Oteri
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Biagina Chiofalo
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Imam Hasan
- Department of Biotechnology and Life Sciences, University of Insubria, Via J.H. Dunant, 3, 21100, Varese, Italy
| | - Marco Saroglia
- Department of Biotechnology and Life Sciences, University of Insubria, Via J.H. Dunant, 3, 21100, Varese, Italy
| | - Genciana Terova
- Department of Biotechnology and Life Sciences, University of Insubria, Via J.H. Dunant, 3, 21100, Varese, Italy.
| |
Collapse
|
8
|
Milián-Sorribes MC, Martínez-Llorens S, Peñaranda DS, Jauralde I, Jover-Cerdá M, Tomás-Vidal A. Growth, Survival, and Intestinal Health Alterations in Mediterranean Yellowtail ( Seriola dumerili) Due to Alternatives to Fishmeal and Fish Oil. Curr Issues Mol Biol 2024; 46:753-772. [PMID: 38248351 PMCID: PMC10814527 DOI: 10.3390/cimb46010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 01/23/2024] Open
Abstract
Fishmeal and fish oil substitution in aquafeeds might have adverse effects on fish growth and health, mainly in carnivorous species, such as Mediterranean yellowtail (Seriola dumerili). Mediterranean yellowtail shows great potential as an alternative aquaculture species due to its fast growth and high price on the market, but the need for high-quality protein and fatty acid content in its diets is limiting its production. In order to improve the sustainability of its production, this study was conducted with 360 fish of 35 g to evaluate the effects on fish growth and health. Six diets were used: one control diet without replacement, three with FM replacement (FM66, FM33, and FM0) (33%, 66%, and 100% FM replacement), and two with FO replacement (FO50 and FO0) (50% and 100% FO replacement). The substitution of FM was with vegetable (VM) (corn gluten) and animal (AM) (krill and meat meal) meals. The reductions in FM and FO of up to 33 and 0%, respectively, did not affect the growth and survival of S. dumerili at the intestinal morphology level, except for the anterior intestine regarding the lower villi length and width and the posterior intestine regarding the lower width of the lamina propria. On the other hand, the substitution of fish ingredients in the diet affects liver morphology, indicating alterations in the major diameter of hepatocytes or their nuclei. Finally, diet did not affect the gut microbiota with respect to the control, but significant differences were found in alpha and beta diversity when FO and FM microbiota were compared. A 66% FM replacement and total FO replacement would be possible without causing major alterations in the fish.
Collapse
Affiliation(s)
| | - Silvia Martínez-Llorens
- Aquaculture and Biodiversity Group, Institute of Animal Science and Technology, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; (M.C.M.-S.); (D.S.P.); (I.J.); (M.J.-C.); (A.T.-V.)
| | | | | | | | | |
Collapse
|
9
|
Berggren H, Nordahl O, Yıldırım Y, Larsson P, Tibblin P, Forsman A. Effects of environmental translocation and host characteristics on skin microbiomes of sun-basking fish. Proc Biol Sci 2023; 290:20231608. [PMID: 38113936 PMCID: PMC10730295 DOI: 10.1098/rspb.2023.1608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 11/20/2023] [Indexed: 12/21/2023] Open
Abstract
Variation in the composition of skin-associated microbiomes has been attributed to host species, geographical location and habitat, but the role of intraspecific phenotypic variation among host individuals remains elusive. We explored if and how host environment and different phenotypic traits were associated with microbiome composition. We conducted repeated sampling of dorsal and ventral skin microbiomes of carp individuals (Cyprinus carpio) before and after translocation from laboratory conditions to a semi-natural environment. Both alpha and beta diversity of skin-associated microbiomes increased substantially within and among individuals following translocation, particularly on dorsal body sites. The variation in microbiome composition among hosts was significantly associated with body site, sun-basking, habitat switch and growth, but not temperature gain while basking, sex, personality nor colour morph. We suggest that the overall increase in the alpha and beta diversity estimates among hosts were induced by individuals expressing greater variation in behaviours and thus exposure to potential colonizers in the pond environment compared with the laboratory. Our results exemplify how biological diversity at one level of organization (phenotypic variation among and within fish host individuals) together with the external environment impacts biological diversity at a higher hierarchical level of organization (richness and composition of fish-associated microbial communities).
Collapse
Affiliation(s)
- Hanna Berggren
- Ecology and Evolution in Microbial model Systems, EEMiS Department of Biology and Environmental Science, Linnaeus University, 391 82 Kalmar, Sweden
| | - Oscar Nordahl
- Ecology and Evolution in Microbial model Systems, EEMiS Department of Biology and Environmental Science, Linnaeus University, 391 82 Kalmar, Sweden
| | - Yeşerin Yıldırım
- Ecology and Evolution in Microbial model Systems, EEMiS Department of Biology and Environmental Science, Linnaeus University, 391 82 Kalmar, Sweden
| | - Per Larsson
- Ecology and Evolution in Microbial model Systems, EEMiS Department of Biology and Environmental Science, Linnaeus University, 391 82 Kalmar, Sweden
| | - Petter Tibblin
- Ecology and Evolution in Microbial model Systems, EEMiS Department of Biology and Environmental Science, Linnaeus University, 391 82 Kalmar, Sweden
| | - Anders Forsman
- Ecology and Evolution in Microbial model Systems, EEMiS Department of Biology and Environmental Science, Linnaeus University, 391 82 Kalmar, Sweden
| |
Collapse
|
10
|
Diwan A, Harke SN, Panche AN. Host-microbiome interaction in fish and shellfish: An overview. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2023; 4:100091. [PMID: 37091066 PMCID: PMC10113762 DOI: 10.1016/j.fsirep.2023.100091] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/28/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023] Open
Abstract
The importance of the gut microbiome in the management of various physiological activities including healthy growth and performance of fish and shellfish is now widely considered and being studied in detail for potential applications in aquaculture farming and the future growth of the fish industry. The gut microbiome in all animals including fish is associated with a number of beneficial functions for the host, such as stimulating optimal gastrointestinal development, producing and supplying vitamins to the host, and improving the host's nutrient uptake by providing additional enzymatic activities. Besides nutrient uptake, the gut microbiome is involved in strengthening the immune system and maintaining mucosal tolerance, enhancing the host's resilience against infectious diseases, and the production of anticarcinogenic and anti-inflammatory compounds. Because of its significant role, the gut microbiome is very often considered an "extra organ," as it plays a key role in intestinal development and regulation of other physiological functions. Recent studies suggest that the gut microbiome is involved in energy homeostasis by regulating feeding, digestive and metabolic processes, as well as the immune response. Consequently, deciphering gut microbiome dynamics in cultured fish and shellfish species will play an indispensable role in promoting animal health and aquaculture productivity. It is mentioned that the microbiome community available in the gut tract, particularly in the intestine acts as an innovative source of natural product discovery. The microbial communities that are associated with several marine organisms are the source of natural products with a diverse array of biological activities and as of today, more than 1000 new compounds have been reported from such microbial species. Exploration of such new ingredients from microbial species would create more opportunities for the development of the bio-pharma/aquaculture industries. Considering the important role of the microbiome in the whole life span of fish and shellfish, it is necessary to understand the interaction process between the host and microbial community. However, information pertaining to host-microbiome interaction, particularly at the cellular level, gene expression, metabolic pathways, and immunomodulation mechanisms, the available literature is scanty. It has been reported that there are three ways of interaction involving the host-microbe-environment operates to maintain homeostasis in the fish and shellfish gut i.e. host intrinsic factors, the environment that shapes the gut microbiome composition, and the core microbial community present in the gut system itself has equal influence on the host biology. In the present review, efforts have been made to collect comprehensive information on various aspects of host-microbiome interaction, particularly on the immune system and health maintenance, management of diseases, nutrient uptake, digestion and absorption, gene expression, and metabolism in fish and shellfish.
Collapse
Affiliation(s)
- A.D. Diwan
- Institute of Biosciences and Technology, Mahatma Gandhi Mission (MGM) University, Aurangabad, 431003, Maharashtra, India
| | - Sanjay N Harke
- Institute of Biosciences and Technology, Mahatma Gandhi Mission (MGM) University, Aurangabad, 431003, Maharashtra, India
| | - Archana N Panche
- Novo Nordisk Centre for Biosustainability, Technical University of Denmark, B220 Kemitorvet, 2800 Kgs, Lyngby, Denmark
| |
Collapse
|
11
|
Naya-Català F, Belenguer A, Montero D, Torrecillas S, Soriano B, Calduch-Giner J, Llorens C, Fontanillas R, Sarih S, Zamorano MJ, Izquierdo M, Pérez-Sánchez J. Broodstock nutritional programming differentially affects the hepatic transcriptome and genome-wide DNA methylome of farmed gilthead sea bream (Sparus aurata) depending on genetic background. BMC Genomics 2023; 24:670. [PMID: 37936076 PMCID: PMC10631108 DOI: 10.1186/s12864-023-09759-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/21/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Broodstock nutritional programming improves the offspring utilization of plant-based diets in gilthead sea bream through changes in hepatic metabolism. Attention was initially focused on fatty acid desaturases, but it can involve a wide range of processes that remain largely unexplored. How all this can be driven by a different genetic background is hardly underlined, and the present study aimed to assess how broodstock nutrition affects differentially the transcriptome and genome-wide DNA methylome of reference and genetically selected fish within the PROGENSA® selection program. RESULTS After the stimulus phase with a low fish oil diet, two offspring subsets of each genetic background received a control or a FUTURE-based diet. This highlighted a different hepatic transcriptome (RNA-seq) and genome-wide DNA methylation (MBD-seq) pattern depending on the genetic background. The number of differentially expressed transcripts following the challenge phase varied from 323 in reference fish to 2,009 in genetically selected fish. The number of discriminant transcripts, and associated enriched functions, were also markedly higher in selected fish. Moreover, correlation analysis depicted a hyper-methylated and down-regulated gene expression state in selected fish with the FUTURE diet, whereas the opposite pattern appeared in reference fish. After filtering for highly represented functions in selected fish, 115 epigenetic markers were retrieved in this group. Among them, lipid metabolism genes (23) were the most reactive following ordering by fold-change in expression, rendering a final list of 10 top markers with a key role on hepatic lipogenesis and fatty acid metabolism (cd36, pitpna, cidea, fasn, g6pd, lipt1, scd1a, acsbg2, acsl14, acsbg2). CONCLUSIONS Gene expression profiles and methylation signatures were dependent on genetic background in our experimental model. Such assumption affected the magnitude, but also the type and direction of change. Thus, the resulting epigenetic clock of reference fish might depict an older phenotype with a lower methylation for the epigenetically responsive genes with a negative methylation-expression pattern. Therefore, epigenetic markers will be specific of each genetic lineage, serving the broodstock programming in our selected fish to prevent and mitigate later in life the risk of hepatic steatosis through changes in hepatic lipogenesis and fatty acid metabolism.
Collapse
Affiliation(s)
- F Naya-Català
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de La Sal (IATS, CSIC), 12595, Castellón, Spain
| | - A Belenguer
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de La Sal (IATS, CSIC), 12595, Castellón, Spain
| | - D Montero
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Ctra. Taliarte S/N, 35214, Telde, Las Palmas, Canary Islands, Spain
| | - S Torrecillas
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Ctra. Taliarte S/N, 35214, Telde, Las Palmas, Canary Islands, Spain
| | - B Soriano
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de La Sal (IATS, CSIC), 12595, Castellón, Spain
- Biotechvana, Parc Científic Universitat de València, 46980, Paterna, Spain
| | - J Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de La Sal (IATS, CSIC), 12595, Castellón, Spain
| | - C Llorens
- Biotechvana, Parc Científic Universitat de València, 46980, Paterna, Spain
| | - R Fontanillas
- Skretting Aquaculture Research Centre, Stavanger, Norway
| | - S Sarih
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Ctra. Taliarte S/N, 35214, Telde, Las Palmas, Canary Islands, Spain
| | - M J Zamorano
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Ctra. Taliarte S/N, 35214, Telde, Las Palmas, Canary Islands, Spain
| | - M Izquierdo
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Ctra. Taliarte S/N, 35214, Telde, Las Palmas, Canary Islands, Spain
| | - J Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de La Sal (IATS, CSIC), 12595, Castellón, Spain.
| |
Collapse
|
12
|
Soriano B, Hafez AI, Naya-Català F, Moroni F, Moldovan RA, Toxqui-Rodríguez S, Piazzon MC, Arnau V, Llorens C, Pérez-Sánchez J. SAMBA: Structure-Learning of Aquaculture Microbiomes Using a Bayesian Approach. Genes (Basel) 2023; 14:1650. [PMID: 37628701 PMCID: PMC10454057 DOI: 10.3390/genes14081650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Gut microbiomes of fish species consist of thousands of bacterial taxa that interact among each other, their environment, and the host. These complex networks of interactions are regulated by a diverse range of factors, yet little is known about the hierarchy of these interactions. Here, we introduce SAMBA (Structure-Learning of Aquaculture Microbiomes using a Bayesian Approach), a computational tool that uses a unified Bayesian network approach to model the network structure of fish gut microbiomes and their interactions with biotic and abiotic variables associated with typical aquaculture systems. SAMBA accepts input data on microbial abundance from 16S rRNA amplicons as well as continuous and categorical information from distinct farming conditions. From this, SAMBA can create and train a network model scenario that can be used to (i) infer information of how specific farming conditions influence the diversity of the gut microbiome or pan-microbiome, and (ii) predict how the diversity and functional profile of that microbiome would change under other variable conditions. SAMBA also allows the user to visualize, manage, edit, and export the acyclic graph of the modelled network. Our study presents examples and test results of Bayesian network scenarios created by SAMBA using data from a microbial synthetic community, and the pan-microbiome of gilthead sea bream (Sparus aurata) in different feeding trials. It is worth noting that the usage of SAMBA is not limited to aquaculture systems as it can be used for modelling microbiome-host network relationships of any vertebrate organism, including humans, in any system and/or ecosystem.
Collapse
Affiliation(s)
- Beatriz Soriano
- Institute of Aquaculture Torre de la Sal (IATS), Consejo Superior de Investigaciones Científicas (CSIC), 12595 Ribera de Cabanes, Spain; (F.N.-C.); (F.M.); (S.T.-R.); (M.C.P.)
- Biotechvana, Parc Científic Universitat de València, 46980 Paterna, Spain; (A.I.H.); (R.A.M.); (C.L.)
- Institute for Integrative Systems Biology (I2SysBio), Universitat de Valencia and CSIC (UVEG-CSIC), 46980 Paterna, Spain;
| | - Ahmed Ibrahem Hafez
- Biotechvana, Parc Científic Universitat de València, 46980 Paterna, Spain; (A.I.H.); (R.A.M.); (C.L.)
| | - Fernando Naya-Català
- Institute of Aquaculture Torre de la Sal (IATS), Consejo Superior de Investigaciones Científicas (CSIC), 12595 Ribera de Cabanes, Spain; (F.N.-C.); (F.M.); (S.T.-R.); (M.C.P.)
| | - Federico Moroni
- Institute of Aquaculture Torre de la Sal (IATS), Consejo Superior de Investigaciones Científicas (CSIC), 12595 Ribera de Cabanes, Spain; (F.N.-C.); (F.M.); (S.T.-R.); (M.C.P.)
| | - Roxana Andreea Moldovan
- Biotechvana, Parc Científic Universitat de València, 46980 Paterna, Spain; (A.I.H.); (R.A.M.); (C.L.)
- Health Research Institute INCLIVA, 46010 Valencia, Spain
- Bioinformatics and Biostatistics Unit, Principe Felipe Research Center (CIPF), 46012 Valencia, Spain
| | - Socorro Toxqui-Rodríguez
- Institute of Aquaculture Torre de la Sal (IATS), Consejo Superior de Investigaciones Científicas (CSIC), 12595 Ribera de Cabanes, Spain; (F.N.-C.); (F.M.); (S.T.-R.); (M.C.P.)
| | - María Carla Piazzon
- Institute of Aquaculture Torre de la Sal (IATS), Consejo Superior de Investigaciones Científicas (CSIC), 12595 Ribera de Cabanes, Spain; (F.N.-C.); (F.M.); (S.T.-R.); (M.C.P.)
| | - Vicente Arnau
- Institute for Integrative Systems Biology (I2SysBio), Universitat de Valencia and CSIC (UVEG-CSIC), 46980 Paterna, Spain;
- Foundation for the Promotion of Sanitary and Biomedical Research of the Valencian Community (FISABIO), 46020 Valencia, Spain
| | - Carlos Llorens
- Biotechvana, Parc Científic Universitat de València, 46980 Paterna, Spain; (A.I.H.); (R.A.M.); (C.L.)
| | - Jaume Pérez-Sánchez
- Institute of Aquaculture Torre de la Sal (IATS), Consejo Superior de Investigaciones Científicas (CSIC), 12595 Ribera de Cabanes, Spain; (F.N.-C.); (F.M.); (S.T.-R.); (M.C.P.)
| |
Collapse
|
13
|
Zhu X, Zhao Y, Sun N, Li C, Jiang Q, Zhang Y, Wei H, Li Y, Hu Q, Li X. Comparison of the gut microbiota and untargeted gut tissue metabolome of Chinese mitten crabs ( Eriocheir sinensis) with different shell colors. Front Microbiol 2023; 14:1218152. [PMID: 37520354 PMCID: PMC10374289 DOI: 10.3389/fmicb.2023.1218152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/21/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction The Chinese mitten crab (Eriocheir sinensis) is a highly valued freshwater crustacean in China. While the natural shell color of E. sinensis is greenish brown (GH), we found a variety with a brownish-orange shell color (RH). Although RH is more expensive, it exhibits a lower molting frequency and growth rate compared with GH, which significantly reduces its yield and hinders large-scale farming. The growth and development of animals are closely related to their gut microbiota and gut tissue metabolic profiles. Methods In this study, we compared the gut microbiome communities and metabolic profiles of juvenile RH and GH crabs using 16S rRNA gene sequencing and liquid chromatography-mass spectrometry (LC-MS), respectively. Results Our findings indicated that the intestinal microbial composition and metabolic characteristics of E. sinensis differed significantly between RH and GH. At the operational taxonomic unit (OTU) level, the α-diversity of the gut microbiota did not differ significantly between RH and GH, while the β-diversity of the RH gut microbiota was higher than that of the GH gut microbiota. At the species level, the richness of unclassified_c_Alphaproteobacteria was significantly higher in the GH group, while the RH group had a significantly higher richness of three low-abundance species, Flavobacteria bacterium BAL38, Paraburkholderia ferrariae, and uncultured_bacterium_g__Legionella. In the current study, 598 gut tissue metabolites were identified, and 159 metabolites were significantly different between GH and RH. The metabolite profile of RH was characteristic of a low level of most amino acids and lipid metabolites and a high level of several pigments compared with that of GH. These metabolites were enriched in 102 KEGG pathways. Four pathways, including (1) Central carbon metabolism in cancer, (2) protein digestion and absorption, (3) alanine, aspartate and glutamate metabolism, and (4) aminoacyl-tRNA biosynthesis, were significantly enriched. The correlation analysis between metabolites and microbiotas indicated that most key differential metabolites were positively correlated with the abundance of Shewanella_sp_MR-7. Discussion This research provided a greater understanding of the physiological conditions of E. sinensis varieties with different shell colors by comparing the gut microbiota and gut tissue metabolome.
Collapse
Affiliation(s)
- Xiaochen Zhu
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Yingying Zhao
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Liaoning Panjin Wetland Ecosystem National Observation and Research Station, Shenyang, China
| | - Na Sun
- Panjin Guanghe Crab Industry Co. Ltd., Panjin, China
| | - Changlei Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Qing Jiang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yazhao Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Hua Wei
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Liaoning Panjin Wetland Ecosystem National Observation and Research Station, Shenyang, China
| | - Yingdong Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Liaoning Panjin Wetland Ecosystem National Observation and Research Station, Shenyang, China
| | - Qingbiao Hu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Liaoning Panjin Wetland Ecosystem National Observation and Research Station, Shenyang, China
| | - Xiaodong Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Liaoning Panjin Wetland Ecosystem National Observation and Research Station, Shenyang, China
- Panjin Guanghe Crab Industry Co. Ltd., Panjin, China
| |
Collapse
|
14
|
Zhang H, Zhang M, Hou X, Li Y, Zhang W, Wang L, Niu L. Responses of bacterial community and N-cycling functions stability to different wetting-drying alternation frequencies in a riparian zone. ENVIRONMENTAL RESEARCH 2023; 228:115778. [PMID: 36997041 DOI: 10.1016/j.envres.2023.115778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 05/16/2023]
Abstract
Wetting-drying alternation (WD) of the soil is one of the key characteristics of riparian zones shaped by dam construction, profoundly impacting the soil microenvironment that determines the bacterial community. Knowledge concerning the stability of bacterial community and N-cycling functions in response to different frequencies of WD remains unclear. In this study, samples were taken from a riparian zone in the Three Gorges Reservoir (TGR) and an incubation experiment was conducted including four treatments: constant flooding (W), varied wetting-drying alternation frequencies (WD1 and WD2), and constant drying (D) (simulating water level of 145 m, 155 m, 165 m, and 175 m in the riparian zone respectively). The results revealed that there was no significant difference in the diversity among the four treatments. Following the WD1 and WD2 treatments, the relative abundances of Proteobacteria increased, while those of Chloroflexi and Acidobacteriota decreased compared to the W treatment. However, the stability of bacterial community was not affected by WD. Relative to the W treatment, the stability of N-cycling functions estimated by resistance, which refers to the ability of functional genes to adapt to changes in the environment, decreased following the WD1 treatment, but showed no significant change following the WD2 treatment. Random forest analysis showed that the resistances of the nirS and hzo genes were core contributors to the stability of N-cycling functions. This study provides a new perspective for investigating the impacts of wetting-drying alternation on soil microbes.
Collapse
Affiliation(s)
- Huanjun Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Mengzhu Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Xing Hou
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Longfei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| |
Collapse
|
15
|
Barbacariu CA, Rimbu CM, Burducea M, Dirvariu L, Miron LD, Boiangiu RS, Dumitru G, Todirascu-Ciornea E. Comparative Study of Flesh Quality, Blood Profile, Antioxidant Status, and Intestinal Microbiota of European Catfish ( Silurus glanis) Cultivated in a Recirculating Aquaculture System (RAS) and Earthen Pond System. Life (Basel) 2023; 13:1282. [PMID: 37374065 DOI: 10.3390/life13061282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
With the increasing demand for European catfish, traditional extensive growth methods in polyculture are no longer sufficient to meet market needs. Therefore, this study aimed to identify indicators for improving recirculating aquaculture system (RAS) technology by determining and comparing growth performance, flesh quality, blood profile, oxidative status, and intestinal microbiota parameters between fish cultivated in a RAS and an earthen pond. Results revealed that RAS-grown fish had a higher fat content compared to pond-grown fish, while no significant differences were found for growth parameters. Sensory analysis showed no significant difference in taste between the two groups. Blood composition analysis showed small differences. Oxidative status analyses showed higher catalase and glutathione peroxidase activities in RAS-grown fish and slightly higher superoxide dismutase activity in pond-grown fish. Microbial analysis showed differences in the intestinal microflora, with a higher total number of aerobic germs and anaerobic germs and a lower total number of sulfite-reducing clostridia in RAS-grown fish. This study provides valuable insights into the comparative performance of a RAS and a pond rearing system in European catfish production, potentially informing future growth technologies.
Collapse
Affiliation(s)
- Cristian-Alin Barbacariu
- Research and Development Station for Aquaculture and Aquatic Ecology, "Alexandru Ioan Cuza" University, Carol I, 20A, 700505 Iasi, Romania
| | - Cristina Mihaela Rimbu
- Department of Public Health, Faculty of Veterinary Medicine, University of Life Sciences "Ion Ionescu de la Brad" Iaşi, Mihail Sadoveanu Alley 6-8, 700490 Iasi, Romania
| | - Marian Burducea
- Research and Development Station for Aquaculture and Aquatic Ecology, "Alexandru Ioan Cuza" University, Carol I, 20A, 700505 Iasi, Romania
| | - Lenuta Dirvariu
- Research and Development Station for Aquaculture and Aquatic Ecology, "Alexandru Ioan Cuza" University, Carol I, 20A, 700505 Iasi, Romania
| | - Liviu-Dan Miron
- Department of Public Health, Faculty of Veterinary Medicine, University of Life Sciences "Ion Ionescu de la Brad" Iaşi, Mihail Sadoveanu Alley 6-8, 700490 Iasi, Romania
| | - Razvan Stefan Boiangiu
- Faculty of Biology, "Alexandru Ioan Cuza" University, Carol I, 20A, 700505 Iasi, Romania
| | - Gabriela Dumitru
- Faculty of Biology, "Alexandru Ioan Cuza" University, Carol I, 20A, 700505 Iasi, Romania
| | | |
Collapse
|
16
|
Gao Y, Yu T, Ai F, Ji C, Wu Y, Huang X, Zheng X, Yan F. Bacillus coagulans XY2 ameliorates copper-induced toxicity by bioadsorption, gut microbiota and lipid metabolism regulation. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130585. [PMID: 37055990 DOI: 10.1016/j.jhazmat.2022.130585] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 06/19/2023]
Abstract
Excessive copper pollutes the environment and endangers human health, attracting plenty of global attention. In this study, a novel strain named Bacillus coagulans XY2 was discovered to have a great copper tolerance and adsorption capacity. B. coagulans XY2 might maintain copper homeostasis through multisystem synergies of copper resistance, sulfur metabolism, Fe-S cluster assembly, and siderophore transport. In mice, by promoting the expression of SREBF-1 and SREBF-2 and their downstream genes, B. coagulans XY2 significantly inhibited the copper-induced decrease in weight growth rate, ameliorated dyslipidemia, restored total cholesterol and triglyceride contents both in serum and liver. Furthermore, B. coagulans XY2 recovered the diversity of gut microbiota and suppressed the copper-induced reduction in the ratio of Firmicutes to Bacteroidota. Serum metabolomics analysis showed that the alleviating effect of B. coagulans XY2 on copper toxicity was mainly related to lipid metabolism. For the first time, we demonstrated mechanisms of copper toxicity mitigation by B. coagulans XY2, which was related to self-adsorption, host copper excretion promotion, and lipid metabolism regulation. Moreover, working model of B. coagulans XY2 on copper homeostasis was predicted by whole-genome analysis. Our study provides a new solution for harmfulness caused by copper both in human health and the environment.
Collapse
Affiliation(s)
- Yufang Gao
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Ting Yu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Fang Ai
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Chen Ji
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yalan Wu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xuedi Huang
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Fujie Yan
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
17
|
Holhorea PG, Felip A, Calduch-Giner JÀ, Afonso JM, Pérez-Sánchez J. Use of male-to-female sex reversal as a welfare scoring system in the protandrous farmed gilthead sea bream ( Sparus aurata). Front Vet Sci 2023; 9:1083255. [PMID: 36699328 PMCID: PMC9868933 DOI: 10.3389/fvets.2022.1083255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/13/2022] [Indexed: 01/11/2023] Open
Abstract
Gilthead sea bream is a highly cultured marine fish throughout the Mediterranean area, but new and strict criteria of welfare are needed to assure that the intensification of production has no negative effects on animal farming. Most welfare indicators are specific to a given phase of the production cycle, but others such as the timing of puberty and/or sex reversal are of retrospective value. This is of particular relevance in the protandrous gilthead sea bream, in which the sex ratio is highly regulated at the nutritional level. Social and environmental factors (e.g., contaminant loads) also alter the sex ratio, but the contribution of the genetic component remains unclear. To assess this complex issue, five gilthead sea bream families representative of slow/intermediate/fast growth were grown out with control or a plant-based diet in a common garden system from early life to the completion of their sexual maturity in 3-year-old fish. The plant-based diet highly enhanced the male-to-female sex reversal. This occurred in parallel with the progressive impairment of growth performance, which was indicative of changes in nutrient requirements as the result of the different energy demands for growth and reproduction through development. The effect of a different nutritional and genetic background on the reproductive performance was also assessed by measurements of circulating levels of sex steroids during the two consecutive spawning seasons, varying plasma levels of 17β-estradiol (E2) and 11-ketotestosterone (11-KT) with age, gender, diet, and genetic background. Principal component analysis (PCA) of 3-year-old fish displayed a gradual increase of the E2/11-KT ratio from males to females with the improvement of nutritional/genetic background. Altogether, these results support the use of a reproductive tract scoring system for leading farmed fish toward their optimum welfare condition, contributing to improving the productivity of the current gilthead sea bream livestock.
Collapse
Affiliation(s)
- Paul G Holhorea
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal, CSIC, Castellón, Spain
| | - Alicia Felip
- Group of Fish Reproductive Physiology, Institute of Aquaculture Torre de la Sal, CSIC, Castellón, Spain
| | - Josep À Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal, CSIC, Castellón, Spain
| | - Juan Manuel Afonso
- Aquaculture Research Group, Institute of Sustainable Aquaculture and Marine Ecosystems (IU-ECOAQUA), University of Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal, CSIC, Castellón, Spain
| |
Collapse
|
18
|
Naya-Català F, Piazzon MC, Torrecillas S, Toxqui-Rodríguez S, Calduch-Giner JÀ, Fontanillas R, Sitjà-Bobadilla A, Montero D, Pérez-Sánchez J. Genetics and Nutrition Drive the Gut Microbiota Succession and Host-Transcriptome Interactions through the Gilthead Sea Bream ( Sparus aurata) Production Cycle. BIOLOGY 2022; 11:1744. [PMID: 36552254 PMCID: PMC9774573 DOI: 10.3390/biology11121744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
Fish genetically selected for growth (GS) and reference (REF) fish were fed with CTRL (15% FM, 5-7% FO) or FUTURE (7.5% FM, 10% poultry meal, 2.2% poultry oil + 2.5% DHA-algae oil) diets during a 12-months production cycle. Samples from initial (t0; November 2019), intermediate (t1; July 2020) and final (t2; November 2020) sampling points were used for Illumina 16S rRNA gene amplicon sequencing of the adherent microbiota of anterior intestine (AI). Samples from the same individuals (t1) were also used for the gene expression profiling of AI by RNA-seq, and subsequent correlation analyses with microbiota abundances. Discriminant analyses indicated the gut bacterial succession along the production cycle with the proliferation of some valuable taxa for facing seasonality and different developmental stages. An effect of genetic background was evidenced along time, decreasing through the progression of the trial, namely the gut microbiota of GS fish was less influenced by changes in diet composition. At the same time, these fish showed wider transcriptomic landmarks in the AI to cope with these changes. Our results highlighted an enhanced intestinal sphingolipid and phospholipid metabolism, epithelial turnover and intestinal motility in GS fish, which would favour their improved performance despite the lack of association with changes in gut microbiota composition. Furthermore, in GS fish, correlation analyses supported the involvement of different taxa with the down-regulated expression of pro-inflammatory markers and the boosting of markers of extracellular remodelling and response to bacterium. Altogether, these findings support the combined action of the gut microbiome and host transcriptionally mediated effects to preserve and improve gut health and function in a scenario of different growth performance and potentiality.
Collapse
Affiliation(s)
- Fernando Naya-Català
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (IATS, CSIC), 12595 Castellón, Spain
| | - M. Carla Piazzon
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS, CSIC), 12595 Castellón, Spain
| | - Silvia Torrecillas
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Las Palmas, Canary Islands, Spain
| | - Socorro Toxqui-Rodríguez
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (IATS, CSIC), 12595 Castellón, Spain
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS, CSIC), 12595 Castellón, Spain
| | - Josep À. Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (IATS, CSIC), 12595 Castellón, Spain
| | | | - Ariadna Sitjà-Bobadilla
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS, CSIC), 12595 Castellón, Spain
| | - Daniel Montero
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Las Palmas, Canary Islands, Spain
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (IATS, CSIC), 12595 Castellón, Spain
| |
Collapse
|
19
|
Biasato I, Rimoldi S, Caimi C, Bellezza Oddon S, Chemello G, Prearo M, Saroglia M, Hardy R, Gasco L, Terova G. Efficacy of Utilization of All-Plant-Based and Commercial Low-Fishmeal Feeds in Two Divergently Selected Strains of Rainbow Trout ( Oncorhynchus mykiss): Focus on Growth Performance, Whole-Body Proximate Composition, and Intestinal Microbiome. Front Physiol 2022; 13:892550. [PMID: 35669584 PMCID: PMC9163680 DOI: 10.3389/fphys.2022.892550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/11/2022] [Indexed: 11/25/2022] Open
Abstract
The present study aimed to investigate the growth performance, whole-body proximate composition, and intestinal microbiome of rainbow trout strains when selected and non-selected for weight gain on all-plant protein diets. A 2x2 factorial design was applied, where a selected (United States) and a non-selected (ITA) rainbow trout strain were fed using either an all-plant protein (PP) or a commercial low-FM diet (C). Diets were fed to five replicates of 20 (PP) or 25 (C) fish for 105 days. At the end of the trial, growth parameters were assessed, and whole fish (15 pools of three fish/diet) and gut samples (six fish/diet) were collected for whole-body proximate composition and gut microbiome analyses, respectively. Independent of the administered diet, the United States strain showed higher survival, final body weight, weight gain, and specific growth rate when compared to the ITA fish (p < 0.001). Furthermore, decreased whole-body ether extract content was identified in the PP-fed United States rainbow trout when compared to the ITA strain fed the same diet (p < 0.001). Gut microbiome analysis revealed the Cetobacterium probiotic-like genus as clearly associated with the United States rainbow trout, along with the up-regulation of the pathway involved in starch and sucrose metabolism. In summary, the overall improvement in growth performance and, to a lesser extent, whole-body proximate composition observed in the selected rainbow trout strain was accompanied by specific, positive modulation of the intestinal microbiome.
Collapse
Affiliation(s)
- Ilaria Biasato
- Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco (TO), Italy
| | - Simona Rimoldi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Christian Caimi
- Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco (TO), Italy
| | - Sara Bellezza Oddon
- Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco (TO), Italy
| | - Giulia Chemello
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Marino Prearo
- The Veterinary Medical Research Institute for Piedmont, Liguria and Aosta Valley, Torino, Italy
| | - Marco Saroglia
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Ronald Hardy
- Hagerman Fish Culture Experiment Station, University of Idaho, Hagerman, United States
| | - Laura Gasco
- Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco (TO), Italy
| | - Genciana Terova
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
20
|
Naya-Català F, Piazzon MC, Calduch-Giner JA, Sitjà-Bobadilla A, Pérez-Sánchez J. Diet and Host Genetics Drive the Bacterial and Fungal Intestinal Metatranscriptome of Gilthead Sea Bream. Front Microbiol 2022; 13:883738. [PMID: 35602034 PMCID: PMC9121002 DOI: 10.3389/fmicb.2022.883738] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
The gut microbiota is now recognised as a key target for improving aquaculture profit and sustainability, but we still lack insights into the activity of microbes in fish mucosal surfaces. In the present study, a metatranscriptomic approach was used to reveal the expression of gut microbial genes in the farmed gilthead sea bream. Archaeal and viral transcripts were a minority but, interestingly and contrary to rRNA amplicon-based studies, fungal transcripts were as abundant as bacterial ones, and increased in fish fed a plant-enriched diet. This dietary intervention also drove a differential metatranscriptome in fish selected for fast and slow growth. Such differential response reinforced the results of previously inferred metabolic pathways, enlarging, at the same time, the catalogue of microbial functions in the intestine. Accordingly, vitamin and amino acid metabolism, and rhythmic and symbiotic processes were mostly shaped by bacteria, whereas fungi were more specifically configuring the host immune, digestive, or endocrine processes.
Collapse
Affiliation(s)
- Fernando Naya-Català
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal Spanish National Research Council (IATS-CSIC), Valencia, Spain
| | - M. Carla Piazzon
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal Spanish National Research Council (IATS-CSIC), Valencia, Spain
- M. Carla Piazzon,
| | - Josep A. Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal Spanish National Research Council (IATS-CSIC), Valencia, Spain
| | - Ariadna Sitjà-Bobadilla
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal Spanish National Research Council (IATS-CSIC), Valencia, Spain
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal Spanish National Research Council (IATS-CSIC), Valencia, Spain
- *Correspondence: Jaume Pérez-Sánchez,
| |
Collapse
|
21
|
Selection for high growth improves reproductive performance of gilthead seabream Sparus aurata under mass spawning conditions, regardless of the dietary lipid source. Anim Reprod Sci 2022; 241:106989. [DOI: 10.1016/j.anireprosci.2022.106989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/13/2022] [Accepted: 05/01/2022] [Indexed: 11/19/2022]
|
22
|
Naya-Català F, do Vale Pereira G, Piazzon MC, Fernandes AM, Calduch-Giner JA, Sitjà-Bobadilla A, Conceição LEC, Pérez-Sánchez J. Cross-Talk Between Intestinal Microbiota and Host Gene Expression in Gilthead Sea Bream ( Sparus aurata) Juveniles: Insights in Fish Feeds for Increased Circularity and Resource Utilization. Front Physiol 2021; 12:748265. [PMID: 34675821 PMCID: PMC8523787 DOI: 10.3389/fphys.2021.748265] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/02/2021] [Indexed: 01/03/2023] Open
Abstract
New types of fish feed based on processed animal proteins (PAPs), insect meal, yeast, and microbial biomasses have been used with success in gilthead sea bream. However, some drawback effects on feed conversion and inflammatory systemic markers were reported in different degrees with PAP- and non-PAP-based feed formulations. Here, we focused on the effects of control and two experimental diets on gut mucosal-adherent microbiota, and how it correlated with host transcriptomics at the local (intestine) and systemic (liver and head kidney) levels. The use of tissue-specific PCR-arrays of 93 genes in total rendered 13, 12, and 9 differentially expressed (DE) genes in the intestine, liver, and head kidney, respectively. Illumina sequencing of gut microbiota yielded a mean of 125,350 reads per sample, assigned to 1,281 operational taxonomic unit (OTUs). Bacterial richness and alpha diversity were lower in fish fed with the PAP diet, and discriminant analysis displayed 135 OTUs driving the separation between groups with 43 taxa correlating with 27 DE genes. The highest expression of intestinal pcna and alpi was achieved in PAP fish with intermediate values in non-PAP, being the pro-inflammatory action of alpi associated with the presence of Psychrobacter piscatorii. The intestinal muc13 gene was down-regulated in non-PAP fish, with this gene being negatively correlated with anaerobic (Chloroflexi and Anoxybacillus) and metal-reducing (Pelosinus and Psychrosinus) bacteria. Other inflammatory markers (igm, il8, tnfα) were up-regulated in PAP fish, positively correlating the intestinal igm gene with the inflammasome activator Escherichia/Shigella, whereas the systemic expression of il8 and tnfα was negatively correlated with the Bacilli class in PAP fish and positively correlated with Paracoccus yeei in non-PAP fish. Overall changes in the expression pattern of il10, galectins (lgals1, lgals8), and toll-like receptors (tlr2, tlr5, tlr9) reinforced the anti-inflammatory profile of fish fed with the non-PAP diet, with these gene markers being associated with a wide range of OTUs. A gut microbiota-liver axis was also established, linking the microbial generation of short chain fatty acids with the fueling of scd1- and elovl6-mediated lipogenesis. In summary, by correlating the microbiome with host gene expression, we offer new insights in the evaluation of fish diets promoting gut and metabolism homeostasis, and ultimately, the health of farmed fish.
Collapse
Affiliation(s)
- Fernando Naya-Català
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Castellón, Spain
| | | | - M Carla Piazzon
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Ana Margarida Fernandes
- SPAROS Lda, Area Empresarial de Marim, Olhăo, Portugal.,Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Josep Alvar Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Ariadna Sitjà-Bobadilla
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Castellón, Spain
| | | | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Castellón, Spain
| |
Collapse
|
23
|
Abdelhafiz Y, Fernandes JMO, Larger S, Albanese D, Donati C, Jafari O, Nedoluzhko AV, Kiron V. Breeding Strategy Shapes the Composition of Bacterial Communities in Female Nile Tilapia Reared in a Recirculating Aquaculture System. Front Microbiol 2021; 12:709611. [PMID: 34566914 PMCID: PMC8461179 DOI: 10.3389/fmicb.2021.709611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/13/2021] [Indexed: 11/13/2022] Open
Abstract
In industrial animal production, breeding strategies are essential to produce offspring of better quality and vitality. It is also known that host microbiome has a bearing on its health. Here, we report for the first time the influence of crossbreeding strategy, inbreeding or outbreeding, on the buccal and intestinal bacterial communities in female Nile tilapia (Oreochromis niloticus). Crossbreeding was performed within a family and between different fish families to obtain the inbred and outbred study groups, respectively. The genetic relationship and structure analysis revealed significant genetic differentiation between the inbred and outbred groups. We also employed a 16S rRNA gene sequencing technique to understand the significant differences between the diversities of the bacterial communities of the inbred and outbred groups. The core microbiota composition in the mouth and the intestine was not affected by the crossbreeding strategy but their abundance varied between the two groups. Furthermore, opportunistic bacteria were abundant in the buccal cavity and intestine of the outbred group, whereas beneficial bacteria were abundant in the intestine of the inbred group. The present study indicates that crossbreeding can influence the abundance of beneficial bacteria, core microbiome and the inter-individual variation in the microbiome.
Collapse
Affiliation(s)
- Yousri Abdelhafiz
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | | - Simone Larger
- Unit of Computational Biology, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Davide Albanese
- Unit of Computational Biology, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Claudio Donati
- Unit of Computational Biology, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Omid Jafari
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway.,International Sturgeon Research Institute, Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization, Rasht, Iran
| | | | - Viswanath Kiron
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| |
Collapse
|
24
|
Microbiota composition and intestinal integrity remain unaltered after the inclusion of hydrolysed Nannochloropsis gaditana in Sparus aurata diet. Sci Rep 2021; 11:18779. [PMID: 34548549 PMCID: PMC8455595 DOI: 10.1038/s41598-021-98087-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 08/30/2021] [Indexed: 12/30/2022] Open
Abstract
The use of lysed microalgae in the diet of carnivorous fish can increase the bioavailability of proteins and bioactive compounds, such as unsaturated fatty acids or vitamins in the digestive tract. These are essential molecules for the proper physiological development of fish in aquaculture. However, some antinutritional components and other undesirable molecules can be released from an excess of microalgae supplied, compromising the integrity of the intestine. The inclusion of small amounts of hydrolized microalgae in the fish diet can be a good strategy to avoid negative effects, improving the availability of beneficial compounds. Nannochloropsis gaditana is an interesting microalgae as it contains nutraceuticals. Previous studies reported beneficial effects after its inclusion in the diet of Sparus aurata, a widely cultured species in Europe and in all Mediterranean countries. However, administration of raw microalgae can produce intestinal inflammation, increased intestinal permeability, bacterial translocation and disturbance of digestion and absorption processes. The aim of this study was to evaluate changes in the intestinal microbiota and barrier stability of S. aurata fed with low inclusion (5%) hydrolysed N. gaditana. Intestinal microbiota was analyzed using Illumina MiSeq technology and libraries were constructed using variable regions V3–V4 of 16S rDNA molecules. Analysis were based in the identification, quantification and comparison of sequences. The predictive intestinal microbial functionality was analyzed with PICRUSt software. The results determined that the intestinal microbiota bacterial composition and the predictive intestinal microbiota functionality did not change statistically after the inclusion of N. gaditana on the diet. The study of gene expression showed that genes involved in intestinal permeability and integrity were not altered in fish treated with the experimental diet. The potential functionality and bacterial taxonomic composition of the intestinal microbiota, and the expression of integrity and permeability genes in the intestine of the carnivorous fish S. aurata were not affected by the inclusion of hydrolysed 5% N. gaditana microalgae.
Collapse
|
25
|
Transcriptomic profiling of Gh/Igf system reveals a prompted tissue-specific differentiation and novel hypoxia responsive genes in gilthead sea bream. Sci Rep 2021; 11:16466. [PMID: 34385497 PMCID: PMC8360970 DOI: 10.1038/s41598-021-95408-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/19/2021] [Indexed: 12/16/2022] Open
Abstract
A customized PCR-array was used for the simultaneous gene expression of the Gh/Igf system and related markers of muscle growth, and lipid and energy metabolism during early life stages of gilthead sea bream (60–127 days posthatching). Also, transcriptional reprogramming by mild hypoxia was assessed in fingerling fish with different history trajectories on O2 availability during the same time window. In normoxic fish, the expression of almost all the genes in the array varied over time with a prompted liver and muscle tissue-specific differentiation, which also revealed temporal changes in the relative expression of markers of the full gilthead sea bream repertoire of Gh receptors, Igfs and Igf-binding proteins. Results supported a different contribution through development of ghr and igf subtypes on the type of action of GH via systemic or direct effects at the local tissue level. This was extensive to Igfbp1/2/4 and Igfbp3/5/6 clades that clearly evolved through development as hepatic and muscle Igfbp subtypes, respectively. This trade-off is however very plastic to cope changes in the environment, and ghr1 and igfbp1/3/4/5 emerged as hypoxic imprinting genes during critical early developmental windows leading to recognize individuals with different history trajectories of oxygen availability and metabolic capabilities later in life.
Collapse
|
26
|
Targeting the Mild-Hypoxia Driving Force for Metabolic and Muscle Transcriptional Reprogramming of Gilthead Sea Bream ( Sparus aurata) Juveniles. BIOLOGY 2021; 10:biology10050416. [PMID: 34066667 PMCID: PMC8151949 DOI: 10.3390/biology10050416] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/28/2021] [Accepted: 05/04/2021] [Indexed: 01/08/2023]
Abstract
Simple Summary Reduced oxygen availability generates a number of adaptive features across all the animal kingdom, and the goal of this study was targeting the mild-hypoxia driving force for metabolic and muscle transcriptional reprogramming of gilthead sea bream juveniles. Attention was focused on blood metabolic and muscle transcriptomic landmarks before and after exhaustive exercise. Our results after mild-hypoxia conditioning highlighted an increased contribution of lipid metabolism to whole energy supply to preserve the aerobic energy production, a better swimming performance regardless of changes in feed intake, as well as reduced protein turnover and improved anaerobic fitness with the restoration of normoxia. Abstract On-growing juveniles of gilthead sea bream were acclimated for 45 days to mild-hypoxia (M-HYP, 40–60% O2 saturation), whereas normoxic fish (85–90% O2 saturation) constituted two different groups, depending on if they were fed to visual satiety (control fish) or pair-fed to M-HYP fish. Following the hypoxia conditioning period, all fish were maintained in normoxia and continued to be fed until visual satiation for 3 weeks. The time course of hypoxia-induced changes was assessed by changes in blood metabolic landmarks and muscle transcriptomics before and after exhaustive exercise in a swim tunnel respirometer. In M-HYP fish, our results highlighted a higher contribution of aerobic metabolism to whole energy supply, shifting towards a higher anaerobic fitness following normoxia restoration. Despite these changes in substrate preference, M-HYP fish shared a persistent improvement in swimming performance with a higher critical speed at exercise exhaustion. The machinery of muscle contraction and protein synthesis and breakdown was also largely altered by mild-hypoxia conditioning, contributing this metabolic re-adjustment to the positive regulation of locomotion and to the catch-up growth response during the normoxia recovery period. Altogether, these results reinforce the presence of large phenotypic plasticity in gilthead sea bream, and highlights mild-hypoxia as a promising prophylactic measure to prepare these fish for predictable stressful events.
Collapse
|
27
|
Huyben D, Rimoldi S, Ceccotti C, Montero D, Betancor M, Iannini F, Terova G. Effect of dietary oil from Camelina sativa on the growth performance, fillet fatty acid profile and gut microbiome of gilthead Sea bream ( Sparus aurata). PeerJ 2020; 8:e10430. [PMID: 33354421 PMCID: PMC7733328 DOI: 10.7717/peerj.10430] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND In the last two decades, research has focused on testing cheaper and sustainable alternatives to fish oil (FO), such as vegetable oils (VO), in aquafeeds. However, FO cannot be entirely replaced by VOs due to their lack of omega-3 (n-3) long-chain polyunsaturated fatty acids (LC-PUFA), particularly eicosapentaenoic (EPA; 20:5n-3) and docosahexaenoic (DHA; 22:6n-3) acids. The oilseed plant, Camelina sativa, may have a higher potential to replace FO since it can contains up to 40% of the omega-3 precursors α-linolenic acid (ALA; 18:3n-3) and linoleic acid (LA; 18:2n-6). METHODS A 90-day feeding trial was conducted with 600 gilthead sea bream (Sparus aurata) of 32.92 ± 0.31 g mean initial weight fed three diets that replaced 20%, 40% and 60% of FO with CO and a control diet of FO. Fish were distributed into triplicate tanks per diet and with 50 fish each in a flow-through open marine system. Growth performance and fatty acid profiles of the fillet were analysed. The Illumina MiSeq platform for sequencing of 16S rRNA gene and Mothur pipeline were used to identify bacteria in the faeces, gut mucosa and diets in addition to metagenomic analysis by PICRUSt. RESULTS AND CONCLUSIONS The feed conversion rate and specific growth rate were not affected by diet, although final weight was significantly lower for fish fed the 60% CO diet. Reduced final weight was attributed to lower levels of EPA and DHA in the CO ingredient. The lipid profile of fillets were similar between the dietary groups in regards to total saturated, monounsaturated, PUFA (n-3 and n-6), and the ratio of n-3/n-6. Levels of EPA and DHA in the fillet reflected the progressive replacement of FO by CO in the diet and the EPA was significantly lower in fish fed the 60% CO diet, while ALA was increased. Alpha and beta-diversities of gut bacteria in both the faeces and mucosa were not affected by any dietary treatment, although a few indicator bacteria, such as Corynebacterium and Rhodospirillales, were associated with the 60% CO diet. However, lower abundance of lactic acid bacteria, specifically Lactobacillus, in the gut of fish fed the 60% CO diet may indicate a potential negative effect on gut microbiota. PICRUSt analysis revealed similar predictive functions of bacteria in the faeces and mucosa, although a higher abundance of Corynebacterium in the mucosa of fish fed 60% CO diet increased the KEGG pathway of fatty acid synthesis and may act to compensate for the lack of fatty acids in the diet. In summary, this study demonstrated that up to 40% of FO can be replaced with CO without negative effects on growth performance, fillet composition and gut microbiota of gilthead sea bream.
Collapse
Affiliation(s)
- David Huyben
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
- Institute of Aquaculture, Faculty of Natural Sciences,, University of Stirling, Stirling, United Kingdom
| | - Simona Rimoldi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Chiara Ceccotti
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Daniel Montero
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Las Palmas, Canary Islands, Spain
| | - Monica Betancor
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
| | - Federica Iannini
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Genciana Terova
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| |
Collapse
|