1
|
Manullang C, Huang J, Lin W, Liang H, Du H, Li T. Physiological and molecular responses to urea environment in Cladocopium goreaui (Symbiodiniaceae). ENVIRONMENTAL RESEARCH 2025; 273:121239. [PMID: 40020858 DOI: 10.1016/j.envres.2025.121239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/22/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
Nitrogen is an essential nutrient for photosynthetic productivity, and its enrichment in coral reef ecosystems due to anthropogenic activities has raised concerns about ecological impacts. Urea is a readily available nitrogen source that can influence nitrogen dynamics in coral reef ecosystems, but the underlying mechanisms of its assimilation and utilization by coral symbionts remain unclear. This study investigates the physiological and molecular responses of Cladocopium goreaui to urea and nitrate, highlighting key differences in nitrogen assimilation. Although there was no significant difference in the expression of urease genes and proteins under urea and nitrate conditions, the form of nitrogen source did not affect urease activity; instead, nitrogen concentration was the primary factor influencing urease expression. Moreover, the regulation of C. goreaui gene expression by light intensity was more pronounced than the influence of nitrogen source type, suggesting that environmental light plays a more substantial role in gene regulation than the form of nitrogen available. In addition, transcriptomic analysis revealed that the response time of gene expression to nitrogen availability occurred approximately 2 h later than expected, emphasizing the delayed nature of the C. goreaui response. A total of 7786 differentially expressed genes (DEGs) were identified, including 2209 DEGs specific to urea treatment and 2675 DEGs specific to nitrate treatment. Proteomic analysis confirmed these findings, further detailing distinct nitrogen regulatory pathways, including stable metabolic responses to urea and dynamic shifts under nitrate treatment. Additionally, isotopic analyses showed that urea conditions resulted in higher δ13C and δ15N enrichment, indicating more efficient nitrogen and carbon assimilation. These results highlight the advantages of urea as an energetically favorable nitrogen source for C. goreaui, leading to stable metabolic responses and more efficient assimilation of both nitrogen and carbon. The findings underscore the metabolic flexibility of C. goreaui and its ability to adapt to varying nitrogen sources, with a greater impact from light conditions than nitrogen source type.
Collapse
Affiliation(s)
- Cristiana Manullang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, 515063, China
| | - Jiahong Huang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, 515063, China
| | - Wei Lin
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, 515063, China
| | - Honghao Liang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, 515063, China
| | - Hong Du
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, 515063, China.
| | - Tangcheng Li
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, 515063, China.
| |
Collapse
|
2
|
Laso-Pérez R, Rivas-Santisteban J, Fernandez-Gonzalez N, Mundy CJ, Tamames J, Pedrós-Alió C. Nitrogen cycling during an Arctic bloom: from chemolithotrophy to nitrogen assimilation. mBio 2025:e0074925. [PMID: 40353658 DOI: 10.1128/mbio.00749-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Accepted: 04/08/2025] [Indexed: 05/14/2025] Open
Abstract
In the Arctic, phytoplankton blooms are recurring phenomena occurring during the spring-summer seasons and influenced by the strong polar seasonality. Bloom dynamics are affected by nutrient availability, especially nitrogen, which is the main limiting nutrient in the Arctic. This study aimed to investigate the changes in an Arctic microbial community using omics approaches during a phytoplankton bloom focusing on the nitrogen cycle. Using metagenomic and metatranscriptomic samples from the Dease Strait (Canada) from March to July (2014), we reconstructed 176 metagenome-assembled genomes. Bacteria dominated the microbial community, although archaea reached up to 25% of metagenomic abundance in early spring, when Nitrososphaeria archaea actively expressed genes associated with ammonia oxidation to nitrite (amt, amo, nirK). The resulting nitrite was presumably further oxidized to nitrate by a Nitrospinota bacterium that highly expressed a nitrite oxidoreductase gene (nxr). Since May, the constant increase in chlorophyll a indicated the occurrence of a phytoplankton bloom, promoting the successive proliferation of different groups of chemoorganotrophic bacteria (Bacteroidota, Alphaproteobacteria, Gammaproteobacteria). These bacteria showed different strategies to obtain nitrogen, whether it be from organic or inorganic sources, according to the expression patterns of genes encoding transporters for nitrogen compounds. In contrast, during summer, the chemolithotrophic organisms thriving during winter reduced their relative abundance and the expression of their catabolic genes. Based on our functional analysis, we see a transition from a community where nitrogen-based chemolitotrophy plays a relevant role to a chemoorganotrophic community based on the carbohydrates released during the phytoplankton bloom, where different groups seem to specialize in different nitrogen sources.IMPORTANCEThe Arctic is one of the environments most affected by anthropogenic climate change. It is expected that the rise in temperature and change in ice cover will impact the marine microbial communities and the associated biogeochemical cycles. In this regard, nitrogen is the main nutrient limiting Arctic phytoplankton blooms. In this study, we combine genetic and expression data to study the nitrogen cycle at the community level over a time series covering from March to July. Our results indicate the importance of different taxa (from archaea to bacteria) and processes (from chemolithoautotrophy to incorporation of different nitrogen sources) in the cycling of nitrogen during this period. This study provides a baseline for future research that should include additional methodologies like biogeochemical analysis to fully understand the changes occurring on these communities due to global change.
Collapse
Affiliation(s)
- Rafael Laso-Pérez
- Biogeochemistry and Microbial Ecology Department, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
- Department of Systems Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Juan Rivas-Santisteban
- Department of Systems Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Nuria Fernandez-Gonzalez
- Department of Systems Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Spain
| | - Christopher J Mundy
- Centre for Earth Observation Science, Clayton H. Riddell Faculty of Environment, Earth, and Resources, University of Manitoba, Winnipeg, Canada
| | - Javier Tamames
- Department of Systems Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Carlos Pedrós-Alió
- Department of Systems Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| |
Collapse
|
3
|
Zhang X, Li K, Shao Y, Xiao Y, Zhou H, Qu Y, Zhan J. Spatial variation and influencing factors of planktonic and sedimentary bacterial communities in Daliao River estuary, Northeast China. MARINE ENVIRONMENTAL RESEARCH 2025; 209:107209. [PMID: 40367631 DOI: 10.1016/j.marenvres.2025.107209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/06/2025] [Accepted: 05/05/2025] [Indexed: 05/16/2025]
Abstract
Planktonic and sedimentary bacteria play distinct yet vital roles in maintaining the ecological balance of riverine and estuarine ecosystems. Understanding their composition and ecological functions is essential for effective ecosystem management and conservation. In this study, water and sediment samples were collected from the Daliao River, a major tributary of the Liao River basin in Northeast China, to explore the spatial variation of planktonic and sedimentary bacterial communities and identify the factors driving their distribution. The results exhibited significant differences in physicochemical properties of water and sediments along the river, which influenced bacterial diversity and community structure. Beta diversity analysis further revealed clear distinctions between planktonic and sedimentary communities. Proteobacteria and Bacteroidetes were the dominant phyla in both habitats, with Pseudomonas, Acinetobacter, and Woeseia identified as the most prevalent genera. Ecological network analysis indicated that planktonic bacterial communities exhibited a higher proportion of negative correlations and contained more potential keystone taxa compared to sedimentary communities. Functional gene analysis showed a notable presence of genes associated with nitrogen and phosphorus cycles, with nitrogen cycling genes being particularly abundant in planktonic communities. The pH and electrical conductivity emerged as the primary drivers influencing the structure and function of planktonic and sedimentary bacterial communities. Additionally, nutrients such as NO3--N and SO42- played significant roles in shaping planktonic bacterial communities. This study advances the understanding of microbial dynamics in riverine and estuarine ecosystems, providing a scientific basis for mitigating eutrophication, optimizing ecological restoration strategies, and strengthening holistic assessments of aquatic ecosystem health.
Collapse
Affiliation(s)
- Xuwang Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Kuimin Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Yating Shao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Yang Xiao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Hao Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Yuanyuan Qu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Jingjing Zhan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, China.
| |
Collapse
|
4
|
Wang H, Wu S, Ma J, Hong Y, Guo C, Zhao J, Lin X. Promoted growth with dynamic cellular stoichiometry driven by utilization of in-situ dissolved organic matter: Insights from bloom-forming dinoflagellate Prorocentrum donghaiense. MARINE ENVIRONMENTAL RESEARCH 2025; 204:106900. [PMID: 39667208 DOI: 10.1016/j.marenvres.2024.106900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/23/2024] [Accepted: 12/06/2024] [Indexed: 12/14/2024]
Abstract
Mixotrophic dinoflagellates frequently cause harmful algal blooms (HABs) in eutrophic waters that contain diverse dissolved organic matter (DOM), especially intensive mariculture areas. Compared to the extensive investigation of phagotrophy and single organic molecule uptake by causative species, we have limited knowledge about the capability of mixotrophic dinoflagellates to utilize in-situ DOM in mariculture waters and its contribution to HABs. Here we use filtered in-situ mariculture water as the sole medium to examine the physiological response of Prorocentrum donghaiense to the natural mariculture DOM. Our results showed an 87.2% increase in the cell growth rate, as well as photosynthesis (16.8%-29.2%) and cellular chlorophyll a (32.4%-70.7%) when cultured with DOM compared to those grown in the inorganic medium. Meanwhile, cellular stoichiometry varied greatly among the groups supplied with mariculture DOM of different seasons, and the ecological implications were then discussed. Additionally, parallel cultures revealed the phycosphere bacterioplankton community compete with the algae cell regarding the nutrient utilization. This study quantifies the efficient utilization of in-situ mariculture DOM by P. donghaiense and indicates its vital role in sustaining HAB events and great effects on the biogeochemical cycle.
Collapse
Affiliation(s)
- Hongwei Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Siyang Wu
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Jian Ma
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China; College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Yiting Hong
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Chentao Guo
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen, China; Provincial Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms, Fisheries Research Institute of Fujian Province, Xiamen, Fujian, China
| | - Jing Zhao
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Xin Lin
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
5
|
Liu X, Zang Y, Fan S, Miao X, Fu M, Ma X, Li M, Zhang X, Wang Z, Xiao J. Changes in the structure of the microbial community within the phycospheric microenvironment and potential biogeochemical effects induced in the demise stage of green tides caused by Ulva prolifera. Front Microbiol 2024; 15:1507660. [PMID: 39564489 PMCID: PMC11575915 DOI: 10.3389/fmicb.2024.1507660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 10/22/2024] [Indexed: 11/21/2024] Open
Abstract
Green tides caused by Ulva prolifera occur annually in the Yellow Sea of China, and the massive amount of biomass decomposing during the demise stage of this green tide has deleterious ecological effects. Although microorganisms are considered key factors influencing algal bloom demise, an understanding of the microbial-algae interactions within the phycospheric microenvironment during this process is still lacking. Here, we focused on the variations in phycospheric microbial communities during the late stage of the green tide in three typically affected areas of the Yellow Sea via metagenomic sequencing analysis. In total, 16.9 million reads obtained from 18 metagenome samples were incorporated into the assembled contigs (13.4 Gbp). The phycosphere microbial community composition and diversity changed visibly during the demise of U. prolifera. The abundances of algae-lysing bacteria, Flavobacteriaceae at the family level and Alteromonas, Maribacter, and Vibrio at the genus level increased significantly in the phycosphere. In addition, the levels of glycoside hydrolases (GHs) and polysaccharide lyases (PLs) enzymes, which decompose U. prolifera polysaccharides in the phycosphere, were greater. Therefore, the degradation of algal polysaccharides can increase the efficiency of carbon metabolism pathways in the phycospheric microenvironment. Most of the genes detected in the phycosphere, especially norC, nrfA, and nasA, were associated with nitrogen metabolism pathways and showed dynamics related to the demise of the large amount of organic matter released by a green tide. Therefore, the demise of green tide algae may affect the potential carbon and nitrogen cycles of the phycospheric microenvironment by driving changes in the structure and diversity of microbial communities. Our research provides a novel perspective to better understand the ecological impact of U. prolifera during the green tide demise stage.
Collapse
Affiliation(s)
- Xiaoxue Liu
- Research Center of Marine Ecology, First Institute of Oceanography, MNR, Qingdao, China
| | - Yu Zang
- Research Center of Marine Ecology, First Institute of Oceanography, MNR, Qingdao, China
| | - Shiliang Fan
- Research Center of Marine Ecology, First Institute of Oceanography, MNR, Qingdao, China
- Laboratory for Marine Ecology and Environment Science, Laoshan Laboratory, Qingdao, China
| | - Xiaoxiang Miao
- Research Center of Marine Ecology, First Institute of Oceanography, MNR, Qingdao, China
| | - Mingzhu Fu
- Research Center of Marine Ecology, First Institute of Oceanography, MNR, Qingdao, China
- Laboratory for Marine Ecology and Environment Science, Laoshan Laboratory, Qingdao, China
| | - Xiaojun Ma
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Mei Li
- Research Center of Marine Ecology, First Institute of Oceanography, MNR, Qingdao, China
| | - Xuelei Zhang
- Research Center of Marine Ecology, First Institute of Oceanography, MNR, Qingdao, China
- Laboratory for Marine Ecology and Environment Science, Laoshan Laboratory, Qingdao, China
| | - Zongling Wang
- Research Center of Marine Ecology, First Institute of Oceanography, MNR, Qingdao, China
- Laboratory for Marine Ecology and Environment Science, Laoshan Laboratory, Qingdao, China
| | - Jie Xiao
- Research Center of Marine Ecology, First Institute of Oceanography, MNR, Qingdao, China
- Laboratory for Marine Ecology and Environment Science, Laoshan Laboratory, Qingdao, China
| |
Collapse
|
6
|
Liu S, Chen Q, Liu L, Dong C, Qiu X, Tang K. Organic matter composition fluctuations disrupt free-living bacterial communities more than particle-associated bacterial communities in coastal waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174845. [PMID: 39053558 DOI: 10.1016/j.scitotenv.2024.174845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/13/2024] [Accepted: 07/14/2024] [Indexed: 07/27/2024]
Abstract
Marine organic matter fuels the growth of microbial communities, shaping the composition of bacteria that specialize in its breakdown. However, responses of free-living (FL) and particle-associated (PA) bacterial communities to the changing pools of dissolved organic matter (DOM) and particulate organic matter (POM) remained unclear. This study investigates the composition of size-fractionated bacterial communities, DOM and POM in coastal waters over a 22-day period that includes a diatom bloom. Co-occurrence analysis showed that the FL bacterial communities were significantly less stable than PA communities. During the diatom bloom, we observed a significant increase in DOM molecules, particularly those derived from amino acids and peptides. In contrast, the relative intensities of major POM molecule classes remained stable despite the algal bloom's influence. Our study revealed a strong negative correlation between bacterial alpha-diversity and the amount of molecules in the organic matter pool. Similarly, bacterial community beta-diversity was found to be related to the composition of organic matter pool. However, the composition of organic matter was more strongly related to the composition of FL bacterial communities compared to PA communities. This suggests that FL bacteria exhibit greater variations in temporal dynamics and higher sensitivity to the specific structure of organic matter molecules.
Collapse
Affiliation(s)
- Shujing Liu
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, China
| | - Quanrui Chen
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, China
| | - Le Liu
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, China
| | - Changjie Dong
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, China
| | - Xuanyun Qiu
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, China
| | - Kai Tang
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, China.
| |
Collapse
|
7
|
Zhu J, Chen G, Tang S, Cheng K, Wu K, Cai Z, Zhou J. The micro-ecological feature of colonies is a potential strategy for Phaeocystis globosa bloom formation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174134. [PMID: 38909792 DOI: 10.1016/j.scitotenv.2024.174134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
Phaeocystis globosa is among the dominant microalgae associated with harmful algal blooms. P. globosa has a polymorphic life cycle and its ecological success has been attributed to algal colony formation, however, few studies have assessed differences in microbial communities and their functional profiles between intra- and extra-colonies during P. globosa blooms. To address this, environmental and metagenomics tools were used to conduct a time-series analysis of the bacterial composition and metabolic characteristics of intra- and extra-colonies during a natural P. globosa bloom. The results show that bacterial composition, biodiversity, and network interactions differed significantly between intra- and extra-colonies. Dominant extra-colonial bacteria were Bacteroidia and Saccharimonadis, while dominant intra-colonial bacteria included Alphaproteobacteria and Gammaproteobacteria. Despite the lower richness and diversity observed in the intra-colonial bacterial community, relative to extra-colonies, the complexity and interconnectedness of the intra-colonial networks were higher. Regarding bacterial function, more functional genes were enriched in substance metabolism (polysaccharides, iron element and dimethylsulfoniopropionate) and signal communication (quorum sensing, indoleacetic acid-IAA) pathways in intra- than in extra-colonies. Conceptual model construction showed that microbial cooperative synthesis of ammonium, vitamin B12, IAA, and siderophores were strongly related to the P. globosa bloom, particularly in the intra-colonial environment. Overall, our data highlight the differences in bacterial structure and functions within and outside the colony during P. globosa blooms. These findings represent fundamental information indicating that phenotypic heterogeneity is a selective strategy that improves microbial population competitiveness and environmental adaptation, benefiting P. globosa bloom formation and persistence.
Collapse
Affiliation(s)
- Jianming Zhu
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China
| | - Guofu Chen
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, Shandong Province, PR China
| | - Si Tang
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China
| | - Keke Cheng
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China
| | - Kebi Wu
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China
| | - Zhonghua Cai
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China
| | - Jin Zhou
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China.
| |
Collapse
|
8
|
Kim HJ, Kim YJ, Kang D, Kim H, Cho S, Lee TK, Lee SH, Jung SW, Kang J. Co-occurrence between key HAB species and particle-attached bacteria and substrate specificity of attached bacteria in the coastal ecosystem. HARMFUL ALGAE 2024; 138:102700. [PMID: 39244235 DOI: 10.1016/j.hal.2024.102700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 09/09/2024]
Abstract
The ecological dynamics of particle-attached bacteria (PAB) were observed through changes in the core phytoplankton phycosphere, and were associated with the dynamics of free-living bacteria (FLB) using metabarcoding and microscopic analyses over 210 days (with weekly sampling intervals) in the Jangmok coastal ecosystem, South Korea. Cluster analysis and non-metric multidimensional scaling classified the phytoplankton community into six groups comprising core phytoplankton species, including the harmful algal species Akashiwo sanguinea (dinoflagellate) in late autumn, Teleaulax amphioxeia (cryptomonads) in early winter and spring, Skeletonema marinoi-dohrnii complex (diatom) in winter, Pseudo-nitzschia delicatissima (diatom) in early spring, and diatom complexes such as Chaetoceros curvisetus and Leptocylindrus danicus in late spring. We identified 59 and 32 indicators in PAB and FLB, respectively, which rapidly changed with the succession of the six core phytoplankton species. The characteristics of PAB were mainly divided into "Random encounters" or "Attraction of motivation by chemotaxis." When Akashiwo sanguinea bloomed, bacteria of the genera Kordiimonas and Polaribacter, which are commonly observed in PAB and FLB, indicated "Random encounter" characteristics. In addition, Sedimenticola of PAB was uniquely presented in Akashiwo sanguinea, exhibiting characteristics of "Attraction of motivation by chemotaxis." In contrast, FLB followed the strategy of "Random encounters" because it was not affected by specific habitats and energy sources. Thus, many common bacteria were PAB and FLB, thereby dictating the bacteria's strategy of "Random encounters." "Attraction of motivation by chemotaxis" has characteristics of the species-specific interactions between PAB and specific harmful algal species, and is potentially influenced by organic matter of core phytoplankton cell surface and/or EPS released from phytoplankton.
Collapse
Affiliation(s)
- Hyun-Jung Kim
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje, 656-834, Republic of Korea; Department of Oceanography and Marine Research Institute, Pusan National University, Busan, 46241, Republic of Korea
| | - Yu Jin Kim
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje, 656-834, Republic of Korea; Department of Ocean Science, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Donhyug Kang
- Maritime Security and Safety Research Center, Korea Institute of Ocean Science & Technology, Busan, 49111, Republic of Korea
| | - Hansoo Kim
- Maritime Security and Safety Research Center, Korea Institute of Ocean Science & Technology, Busan, 49111, Republic of Korea
| | - Sungho Cho
- Maritime Security and Safety Research Center, Korea Institute of Ocean Science & Technology, Busan, 49111, Republic of Korea
| | - Taek-Kyun Lee
- Department of Ocean Science, University of Science and Technology, Daejeon, 34113, Republic of Korea; Ecological Risk Research Department, Korea Institute of Ocean Science & Technology, Geoje, 53201, Republic of Korea
| | - Sang Heon Lee
- Department of Oceanography and Marine Research Institute, Pusan National University, Busan, 46241, Republic of Korea
| | - Seung Won Jung
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje, 656-834, Republic of Korea; Department of Ocean Science, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| | - Junsu Kang
- Ballast Water Research Center, Korea Institute of Ocean Science & Technology, Geoje, 53201, Republic of Korea
| |
Collapse
|
9
|
Yang X, Liu Z, Zhang Y, Shi X, Wu Z. Dinoflagellate-Bacteria Interactions: Physiology, Ecology, and Evolution. BIOLOGY 2024; 13:579. [PMID: 39194517 DOI: 10.3390/biology13080579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 08/29/2024]
Abstract
Dinoflagellates and heterotrophic bacteria are two major micro-organism groups within marine ecosystems. Their coexistence has led to a co-evolutionary relationship characterized by intricate interactions that not only alter their individual behaviors but also exert a significant influence on the broader biogeochemical cycles. Our review commenced with an analysis of bacterial populations, both free-living and adherent to dinoflagellate surfaces. Members of Alphaproteobacteria, Gammaproteobacteria, and the Cytophaga-Flavobacterium-Bacteroides group are repeatedly found to be associated with dinoflagellates, with representation by relatively few genera, such as Methylophaga, Marinobacter, and Alteromonas. These bacterial taxa engage with dinoflagellates in a limited capacity, involving nutrient exchange, the secretion of pathogenic substances, or participation in chemical production. Furthermore, the genomic evolution of dinoflagellates has been profoundly impacted by the horizontal gene transfer from bacteria. The integration of bacterial genes into dinoflagellates has been instrumental in defining their biological characteristics and nutritional strategies. This review aims to elucidate the nuanced interactions between dinoflagellates and their associated bacteria, offering a detailed perspective on their complex relationship.
Collapse
Affiliation(s)
- Xiaohong Yang
- Guangzhou Marine Geological Survey, Guangzhou 511458, China
| | - Zijian Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
- Microbial Processes and Interactions (MiPI), TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| | - Yanwen Zhang
- Department of Ocean Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Xinguo Shi
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Zhen Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| |
Collapse
|
10
|
Cheng Y, Ding S, Shao Z, Song D, Jiao L, Zhang W, Duan P, He J. Persistence of dissolved organic matter in sediments influenced by environmental factors:Implication for nutrition and carbon cycle. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 363:121387. [PMID: 38850914 DOI: 10.1016/j.jenvman.2024.121387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/20/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
The persistence of dissolved organic matter (DOM) plays a crucial role in the cycling and distribution of carbon and nutrients. Nonetheless, our understanding of how environmental alterations affect the persistence of sedimentary DOM remains incomplete. Excitation Emission Fluorescence Matrix-Parallel Factor Analysis (EEM-PARAFAC) was used to examine the fluorescence and compositional characteristics of hydrophilic and hydrophobic DOM (separated using XAD-8 resin) within sediments from twelve lakes and reservoirs. Fluorescence analysis indicated that DOM persistence is dependent on the proportions of the three components derived from PARAFAC. The Mantel test showed that climatic factors had the most significant impact on DOM persistence (Mantel's r = 0.46-0.54, Mantel's p = 0.001-0.007), while anthropogenic (Mantel's r = 0.24-0.32, Mantel's p = 0.03-0.05) and hydrological factors (Mantel's r = 0.03-0.22, Mantel's p = 0.06-0.40) had a somewhat lesser influence. Environmental changes resulted in a consistent decline in DOM persistence from Northeast to Southwest China, accompanied by an increase in gross primary productivity (GPP). Reduced DOM persistence due to climate, hydrological, and anthropogenic factors may lead to elevated concentrations of total phosphorus (TP), contributing to deteriorating water quality and events such as algal blooms. The decline in water quality due to reduced DOM persistence in lakes with high GPP can exacerbate the transition from carbon sinks to carbon sources. Consequently, the persistence of sedimentary DOM significantly influences nutrient and carbon cycling in lakes. Investigating DOM persistence in lakes across diverse geographic locations offers a new perspective on lake eutrophication and carbon emissions. Furthermore, it is crucial to develop targeted recommendations for lake restoration and management.
Collapse
Affiliation(s)
- Yunxuan Cheng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Institute of Water Environment Research, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Yunnan Key Laboratory for Pollution Processes and Control of Plateau Lake-Watersheds, Kunming, 650032, China
| | - Shuai Ding
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Institute of Water Environment Research, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zhi Shao
- Kunming Institute of Eco-Environmental Sciences, Kunming, 650032, China
| | - Di Song
- Yunnan Key Laboratory for Pollution Processes and Control of Plateau Lake-Watersheds, Kunming, 650032, China; Yunnan Academy of Ecological and Environmental Sciences, Kunming, 650032, China
| | - Lixin Jiao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Institute of Water Environment Research, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Yunnan Key Laboratory for Pollution Processes and Control of Plateau Lake-Watersheds, Kunming, 650032, China.
| | - Weizhen Zhang
- School of Ecological Environment, Chengdu University of Technology, Chengdu, 610059, China
| | - Pingzhou Duan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Institute of Water Environment Research, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Jia He
- Kunming Institute of Eco-Environmental Sciences, Kunming, 650032, China.
| |
Collapse
|
11
|
Sun F, Wang C, Xu Z, Song X, Cui H, Wang Z, Ouyang Z, Fu X. Temporal variations of bacterial and eukaryotic community in coastal waters-implications for aquaculture. Appl Microbiol Biotechnol 2024; 108:388. [PMID: 38900314 PMCID: PMC11189975 DOI: 10.1007/s00253-024-13176-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 06/21/2024]
Abstract
Despite increased attention to the aquaculture environment, there is still a lack of understanding regarding the significance of water quality. To address this knowledge gap, this study utilized high-throughput sequencing of 16S rRNA and 18S rRNA to examine microbial communities (bacteria and eukaryotes) in coastal water over different months through long-term observations. The goal was to explore interaction patterns in the microbial community and identify potential pathogenic bacteria and red tide organisms. The results revealed significant differences in composition, diversity, and richness of bacterial and eukaryotic operational taxonomic units (OTUs) across various months. Principal coordinate analysis (PCoA) demonstrated distinct temporal variations in bacterial and eukaryotic communities, with significant differences (P = 0.001) among four groups: F (January-April), M (May), S (June-September), and T (October-December). Moreover, a strong association was observed between microbial communities and months, with most OTUs showing a distinct temporal preference. The Kruskal-Wallis test (P < 0.05) indicated significant differences in dominant bacterial and eukaryotic taxa among months, with each group exhibiting unique dominant taxa, including potential pathogenic bacteria and red tide organisms. These findings emphasize the importance of monitoring changes in potentially harmful microorganisms in aquaculture. Network analysis highlighted positive correlations between bacteria and eukaryotes, with bacteria playing a key role in network interactions. The key bacterial genera associated with other microorganisms varied significantly (P < 0.05) across different groups. In summary, this study deepens the understanding of aquaculture water quality and offers valuable insights for maintaining healthy aquaculture practices. KEY POINTS: • Bacterial and eukaryotic communities displayed distinct temporal variations. • Different months exhibited unique potential pathogenic bacteria and red tide organisms. • Bacteria are key taxonomic taxa involved in microbial network interactions.
Collapse
Affiliation(s)
- Fulin Sun
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, China
| | - Chunzhong Wang
- Putian Institute of Aquaculture Science of Fujian Province, Putian, China
| | - Zhantang Xu
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.
| | - Xingyu Song
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Nansha Marine Ecological and Environmental Research Station, Chinese Academy of Sciences, Sansha, China
| | - Haiping Cui
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Nansha Marine Ecological and Environmental Research Station, Chinese Academy of Sciences, Sansha, China
| | - Zhen Wang
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Nansha Marine Ecological and Environmental Research Station, Chinese Academy of Sciences, Sansha, China
| | - Zhiyuan Ouyang
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Nansha Marine Ecological and Environmental Research Station, Chinese Academy of Sciences, Sansha, China
| | - Xiaoming Fu
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Nansha Marine Ecological and Environmental Research Station, Chinese Academy of Sciences, Sansha, China
| |
Collapse
|
12
|
Shah M, Bornemann TLV, Nuy JK, Hahn MW, Probst AJ, Beisser D, Boenigk J. Genome-resolved metagenomics reveals the effect of nutrient availability on bacterial genomic properties across 44 European freshwater lakes. Environ Microbiol 2024; 26:e16634. [PMID: 38881319 DOI: 10.1111/1462-2920.16634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/25/2024] [Indexed: 06/18/2024]
Abstract
Understanding intricate microbial interactions in the environment is crucial. This is especially true for the relationships between nutrients and bacteria, as phosphorus, nitrogen and organic carbon availability are known to influence bacterial population dynamics. It has been suggested that low nutrient conditions prompt the evolutionary process of genome streamlining. This process helps conserve scarce nutrients and allows for proliferation. Genome streamlining is associated with genomic properties such as %GC content, genes encoding sigma factors, percent coding regions, gene redundancy, and functional shifts in processes like cell motility and ATP binding cassette transporters, among others. The current study aims to unveil the impact of nutrition on the genome size, %GC content, and functional properties of pelagic freshwater bacteria. We do this at finer taxonomic resolutions for many metagenomically characterized communities. Our study confirms the interplay of trophic level and genomic properties. It also highlights that different nutrient types, particularly phosphorus and nitrogen, impact these properties differently. We observed a covariation of functional traits with genome size. Larger genomes exhibit enriched pathways for motility, environmental interaction, and regulatory genes. ABC transporter genes reflect the availability of nutrients in the environment, with small genomes presumably relying more on metabolites from other organisms. We also discuss the distinct strategies different phyla adopt to adapt to oligotrophic environments. The findings contribute to our understanding of genomic adaptations within complex microbial communities.
Collapse
Affiliation(s)
- Manan Shah
- Department of Biodiversity, University of Duisburg-Essen, Essen, Germany
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, University of Duisburg-Essen, Essen, Germany
- Department of Engineering and Natural Sciences, Westphalian University of Applied Science, Recklinghausen, Germany
| | - Till L V Bornemann
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, University of Duisburg-Essen, Essen, Germany
- Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | - Julia K Nuy
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, University of Duisburg-Essen, Essen, Germany
- Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | - Martin W Hahn
- Research Department for Limnology, Universität Innsbruck, Mondsee, Austria
| | - Alexander J Probst
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, University of Duisburg-Essen, Essen, Germany
- Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | - Daniela Beisser
- Department of Engineering and Natural Sciences, Westphalian University of Applied Science, Recklinghausen, Germany
- Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | - Jens Boenigk
- Department of Biodiversity, University of Duisburg-Essen, Essen, Germany
- Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
13
|
Wang X, Yu H, Li Y, Fu Q, Shao H, He H, Wang M. Metatranscriptomic insights into the microbial metabolic activities during an Ulva prolifera green tide in coastal Qingdao areas. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123217. [PMID: 38154771 DOI: 10.1016/j.envpol.2023.123217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/14/2023] [Accepted: 12/22/2023] [Indexed: 12/30/2023]
Abstract
Green tide, a typical marine environmental disaster that profoundly influenced the coastal areas, has been occurred consecutively in the South Yellow Sea of China since 2007. Herein, the active microbial community structure and metabolic pathways in Qingdao offshore during an Ulva prolifera green tide were investigated by using metatranscriptomic approach. The dominant active microbial taxa at the outbreak phase were primarily a functional group that can utilize organic matters derived from U. prolifera, such as Lentibacter, Polaribacter and Planktomarina. While the taxa involved in biogeochemical cycles, including Phaeobacter, Pseudomonas and Marinobacterium, dominated the active microbial communities at the decline phase. The expression level of enzymes involved in U. prolifera polysaccharides degradation was significantly higher at the outbreak phase compared to the decline phase. At the same time, the main players Glaciecola and Polarbacter showed similar trends, suggesting that the low competitiveness for nutrients of related microorganisms at this phase made them degrade more U. prolifera polysaccharides to meet their own nutrient needs, thereby accelerating the degradation of U. prolifera. According to KEGG annotation, the biogeochemical pathways including nitrogen cycle, sulfur cycle and methane oxidation altered during the green tide, with thiosulfate oxidation and methane oxidation probably being the crucial pathways at the outbreak and the decline phase respectively. The coupling of sulfide oxidation and denitrification was also observed in this study. Furthermore, the green tide in Qingdao offshore might impact the greenhouse effects induced by CH4 and N2O through influencing the related microbial processes.
Collapse
Affiliation(s)
- Xinyi Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MoE Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Hao Yu
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MoE Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Yan Li
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MoE Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Qianru Fu
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MoE Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Hongbing Shao
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MoE Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Hui He
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MoE Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China.
| | - Min Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MoE Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China; Haide College, Ocean University of China, Qingdao, China; UMT-OUC Joint Academic Centre for Marine Studies, Ocean University of China, Qingdao, China; The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
14
|
Facimoto CT, Clements KD, White WL, Handley KM. Bacteroidia and Clostridia are equipped to degrade a cascade of polysaccharides along the hindgut of the herbivorous fish Kyphosus sydneyanus. ISME COMMUNICATIONS 2024; 4:ycae102. [PMID: 39165393 PMCID: PMC11333855 DOI: 10.1093/ismeco/ycae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/22/2024]
Abstract
The gut microbiota of the marine herbivorous fish Kyphosus sydneyanus are thought to play an important role in host nutrition by supplying short-chain fatty acids (SCFAs) through fermentation of dietary red and brown macroalgae. Here, using 645 metagenome-assembled genomes (MAGs) from wild fish, we determined the capacity of different bacterial taxa to degrade seaweed carbohydrates along the gut. Most bacteria (99%) were unclassified at the species level. Gut communities and CAZyme-related transcriptional activity were dominated by Bacteroidia and Clostridia. Both classes possess genes CAZymes acting on internal polysaccharide bonds, suggesting their role initiating glycan depolymerization, followed by rarer Gammaproteobacteria and Verrucomicrobiae. Results indicate that Bacteroidia utilize substrates in both brown and red algae, whereas other taxa, namely, Clostridia, Bacilli, and Verrucomicrobiae, utilize mainly brown algae. Bacteroidia had the highest CAZyme gene densities overall, and Alistipes were especially enriched in CAZyme gene clusters (n = 73 versus just 62 distributed across all other taxa), pointing to an enhanced capacity for macroalgal polysaccharide utilization (e.g., alginate, laminarin, and sulfated polysaccharides). Pairwise correlations of MAG relative abundances and encoded CAZyme compositions provide evidence of potential inter-species collaborations. Co-abundant MAGs exhibited complementary degradative capacities for specific substrates, and flexibility in their capacity to source carbon (e.g., glucose- or galactose-rich glycans), possibly facilitating coexistence via niche partitioning. Results indicate the potential for collaborative microbial carbohydrate metabolism in the K. sydneyanus gut, that a greater variety of taxa contribute to the breakdown of brown versus red dietary algae, and that Bacteroidia encompass specialized macroalgae degraders.
Collapse
Affiliation(s)
- Cesar T Facimoto
- School of Biological Sciences, The University of Auckland, Auckland, 1010, New Zealand
| | - Kendall D Clements
- School of Biological Sciences, The University of Auckland, Auckland, 1010, New Zealand
| | - W Lindsey White
- Department of Environmental Science, Auckland University of Technology, Auckland, 1010, New Zealand
| | - Kim M Handley
- School of Biological Sciences, The University of Auckland, Auckland, 1010, New Zealand
| |
Collapse
|
15
|
Matilla MA, Gavira JA, Krell T. Accessing nutrients as the primary benefit arising from chemotaxis. Curr Opin Microbiol 2023; 75:102358. [PMID: 37459734 DOI: 10.1016/j.mib.2023.102358] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/19/2023] [Accepted: 06/19/2023] [Indexed: 09/17/2023]
Abstract
About half of the known bacterial species perform chemotaxis that gains them access to sites that are optimal for growth and survival. The motility apparatus and chemotaxis signaling pathway impose a large energetic and metabolic burden on the cell. There is almost no limit to the type of chemoeffectors that are recognized by bacterial chemoreceptors. For example, they include hormones, neurotransmitters, quorum-sensing molecules, and inorganic ions. However, the vast majority of chemoeffectors appear to be of metabolic value. We review here the experimental evidence indicating that accessing nutrients is the main selective force that led to the evolution of chemotaxis.
Collapse
Affiliation(s)
- Miguel A Matilla
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - José A Gavira
- Laboratory of Crystallographic Studies, IACT (CSIC-UGR), Armilla, Spain
| | - Tino Krell
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain.
| |
Collapse
|
16
|
Shih CY, Chen SY, Hsu CR, Chin CH, Chiu WC, Chang MH, Kang LK, Yang CH, Pai TW, Hu CH, Hsu PH, Tzou WS. Distinctive microbial community and genome structure in coastal seawater from a human-made port and nearby offshore island in northern Taiwan facing the Northwestern Pacific Ocean. PLoS One 2023; 18:e0284022. [PMID: 37294811 PMCID: PMC10256201 DOI: 10.1371/journal.pone.0284022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 03/21/2023] [Indexed: 06/11/2023] Open
Abstract
Pollution in human-made fishing ports caused by petroleum from boats, dead fish, toxic chemicals, and effluent poses a challenge to the organisms in seawater. To decipher the impact of pollution on the microbiome, we collected surface water from a fishing port and a nearby offshore island in northern Taiwan facing the Northwestern Pacific Ocean. By employing 16S rRNA gene amplicon sequencing and whole-genome shotgun sequencing, we discovered that Rhodobacteraceae, Vibrionaceae, and Oceanospirillaceae emerged as the dominant species in the fishing port, where we found many genes harboring the functions of antibiotic resistance (ansamycin, nitroimidazole, and aminocoumarin), metal tolerance (copper, chromium, iron and multimetal), virulence factors (chemotaxis, flagella, T3SS1), carbohydrate metabolism (biofilm formation and remodeling of bacterial cell walls), nitrogen metabolism (denitrification, N2 fixation, and ammonium assimilation), and ABC transporters (phosphate, lipopolysaccharide, and branched-chain amino acids). The dominant bacteria at the nearby offshore island (Alteromonadaceae, Cryomorphaceae, Flavobacteriaceae, Litoricolaceae, and Rhodobacteraceae) were partly similar to those in the South China Sea and the East China Sea. Furthermore, we inferred that the microbial community network of the cooccurrence of dominant bacteria on the offshore island was connected to dominant bacteria in the fishing port by mutual exclusion. By examining the assembled microbial genomes collected from the coastal seawater of the fishing port, we revealed four genomic islands containing large gene-containing sequences, including phage integrase, DNA invertase, restriction enzyme, DNA gyrase inhibitor, and antitoxin HigA-1. In this study, we provided clues for the possibility of genomic islands as the units of horizontal transfer and as the tools of microbes for facilitating adaptation in a human-made port environment.
Collapse
Affiliation(s)
- Chi-Yu Shih
- Bachelor Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
- Taiwan Ocean Genome Center, National Taiwan Ocean University, Keelung, Taiwan
| | - Shiow-Yi Chen
- Departent of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Chun-Ru Hsu
- Departent of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Ching-Hsiang Chin
- Departent of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Wei-Chih Chiu
- Departent of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | | | - Lee-Kuo Kang
- Bachelor Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Cing-Han Yang
- Department of Computer Science and Information Engineering, National Taipei University of Technology, Taipei, Taiwan
- Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung, Taiwan
| | - Tun-Wen Pai
- Department of Computer Science and Information Engineering, National Taipei University of Technology, Taipei, Taiwan
- Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung, Taiwan
| | - Chin-Hwa Hu
- Departent of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Pang-Hung Hsu
- Departent of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Wen-Shyong Tzou
- Taiwan Ocean Genome Center, National Taiwan Ocean University, Keelung, Taiwan
- Departent of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| |
Collapse
|
17
|
Young BD, Rosales SM, Enochs IC, Kolodziej G, Formel N, Moura A, D'Alonso GL, Traylor-Knowles N. Different disease inoculations cause common responses of the host immune system and prokaryotic component of the microbiome in Acropora palmata. PLoS One 2023; 18:e0286293. [PMID: 37228141 DOI: 10.1371/journal.pone.0286293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023] Open
Abstract
Reef-building corals contain a complex consortium of organisms, a holobiont, which responds dynamically to disease, making pathogen identification difficult. While coral transcriptomics and microbiome communities have previously been characterized, similarities and differences in their responses to different pathogenic sources has not yet been assessed. In this study, we inoculated four genets of the Caribbean branching coral Acropora palmata with a known coral pathogen (Serratia marcescens) and white band disease. We then characterized the coral's transcriptomic and prokaryotic microbiomes' (prokaryiome) responses to the disease inoculations, as well as how these responses were affected by a short-term heat stress prior to disease inoculation. We found strong commonality in both the transcriptomic and prokaryiomes responses, regardless of disease inoculation. Differences, however, were observed between inoculated corals that either remained healthy or developed active disease signs. Transcriptomic co-expression analysis identified that corals inoculated with disease increased gene expression of immune, wound healing, and fatty acid metabolic processes. Co-abundance analysis of the prokaryiome identified sets of both healthy-and-disease-state bacteria, while co-expression analysis of the prokaryiomes' inferred metagenomic function revealed infected corals' prokaryiomes shifted from free-living to biofilm states, as well as increasing metabolic processes. The short-term heat stress did not increase disease susceptibility for any of the four genets with any of the disease inoculations, and there was only a weak effect captured in the coral hosts' transcriptomic and prokaryiomes response. Genet identity, however, was a major driver of the transcriptomic variance, primarily due to differences in baseline immune gene expression. Despite genotypic differences in baseline gene expression, we have identified a common response for components of the coral holobiont to different disease inoculations. This work has identified genes and prokaryiome members that can be focused on for future coral disease work, specifically, putative disease diagnostic tools.
Collapse
Affiliation(s)
- Benjamin D Young
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric and Earth Science, University of Miami, Miami, Florida, United States of America
- Cooperative Institute of Marine and Atmospheric Science, Rosenstiel School of Marine Atmospheric, and Earth Science, University of Miami, Miami, Florida, United States of America
- Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, Florida, United States of America
| | - Stephanie M Rosales
- Cooperative Institute of Marine and Atmospheric Science, Rosenstiel School of Marine Atmospheric, and Earth Science, University of Miami, Miami, Florida, United States of America
- Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, Florida, United States of America
| | - Ian C Enochs
- Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, Florida, United States of America
| | - Graham Kolodziej
- Cooperative Institute of Marine and Atmospheric Science, Rosenstiel School of Marine Atmospheric, and Earth Science, University of Miami, Miami, Florida, United States of America
- Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, Florida, United States of America
| | - Nathan Formel
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
| | - Amelia Moura
- Coral Restoration Foundation, Tavernier, Florida, United States of America
| | | | - Nikki Traylor-Knowles
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric and Earth Science, University of Miami, Miami, Florida, United States of America
| |
Collapse
|
18
|
Qu T, Zhao X, Guan C, Hou C, Chen J, Zhong Y, Lin Z, Xu Y, Tang X, Wang Y. Structure-Function Covariation of Phycospheric Microorganisms Associated with the Typical Cross-Regional Harmful Macroalgal Bloom. Appl Environ Microbiol 2023; 89:e0181522. [PMID: 36533927 PMCID: PMC9888261 DOI: 10.1128/aem.01815-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/22/2022] [Indexed: 12/23/2022] Open
Abstract
Unravelling the structure-function variation of phycospheric microorganisms and its ecological correlation with harmful macroalgal blooms (HMBs) is a challenging research topic that remains unclear in the natural dynamic process of HMBs. During the world's largest green tide bloom, causative macroalgae Ulva prolifera experienced dramatic changes in growth state and environmental conditions, providing ideal scenarios for this investment. Here, we assess the phycospheric physicochemical characteristics, the algal host's biology, the phycospheric bacterial constitutive patterns, and the functional potential during the U. prolifera green tide. Our results indicated that (i) variation in the phycosphere nutrient structure was closely related to the growth state of U. prolifera; (ii) stochastic processes govern phycospheric bacterial assembly, and the contribution of deterministic processes to assembly varied among phycospheric seawater bacteria and epiphytic bacteria; (iii) phycospheric seawater bacteria and epiphytic bacteria exhibited significant heterogeneity variation patterns in community composition, structure, and metabolic potential; and (iv) phycospheric bacteria with carbon or nitrogen metabolic functions potentially influenced the nutrient utilization of U. prolifera. Furthermore, the keystone genera play a decisive role in the structure-function covariation of phycospheric bacterial communities. Our study reveals complex interactions and linkages among environment-algae-bacterial communities which existed in the macroalgal phycosphere and highlights the fact that phycospheric microorganisms are closely related to the fate of the HMBs represented by the green tide. IMPORTANCE Harmful macroalgal blooms represented by green tides have become a worldwide marine ecological problem. Unraveling the structure-function variation of phycospheric microorganisms and their ecological correlation with HMBs is challenging. This issue is still unclear in the natural dynamics of HMBs. Here, we revealed the complex interactions and linkages among environment-algae-bacterial communities in the phycosphere of the green macroalgae Ulva prolifera, which causes the world's largest green tides. Our study provides new ideas to increase our understanding of the variation patterns of macroalgal phycospheric bacterial communities and the formation mechanisms and ecological effects of green tides and highlights the importance of phycospheric microorganisms as a robust tool to help understand the fate of HMBs.
Collapse
Affiliation(s)
- Tongfei Qu
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xinyu Zhao
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Chen Guan
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Chengzong Hou
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Jun Chen
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yi Zhong
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Zhihao Lin
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yu Xu
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xuexi Tang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Ying Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
19
|
You Exude What You Eat: How Carbon-, Nitrogen-, and Sulfur-Rich Organic Substrates Shape Microbial Community Composition and the Dissolved Organic Matter Pool. Appl Environ Microbiol 2022; 88:e0155822. [PMID: 36383003 PMCID: PMC9746321 DOI: 10.1128/aem.01558-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phytoplankton is the major source of labile organic matter in the sunlit ocean, and they are therefore key players in most biogeochemical cycles. However, studies examining the heterotrophic bacterial cycling of specific phytoplankton-derived nitrogen (N)- and sulfur (S)-containing organic compounds are currently lacking at the molecular level. Therefore, the present study investigated how the addition of N-containing (glycine betaine [GBT]) and S-containing (dimethylsulfoniopropionate [DMSP]) organic compounds, as well as glucose, influenced the microbial production of new organic molecules and the microbial community composition. The chemical composition of microbial-produced dissolved organic matter (DOM) was analyzed by ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) demonstrating that CHO-, CHON-, and CHOS-containing molecules were enriched in the glucose, GBT, and DMSP experiments, respectively. High-throughput sequencing showed that Alteromonadales was the dominant group in the glucose, while Rhodobacterales was the most abundant group in both the GBT and DMSP experiments. Cooccurrence network analysis furthermore indicated more complex linkages between the microbial community and organic molecules in the GBT compared with the other two experiments. Our results shed light on how different microbial communities respond to distinct organic compounds and mediate the cycling of ecologically relevant compounds. IMPORTANCE Nitrogen (N)- and sulfur (S)-containing compounds are normally considered part of the labile organic matter pool that fuels heterotrophic bacterial activity in the ocean. Both glycine betaine (GBT) and dimethylsulfoniopropionate (DMSP) are representative N- and S-containing organic compounds, respectively, that are important phytoplankton cellular compounds. The present study therefore examined how the microbial community and the organic matter they produce are influenced by the addition of carbohydrate-containing (glucose), N-containing (GBT), and S-containing (DMSP) organic compounds. The results demonstrate that when these carbon-, N-, and S-rich compounds are added separately, the organic molecules produced by the bacteria growing on them are enriched in the same elements. Similarly, the microbial community composition was also distinct when different compounds were added as the substrate. Overall, this study demonstrates how the microbial communities metabolize and transform different substrates thereby, expanding our understanding of the complexity of links between microbes and substrates in the ocean.
Collapse
|
20
|
Garate L, Alonso‐Sáez L, Revilla M, Logares R, Lanzén A. Shared and contrasting associations in the dynamic nano- and picoplankton communities of two close but contrasting sites from the Bay of Biscay. Environ Microbiol 2022; 24:6052-6070. [PMID: 36054533 PMCID: PMC10087561 DOI: 10.1111/1462-2920.16153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/30/2022] [Indexed: 01/12/2023]
Abstract
Pico- and nanoplankton are key players in the marine ecosystems due to their implication in the biogeochemical cycles, nutrient recycling and the pelagic food webs. However, the specific dynamics and niches of most bacterial, archaeal and eukaryotic plankton remain unknown, as well as the interactions between them. Better characterization of these is critical for understanding and predicting ecosystem functioning under anthropogenic pressures. We used environmental DNA metabarcoding across a 6-year time series to explore the structure and seasonality of pico- and nanoplankton communities in two sites of the Bay of Biscay, one coastal and one offshore, and construct association networks to reveal potential keystone and connector taxa. Temporal trends in alpha diversity were similar between the two sites, and concurrent communities more similar than within the same site at different times. However, we found differences between the network topologies of the two sites, with both shared and site-specific keystones and connectors. For example, Micromonas, with lower abundance in the offshore site is a keystone here, indicating a stronger effect of associations such as resource competition. This study provides an example of how time series and association network analysis can reveal how similar communities may function differently despite being geographically close.
Collapse
Affiliation(s)
- Leire Garate
- AZTI, Marine ResearchBasque Research and Technology Alliance (BRTA)PasaiaSpain
| | - Laura Alonso‐Sáez
- AZTI, Marine ResearchBasque Research and Technology Alliance (BRTA)PasaiaSpain
| | - Marta Revilla
- AZTI, Marine ResearchBasque Research and Technology Alliance (BRTA)PasaiaSpain
| | - Ramiro Logares
- Institute of Marine Sciences (ICM)CSICBarcelonaCataloniaSpain
| | - Anders Lanzén
- AZTI, Marine ResearchBasque Research and Technology Alliance (BRTA)PasaiaSpain
- IKERBASQUEBasque Foundation for ScienceBilbaoBizkaiaSpain
| |
Collapse
|
21
|
Ryther CM, Ortmann AC, Wohlgeschaffen G, Robinson BJ. Temperate Coastal Microbial Communities Rapidly Respond to Low Concentrations of Partially Weathered Diesel. MICROBIAL ECOLOGY 2022; 84:1122-1132. [PMID: 34888738 PMCID: PMC9747835 DOI: 10.1007/s00248-021-01939-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 12/05/2021] [Indexed: 05/23/2023]
Abstract
Diesel is frequently encountered in coastal ecosystems due to land run-off from road surfaces. The current study investigates how partially weathered diesel at environmentally relevant concentrations, as may be seen during a run-off event, affect coastal microbial communities. A mesocosm experiment using seawater from the Bedford Basin, Nova Scotia, was followed for 72 h after the addition of partially weathered diesel. Sequencing data suggests partially weathered diesel acts quickly to alter the prokaryotic community, as both opportunistic (Vibrio and Lentibacter) and oil-degrading (Colwellia, Sulfitobacter, and Pseudoalteromonas) bacteria proliferated after 24 h in comparison to the control. In addition, total prokaryotes seemed to recover in abundance after 24 h, where eukaryotes only ceased to decrease slightly at 72 h, likely because of an inability to adapt to the oil-laden conditions, unlike the prokaryotes. Considering there were no highly volatile components (benzene, toluene, ethylbenzene, and xylene) present in the diesel when the communities were exposed, the results indicate that even a relatively small concentration of diesel run-off can cause a drastic change to the microbial community under low energy conditions. Higher energy conditions due to wave action may mitigate the response of the microbial communities by dilution and additional weathering of the diesel.
Collapse
Affiliation(s)
- Camilla M Ryther
- Biology Department, Dalhousie University, 6299 South Street, Halifax, NS, B3H 4R2, Canada
| | - Alice C Ortmann
- Centre for Offshore Oil, Gas and Energy Research Laboratory, Bedford Institute of Oceanography, 1 Challenger Drive, Dartmouth, NS, B2Y 4A2, Canada.
| | - Gary Wohlgeschaffen
- Centre for Offshore Oil, Gas and Energy Research Laboratory, Bedford Institute of Oceanography, 1 Challenger Drive, Dartmouth, NS, B2Y 4A2, Canada
| | - Brian J Robinson
- Centre for Offshore Oil, Gas and Energy Research Laboratory, Bedford Institute of Oceanography, 1 Challenger Drive, Dartmouth, NS, B2Y 4A2, Canada
| |
Collapse
|
22
|
Sun X, Lin D, Han Y, Sun J, Ye J, Chen B, Tang K. Roseovarius carneus sp. nov., a novel bacterium isolated from a coastal phytoplankton bloom in Xiamen. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
A Gram-stain-negative, non-motile, ovoid or short rod shaped and aerobic marine bacterium, designated as strain LXJ103T, was isolated from a coastal phytoplankton bloom in Xiamen, PR China. Cells were oxidase- and catalase-positive. Strain LXJ103T grew at 4–40 °C (optimum, 28–37 °C), at pH 6–10 (optimum, pH 8.5) and with 1–15 % (w/v) NaCl (optimum, 3 %). The major cellular fatty acids (>10 %) were iso-C18 : 1
ω7c/iso-C18 : 1
ω6c (70.2 %) and C16 : 0 (10.3 %). The following polar lipids were found to be present: phosphatidylglycerol, phosphatidylethanolamine, two unidentified phospholipids and five unknown glycolipids. The predominant respiratory quinone was ubiquinone-10. Strain LXJ103T exhibited the highest 16S rRNA gene sequence similarity to
Roseovarius litorisediminis
D1-W8T (96.97 %). The phylogenetic trees based on 16S rRNA gene sequences showed that strain LXJ103T was a member of the genus
Roseovarius
. The draft genome size of strain LXJ103T is 3.05 Mb with a genomic G+C content of 61.22 mol%. The digital DNA–DNA genome hybridization value of strain LXJ103T compared with the most similar type strain
R. litorisediminis
CECT 8287T was 18.80 %. The average nucleotide identity value between strain LXJ103T and
R. litorisediminis
CECT 8287T was 72.60 %. On the basis of polyphasic data, strain LXJ103T represents a novel species of the genus
Roseovarius
, for which the name Roseovarius carneus sp. nov. is proposed. The type strain is LXJ103T (=CGMCC 1.19168T=MCCC 1K06527T=JCM 34778T).
Collapse
Affiliation(s)
- Xueqiong Sun
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, PR China
| | - Dan Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, PR China
| | - Yu Han
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, PR China
| | - Jia Sun
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, PR China
| | - Jianing Ye
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, PR China
| | - Beihan Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, PR China
| | | |
Collapse
|
23
|
Chen X, Tang K, Zhang M, Liu S, Chen M, Zhan P, Fan W, Chen CTA, Zhang Y. Genome-centric insight into metabolically active microbial population in shallow-sea hydrothermal vents. MICROBIOME 2022; 10:170. [PMID: 36242065 PMCID: PMC9563475 DOI: 10.1186/s40168-022-01351-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/22/2022] [Indexed: 05/20/2023]
Abstract
BACKGROUND Geothermal systems have contributed greatly to both our understanding of the functions of extreme life and the evolutionary history of life itself. Shallow-sea hydrothermal systems are ecological intermediates of deep-sea systems and terrestrial springs, harboring unique and complexed ecosystems, which are well-lit and present physicochemical gradients. The microbial communities of deep-sea and terrestrial geothermal systems have been well-studied at the population genome level, yet little is known about the communities inhabiting the shallow-sea hydrothermal systems and how they compare to those inhabiting other geothermal systems. RESULTS Here, we used genome-resolved metagenomic and metaproteomic approaches to probe into the genetic potential and protein expression of microorganisms from the shallow-sea vent fluids off Kueishantao Island. The families Nautiliaceae and Campylobacteraceae within the Epsilonbacteraeota and the Thiomicrospiraceae within the Gammaproteobacteria were prevalent in vent fluids over a 3-year sampling period. We successfully reconstructed the in situ metabolic modules of the predominant populations within the Epsilonbacteraeota and Gammaproteobacteria by mapping the metaproteomic data back to metagenome-assembled genomes. Those active bacteria could use the reductive tricarboxylic acid cycle or Calvin-Benson-Bassham cycle for autotrophic carbon fixation, with the ability to use reduced sulfur species, hydrogen or formate as electron donors, and oxygen as a terminal electron acceptor via cytochrome bd oxidase or cytochrome bb3 oxidase. Comparative metagenomic and genomic analyses revealed dramatic differences between submarine and terrestrial geothermal systems, including microbial functional potentials for carbon fixation and energy conversion. Furthermore, shallow-sea hydrothermal systems shared many of the major microbial genera that were first isolated from deep-sea and terrestrial geothermal systems, while deep-sea and terrestrial geothermal systems shared few genera. CONCLUSIONS The metabolic machinery of the active populations within Epsilonbacteraeota and Gammaproteobacteria at shallow-sea vents can mirror those living at deep-sea vents. With respect to specific taxa and metabolic potentials, the microbial realm in the shallow-sea hydrothermal system presented ecological linkage to both deep-sea and terrestrial geothermal systems. Video Abstract.
Collapse
Affiliation(s)
- Xiaofeng Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, China
| | - Kai Tang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, China.
| | - Mu Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, China
| | - Shujing Liu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, China
| | - Mingming Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, China
| | - Peiwen Zhan
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, China
| | - Wei Fan
- Ocean College, Zhejiang University, Zhoushan, China
| | - Chen-Tung Arthur Chen
- Institute of Marine Geology and Chemistry, National Sun Yat-Sen University, Taiwan, China
| | - Yao Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, China
| |
Collapse
|
24
|
Zhang Z, Zhao H, Mou S, Nair S, Zhao J, Jiao N, Zhang Y. Phage Infection Benefits Marine Diatom Phaeodactylum tricornutum by Regulating the Associated Bacterial Community. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02045-1. [PMID: 35622094 DOI: 10.1007/s00248-022-02045-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
The interaction between marine phyto- and bacterioplankton is regulated by multiple environmental and biological factors. Among them, phages as the major regulators of bacterial mortality are considered to have important impacts on algae-associated bacteria and algae-bacteria relationship. However, little is currently known about the actual impact of phages from this perspective. Here, we revealed that phage infection improved the maximum quantum efficiency of photosystem II of Phaeodactylum tricornutum by regulating the associated bacterial community. Specifically, phage infection weakened bacterial abundance and eliminated their negative effects on the diatom. Unexpectedly, the structure of the bacterial community co-cultured with the diatom was not significantly affected, likely because the shaping effect of the diatom on the bacterial community structure can far outcompete or mask the impact of phage infection. Our results established a link between algae, bacteria, and phages, suggesting that phage infection benefits the diatom by regulating the associated bacterial community.
Collapse
Affiliation(s)
- Zenghu Zhang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hanshuang Zhao
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shanli Mou
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shailesh Nair
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiulong Zhao
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361101, China
| | - Yongyu Zhang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
- Shandong Energy Institute, Qingdao, 266101, China.
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
25
|
Cabugao KGM, Gushgari-Doyle S, Chacon SS, Wu X, Bhattacharyya A, Bouskill N, Chakraborty R. Characterizing Natural Organic Matter Transformations by Microbial Communities in Terrestrial Subsurface Ecosystems: A Critical Review of Analytical Techniques and Challenges. Front Microbiol 2022; 13:864895. [PMID: 35602028 PMCID: PMC9114703 DOI: 10.3389/fmicb.2022.864895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Determining the mechanisms, traits, and pathways that regulate microbial transformation of natural organic matter (NOM) is critical to informing our understanding of the microbial impacts on the global carbon cycle. The capillary fringe of subsurface soils is a highly dynamic environment that remains poorly understood. Characterization of organo-mineral chemistry combined with a nuanced understanding of microbial community composition and function is necessary to understand microbial impacts on NOM speciation in the capillary fringe. We present a critical review of the popular analytical and omics techniques used for characterizing complex carbon transformation by microbial communities and focus on how complementary information obtained from the different techniques enable us to connect chemical signatures with microbial genes and pathways. This holistic approach offers a way forward for the comprehensive characterization of the formation, transformation, and mineralization of terrestrial NOM as influenced by microbial communities.
Collapse
Affiliation(s)
- Kristine Grace M Cabugao
- Department of Ecology, Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Sara Gushgari-Doyle
- Department of Ecology, Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Stephany S Chacon
- Department of Ecology, Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Xiaoqin Wu
- Department of Ecology, Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Amrita Bhattacharyya
- Department of Ecology, Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Nicholas Bouskill
- Department of Ecology, Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Romy Chakraborty
- Department of Ecology, Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
26
|
Fortin SG, Song B, Anderson IC, Reece KS. Blooms of the harmful algae Margalefidinium polykrikoides and Alexandrium monilatum alter the York River Estuary microbiome. HARMFUL ALGAE 2022; 114:102216. [PMID: 35550296 DOI: 10.1016/j.hal.2022.102216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 02/21/2022] [Accepted: 02/26/2022] [Indexed: 06/15/2023]
Abstract
Harmful algal blooms (HABs) cause damage to fisheries, aquaculture, and human health around the globe. However, the impact of HABs on water column microbiomes and biogeochemistry is poorly understood. This study examined the impacts of consecutive blooms of the ichthyotoxic dinoflagellates Margalefidinium polykrikoides and Alexandrium monilatum on the water microbiome in the York River Estuary, Chesapeake Bay, USA. The samples dominated by single dinoflagellate species and by a mix of the two dinoflagellates had different microbiome compositions than the ones with low levels of both species. The M. polykrikoides bloom was co-dominated by Winogradskyella and had increased concentrations of dissolved organic carbon. The A. monilatum bloom had little impact on the prokaryotic portion of the whole community but was associated with a specific group of prokaryotes in the particle-attached (>3 µm) fraction including Candidatus Nitrosopumilus, Candidatus Actinomarina, SAR11 Clade Ia, Candidatus Bealeia, and Rhodobacteraceae HIMB11. Thus, blooms of these two algal species impacted the estuarine microbiome in different ways, likely leading to shifts in estuarine carbon and nutrient cycling, with M. polykrikoides potentially having a greater impact on carbon cycling in the estuarine ecosystem than A. monilatum.
Collapse
Affiliation(s)
- Samantha G Fortin
- Virginia Institute of Marine Science, William and Mary, Gloucester Point, VA, USA.
| | - Bongkeun Song
- Virginia Institute of Marine Science, William and Mary, Gloucester Point, VA, USA.
| | - Iris C Anderson
- Virginia Institute of Marine Science, William and Mary, Gloucester Point, VA, USA
| | - Kimberly S Reece
- Virginia Institute of Marine Science, William and Mary, Gloucester Point, VA, USA
| |
Collapse
|
27
|
Ubiquitous Occurrence of a Biogenic Sulfonate in Marine Environment. SUSTAINABILITY 2022. [DOI: 10.3390/su14031240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The biogenic sulfonate 2,3-dihydroxypropane-1-sulfonate (DHPS) is a vital metabolic currency between phytoplankton and bacteria in marine environments. However, the occurrence and quantification of DHPS in the marine environment has not been well-characterized. In this study, we used targeted metabolomics to determine the concentration of DHPS in the Pearl River Estuary, an in situ costal mesocosm ecosystem and a hydrothermal system off Kueishantao Island. The results suggested that DHPS occurred ubiquitously in the marine environment, even in shallow-sea hydrothermal systems, at a level comparable to that of dimethylsulfoniopropionate. The concentration of DHPS was closely related to phytoplankton community composition and was especially associated with the abundance of diatoms. Epsilonproteobacteria were considered as the most likely producers of DHPS in shallow-sea hydrothermal systems. This work expands current knowledge on sulfonates and presents a new viewpoint on the sulfur cycle in hydrothermal systems.
Collapse
|
28
|
Han Y, Zhang M, Chen X, Zhai W, Tan E, Tang K. Transcriptomic evidences for microbial carbon and nitrogen cycles in the deoxygenated seawaters of Bohai Sea. ENVIRONMENT INTERNATIONAL 2022; 158:106889. [PMID: 34619534 DOI: 10.1016/j.envint.2021.106889] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Eutrophication-induced water deoxygenation occurs continually in coastal oceans, and alters community structure, metabolic processes, and the energy shunt, resulting in a major threat to the ecological environment. Seasonal deoxygenation events have occurred in the Bohai Sea (China), however, how these affect the functional activity of microorganisms remains unclear. Here, through the use of absolute quantification of 16S rRNA genes amplicon sequencing and metatranscriptomics approaches, we investigated the structure of the microbial community and the patterns of transcriptional activity in deoxygenated seawaters. The dominant phyla were Proteobacteria (average value, 1.4 × 106 copies ml-1), Cyanobacteria (3.7 × 105 copies ml-1), Bacteroidetes (2.7 × 105 copies ml-1), and the ammonia-oxidizing archaea Thaumarchaeota (1.9 × 105 copies ml-1). Among the various environmental factors, dissolved oxygen, pH and temperature displayed the most significant correlation with microbial community composition and functional activity. Metatranscriptomic data showed high transcriptional activity of Thaumarchaeota in the deoxygenated waters, with a significant increase in the expression of core genes representing ammonia oxidation, ammonia transport, and carbon fixation (3-hydroxypropionic acid/4-hydroxybutyric acid cycle) pathways. The transcripts of Cyanobacteria involved in photosynthesis and carbon fixation (Calvin-Benson-Bassham cycle) significantly decreased in low oxygen waters. Meanwhile, the transcripts for the ribulose bisphosphate carboxylase-encoding gene shifted from being assigned to photoautotrophic to chemoautotrophic organisms in surface and bottom waters, respectively. Moreover, the transcription profile indicated that heterotrophs play a critical role in transforming low-molecular-weight dissolved organic nitrogen. Elevated abundances of transcripts related to microbial antioxidant activity corresponded to an enhanced aerobic metabolism of Thaumarchaeota in the low oxygen seawater. In general, our transcriptional evidences showed a population increase of Thaumarchaeota, especially the coastal ecotype of ammonia oxidizers, in low oxygen aquatic environments, and indicated an enhanced contribution of chemolithoautotrophic carbon fixation to carbon flow.
Collapse
Affiliation(s)
- Yu Han
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, Fujian, PR China
| | - Mu Zhang
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, Fujian, PR China
| | - Xiaofeng Chen
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, Fujian, PR China
| | - Weidong Zhai
- Institute of Marine Science and Technology, Shandong University, Qingdao 266000, Shandong, PR China
| | - Ehui Tan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, Hainan, PR China
| | - Kai Tang
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, Fujian, PR China.
| |
Collapse
|
29
|
Lineage-Specific Growth Curves Document Large Differences in Response of Individual Groups of Marine Bacteria to the Top-Down and Bottom-Up Controls. mSystems 2021; 6:e0093421. [PMID: 34581594 PMCID: PMC8547455 DOI: 10.1128/msystems.00934-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Marine bacterioplankton represent a diverse assembly of species differing largely in their abundance, physiology, metabolic activity, and role in microbial food webs. To analyze their sensitivity to bottom-up and top-down controls, we performed a manipulation experiment where grazers were removed, with or without the addition of phosphate. Using amplicon-reads normalization by internal standard (ARNIS), we reconstructed growth curves for almost 300 individual phylotypes. Grazer removal caused a rapid growth of most bacterial groups, which grew at rates of 0.6 to 3.5 day−1, with the highest rates (>4 day−1) recorded among Rhodobacteraceae, Oceanospirillales, Alteromonadaceae, and Arcobacteraceae. Based on their growth response, the phylotypes were divided into three basic groups. Most of the phylotypes responded positively to both grazer removal as well as phosphate addition. The second group (containing, e.g., Rhodobacterales and Rhizobiales) responded to the grazer removal but not to the phosphate addition. Finally, some clades, such as SAR11 and Flavobacteriaceae, responded only to phosphate amendment but not to grazer removal. Our results show large differences in bacterial responses to experimental manipulations at the phylotype level and document different life strategies of marine bacterioplankton. In addition, growth curves of 130 phylogroups of aerobic anoxygenic phototrophs were reconstructed based on changes of the functional pufM gene. The use of functional genes together with rRNA genes may significantly expand the scientific potential of the ARNIS technique. IMPORTANCE Growth is one of the main manifestations of life. It is assumed generally that bacterial growth is constrained mostly by nutrient availability (bottom-up control) and grazing (top-down control). Since marine bacteria represent a very diverse assembly of species with different metabolic properties, their growth characteristics also largely differ accordingly. Currently, the growth of marine microorganisms is typically evaluated using microscopy in combination with fluorescence in situ hybridization (FISH). However, these laborious techniques are limited in their throughput and taxonomical resolution. Therefore, we combined a classical manipulation experiment with next-generation sequencing to resolve the growth dynamics of almost 300 bacterial phylogroups in the coastal Adriatic Sea. The analysis documented that most of the phylogroups responded positively to both grazer removal and phosphate addition. We observed significant differences in growth kinetics among closely related species, which could not be distinguished by the classical FISH technique.
Collapse
|
30
|
Wang L, Lin Y, Ye L, Qian Y, Shi Y, Xu K, Ren H, Geng J. Microbial Roles in Dissolved Organic Matter Transformation in Full-Scale Wastewater Treatment Processes Revealed by Reactomics and Comparative Genomics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:11294-11307. [PMID: 34338502 DOI: 10.1021/acs.est.1c02584] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Understanding the degradation of dissolved organic matter (DOM) is vital for optimizing DOM control. However, the microbe-mediated DOM transformation during wastewater treatment remains poorly characterized. Here, microbes and DOM along full-scale biotreatment processes were simultaneously characterized using comparative genomics and high-resolution mass spectrometry-based reactomics. Biotreatments significantly increased DOM's aromaticity and unsaturation due to the overproduced lignin and polyphenol analogs. DOM was diversified by over five times in richness, with thousands of nitrogenous and sulfur-containing compounds generated through microbe-mediated oxidoreduction, functional group transfer, and C-N and C-S bond formation. Network analysis demonstrated microbial division of labor in DOM transformation. However, their roles were determined by their functional traits rather than taxa. Specifically, network and module hubs exhibited rapid growth potentials and broad substrate affinities but were deficient in xenobiotics-metabolism-associated genes. They were mainly correlated to liable DOM consumption and its transformation to recalcitrant compounds. In contrast, connectors and peripherals were potential degraders of recalcitrant DOM but slow in growth. They showed specialized associations with fewer DOM molecules and probably fed on metabolites of hub microbes. Thus, developing technologies (e.g., carriers) to selectively enrich peripheral degraders and consequently decouple the liable and recalcitrant DOM transformation processes may advance DOM removal.
Collapse
Affiliation(s)
- Liye Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163, Xianlin Avenue, Nanjing 210023, Jiangsu, P. R. China
| | - Yuan Lin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163, Xianlin Avenue, Nanjing 210023, Jiangsu, P. R. China
| | - Lin Ye
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163, Xianlin Avenue, Nanjing 210023, Jiangsu, P. R. China
| | - Yuli Qian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163, Xianlin Avenue, Nanjing 210023, Jiangsu, P. R. China
| | - Yufei Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163, Xianlin Avenue, Nanjing 210023, Jiangsu, P. R. China
| | - Ke Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163, Xianlin Avenue, Nanjing 210023, Jiangsu, P. R. China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163, Xianlin Avenue, Nanjing 210023, Jiangsu, P. R. China
| | - Jinju Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163, Xianlin Avenue, Nanjing 210023, Jiangsu, P. R. China
| |
Collapse
|