1
|
Angelakis GN, Psarologaki C, Pirintsos S, Kotzabasis K. Extremophiles and Extremophilic Behaviour-New Insights and Perspectives. Life (Basel) 2024; 14:1425. [PMID: 39598223 PMCID: PMC11595344 DOI: 10.3390/life14111425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024] Open
Abstract
Extremophiles, throughout evolutionary time, have evolved a plethora of unique strategies to overcome hardships associated with the environments they are found in. Modifying their genome, showing a bias towards certain amino acids, redesigning their proteins, and enhancing their membranes and other organelles with specialised chemical compounds are only some of those strategies. Scientists can utilise such attributes of theirs for a plethora of biotechnological and astrobiological applications. Moreover, the rigorous study of such microorganisms regarding their evolution and ecological niche can offer deep insight into science's most paramount inquiries such as how life originated on Earth and whether we are alone in the universe. The intensification of studies involving extremophiles in the future can prove to be highly beneficial for humanity, even potentially ameliorating modern problems such as those related to climate change while also expanding our knowledge about the complex biochemical reactions that ultimately resulted in life as we know it today.
Collapse
Affiliation(s)
- George N. Angelakis
- Department of Biology, University of Crete, Voutes University Campus, GR 70013 Heraklion, Crete, Greece
- Faculty of Geosciences, Utrecht University, 3508 TC Utrecht, The Netherlands
| | - Chrysianna Psarologaki
- Department of Biology, University of Crete, Voutes University Campus, GR 70013 Heraklion, Crete, Greece
- Faculty of Biology and Psychology, Georg-August University of Göttingen, Wilhelm-Weber-Straße 2, 37073 Göttingen, Germany
| | - Stergios Pirintsos
- Department of Biology, University of Crete, Voutes University Campus, GR 70013 Heraklion, Crete, Greece
- Botanical Garden, University of Crete, Gallos University Campus, GR 74100 Rethymnon, Crete, Greece
| | - Kiriakos Kotzabasis
- Department of Biology, University of Crete, Voutes University Campus, GR 70013 Heraklion, Crete, Greece
- Botanical Garden, University of Crete, Gallos University Campus, GR 74100 Rethymnon, Crete, Greece
| |
Collapse
|
2
|
Shen L, Hu J, Zhang L, Wu Z, Chen L, Adhikari NP, Ji M, Chen S, Peng F, Liu Y. Genomics-based identification of a cold adapted clade in Deinococcus. BMC Biol 2024; 22:145. [PMID: 38956546 PMCID: PMC11218099 DOI: 10.1186/s12915-024-01944-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 06/25/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Microbes in the cold polar and alpine environments play a critical role in feedbacks that amplify the effects of climate change. Defining the cold adapted ecotype is one of the prerequisites for understanding the response of polar and alpine microbes to climate change. RESULTS Here, we analysed 85 high-quality, de-duplicated genomes of Deinococcus, which can survive in a variety of harsh environments. By leveraging genomic and phenotypic traits with reverse ecology, we defined a cold adapted clade from eight Deinococcus strains isolated from Arctic, Antarctic and high alpine environments. Genome-wide optimization in amino acid composition and regulation and signalling enable the cold adapted clade to produce CO2 from organic matter and boost the bioavailability of mineral nitrogen. CONCLUSIONS Based primarily on in silico genomic analysis, we defined a potential cold adapted clade in Deinococcus and provided an updated view of the genomic traits and metabolic potential of Deinococcus. Our study would facilitate the understanding of microbial processes in the cold polar and alpine environments.
Collapse
Affiliation(s)
- Liang Shen
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China.
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, and Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, Anhui Normal University, Wuhu, 241000, China.
| | - Jiayu Hu
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Luyao Zhang
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Zirui Wu
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Liangzhong Chen
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Namita Paudel Adhikari
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
- Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou, 730000, China
| | - Mukan Ji
- Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou, 730000, China
| | - Shaoxing Chen
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Fang Peng
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| | - Yongqin Liu
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
- Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
3
|
Dieser M, Smith HJ, Foreman CM. Seven genome sequences of airborne, bacterial isolates from Antarctica. Microbiol Resour Announc 2024; 13:e0112923. [PMID: 38747591 PMCID: PMC11237742 DOI: 10.1128/mra.01129-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/24/2024] [Indexed: 06/12/2024] Open
Abstract
Ice-covered and remote landscapes in the McMurdo Dry Valleys, Antarctica, are likely seeded by aeolian transport of biological material from ice-free local or distant environments. Here, we report the genome sequences of seven bacteria isolated from aerosols collected on top of two dry valley glaciers.
Collapse
Affiliation(s)
- Markus Dieser
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, USA
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, Montana, USA
| | - Heidi J Smith
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, USA
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Christine M Foreman
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, USA
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
4
|
Shen L, Liu Y, Chen L, Lei T, Ren P, Ji M, Song W, Lin H, Su W, Wang S, Rooman M, Pucci F. Genomic basis of environmental adaptation in the widespread poly-extremophilic Exiguobacterium group. THE ISME JOURNAL 2024; 18:wrad020. [PMID: 38365240 PMCID: PMC10837837 DOI: 10.1093/ismejo/wrad020] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 02/18/2024]
Abstract
Delineating cohesive ecological units and determining the genetic basis for their environmental adaptation are among the most important objectives in microbiology. In the last decade, many studies have been devoted to characterizing the genetic diversity in microbial populations to address these issues. However, the impact of extreme environmental conditions, such as temperature and salinity, on microbial ecology and evolution remains unclear so far. In order to better understand the mechanisms of adaptation, we studied the (pan)genome of Exiguobacterium, a poly-extremophile bacterium able to grow in a wide range of environments, from permafrost to hot springs. To have the genome for all known Exiguobacterium type strains, we first sequenced those that were not yet available. Using a reverse-ecology approach, we showed how the integration of phylogenomic information, genomic features, gene and pathway enrichment data, regulatory element analyses, protein amino acid composition, and protein structure analyses of the entire Exiguobacterium pangenome allows to sharply delineate ecological units consisting of mesophilic, psychrophilic, halophilic-mesophilic, and halophilic-thermophilic ecotypes. This in-depth study clarified the genetic basis of the defined ecotypes and identified some key mechanisms driving the environmental adaptation to extreme environments. Our study points the way to organizing the vast microbial diversity into meaningful ecologically units, which, in turn, provides insight into how microbial communities adapt and respond to different environmental conditions in a changing world.
Collapse
Affiliation(s)
- Liang Shen
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, and Anhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, Anhui Normal University, Wuhu 241000, China
| | - Yongqin Liu
- Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou 730000, China
| | - Liangzhong Chen
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Tingting Lei
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Ping Ren
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Mukan Ji
- Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou 730000, China
| | - Weizhi Song
- Centre for Marine Bio-Innovation, University of New South Wales, Sydney, NSW 2052, Australia
| | - Hao Lin
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Wei Su
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Sheng Wang
- Shanghai Zelixir Biotech Company Ltd., Shanghai 200030, China
| | - Marianne Rooman
- Computational Biology and Bioinformatics, Université Libre de Bruxelles, Brussels 1050, Belgium
- Interuniversity Institute of Bioinformatics in Brussels, Brussels 1050, Belgium
| | - Fabrizio Pucci
- Computational Biology and Bioinformatics, Université Libre de Bruxelles, Brussels 1050, Belgium
- Interuniversity Institute of Bioinformatics in Brussels, Brussels 1050, Belgium
| |
Collapse
|
5
|
Perez-Bou L, Muñoz-Palazon B, Gonzalez-Lopez J, Gonzalez-Martinez A, Correa-Galeote D. Deciphering the Role of WWTPs in Cold Environments as Hotspots for the Dissemination of Antibiotic Resistance Genes. MICROBIAL ECOLOGY 2023; 87:14. [PMID: 38091083 DOI: 10.1007/s00248-023-02325-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023]
Abstract
Cold environments are the most widespread extreme habitats in the world. However, the role of wastewater treatment plants (WWTPs) in the cryosphere as hotspots in antibiotic resistance dissemination has not been well established. Hence, a snapshot of the resistomes of WWTPs in cold environments, below 5 °C, was provided to elucidate their role in disseminating antibiotic resistance genes (ARGs) to the receiving waterbodies. The resistomes of two natural environments from the cold biosphere were also determined. Quantitative PCR analysis of the aadA, aadB, ampC, blaSHV, blaTEM, dfrA1, ermB, fosA, mecA, qnrS, and tetA(A) genes indicated strong prevalences of these genetic determinants in the selected environments, except for the mecA gene, which was not found in any of the samples. Notably, high abundances of the aadA, ermB, and tetA(A) genes were found in the influents and activated sludge, highlighting that WWTPs of the cryosphere are critical hotspots for disseminating ARGs, potentially worsening the resistance of bacteria to some of the most commonly prescribed antibiotics. Besides, the samples from non-disturbed cold environments had large quantities of ARGs, although their ARG profiles were highly dissimilar. Hence, the high prevalences of ARGs lend support to the fact that antibiotic resistance is a common issue worldwide, including environmentally fragile cold ecosystems.
Collapse
Affiliation(s)
- Lizandra Perez-Bou
- Department of Microbiology and Virology, Faculty of Biology, University of Havana, Havana, Cuba
- Microbiology and Environmental Technologies Section, Water Research Institute, University of Granada, Granada, Spain
| | - Barbara Muñoz-Palazon
- Microbiology and Environmental Technologies Section, Water Research Institute, University of Granada, Granada, Spain
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Jesus Gonzalez-Lopez
- Microbiology and Environmental Technologies Section, Water Research Institute, University of Granada, Granada, Spain
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Alejandro Gonzalez-Martinez
- Microbiology and Environmental Technologies Section, Water Research Institute, University of Granada, Granada, Spain
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - David Correa-Galeote
- Microbiology and Environmental Technologies Section, Water Research Institute, University of Granada, Granada, Spain.
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain.
| |
Collapse
|
6
|
Chen L, Hong T, Wu Z, Song W, Chen SX, Liu Y, Shen L. Genomic analyses reveal a low-temperature adapted clade in Halorubrum, a widespread haloarchaeon across global hypersaline environments. BMC Genomics 2023; 24:508. [PMID: 37653415 PMCID: PMC10468875 DOI: 10.1186/s12864-023-09597-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/16/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Cold-adapted archaea have diverse ecological roles in a wide range of low-temperature environments. Improving our knowledge of the genomic features that enable psychrophiles to grow in cold environments helps us to understand their adaptive responses. However, samples from typical cold regions such as the remote Arctic and Antarctic are rare, and the limited number of high-quality genomes available leaves us with little data on genomic traits that are statistically associated with cold environmental conditions. RESULTS In this study, we examined the haloarchaeal genus Halorubrum and defined a new clade that represents six isolates from polar and deep earth environments ('PD group' hereafter). The genomic G + C content and amino acid composition of this group distinguishes it from other Halorubrum and the trends are consistent with the established genomic optimization of psychrophiles. The cold adaptation of the PD group was further supported by observations of increased flexibility of proteins encoded across the genome and the findings of a growth test. CONCLUSIONS The PD group Halorubrum exhibited denser genome packing, which confers higher metabolic potential with constant genome size, relative to the reference group, resulting in significant differences in carbon, nitrogen and sulfur metabolic patterns. The most marked feature was the enrichment of genes involved in sulfur cycling, especially the production of sulfite from organic sulfur-containing compounds. Our study provides an updated view of the genomic traits and metabolic potential of Halorubrum and expands the range of sources of cold-adapted haloarchaea.
Collapse
Affiliation(s)
- Liangzhong Chen
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
- Anhui Provincial Key Laboratory of Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu, 241000, China
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, and Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, Anhui Normal University, Wuhu, 241000, China
| | - Tao Hong
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Zirui Wu
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Weizhi Song
- Centre for Marine Bio-Innovation, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Shaoxing X Chen
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China.
| | - Yongqin Liu
- Center for the Pan-third Pole Environment, Lanzhou University, Lanzhou, 730000, China
- State Key Laboratory of Tibetan Plateau Earth System Science, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, 100085, Beijing, China
| | - Liang Shen
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China.
- Anhui Provincial Key Laboratory of Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu, 241000, China.
- State Key Laboratory of Tibetan Plateau Earth System Science, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, 100085, Beijing, China.
| |
Collapse
|
7
|
Peng Q, Lin L, Tu Q, Wang X, Zhou Y, Chen J, Jiao N, Zhou J. Unraveling the roles of coastal bacterial consortia in degradation of various lignocellulosic substrates. mSystems 2023; 8:e0128322. [PMID: 37417747 PMCID: PMC10469889 DOI: 10.1128/msystems.01283-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/12/2023] [Indexed: 07/08/2023] Open
Abstract
Lignocellulose, as the most abundant natural organic carbon on earth, plays a key role in regulating the global carbon cycle, but there have been only few studies in marine ecosystems. Little information is available about the extant lignin-degrading bacteria in coastal wetlands, limiting our understanding of their ecological roles and traits in lignocellulose degradation. We utilized in situ lignocellulose enrichment experiments coupled with 16S rRNA amplicon and shotgun metagenomics sequencing to identify and characterize bacterial consortia attributed to different lignin/lignocellulosic substrates in the southern-east intertidal zone of East China Sea. We found the consortia enriched on woody lignocellulose showed higher diversity than those on herbaceous substrate. This also revealed substrate-dependent taxonomic groups. A time-dissimilarity pattern with increased alpha diversity over time was observed. Additionally, this study identified a comprehensive set of genes associated with lignin degradation potential, containing 23 gene families involved in lignin depolymerization, and 371 gene families involved in aerobic/anaerobic lignin-derived aromatic compound pathways, challenging the traditional view of lignin recalcitrance within marine ecosystems. In contrast to similar cellulase genes among the lignocellulose substrates, significantly different ligninolytic gene groups were observed between consortia under woody and herbaceous substrates. Importantly, we not only observed synergistic degradation of lignin and hemi-/cellulose, but also pinpointed the potential biological actors at the levels of taxa and functional genes, which indicated that the alternation of aerobic and anaerobic catabolism could facilitate lignocellulose degradation. Our study advances the understanding of coastal bacterial community assembly and metabolic potential for lignocellulose substrates. IMPORTANCE It is essential for the global carbon cycle that microorganisms drive lignocellulose transformation, due to its high abundance. Previous studies were primarily constrained to terrestrial ecosystems, with limited information about the role of microbes in marine ecosystems. Through in situ lignocellulose enrichment experiment coupled with high-throughput sequencing, this study demonstrated different impacts that substrates and exposure times had on long-term bacterial community assembly and pinpointed comprehensive, yet versatile, potential decomposers at the levels of taxa and functional genes in response to different lignocellulose substrates. Moreover, the links between ligninolytic functional traits and taxonomic groups of substrate-specific populations were revealed. It showed that the synergistic effect of lignin and hemi-/cellulose degradation could enhance lignocellulose degradation under alternation of aerobic and anaerobic conditions. This study provides valuable taxonomic and genomic insights into coastal bacterial consortia for lignocellulose degradation.
Collapse
Affiliation(s)
- Qiannan Peng
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Lu Lin
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Qichao Tu
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Xiaopeng Wang
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, China
| | - Yueyue Zhou
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, China
| | - Jiyu Chen
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Joint Lab for Ocean Research and Education at Shandong University, Xiamen University and Dalhousie University, Qingdao, China
| | - Jizhong Zhou
- Institute for Environmental Genomics, University of Oklahoma, Norman, Oklahoma, USA
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
- School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, Oklahoma, USA
- School of Computer Science, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
8
|
Hickl O, Queirós P, Wilmes P, May P, Heintz-Buschart A. binny: an automated binning algorithm to recover high-quality genomes from complex metagenomic datasets. Brief Bioinform 2022; 23:6760137. [PMID: 36239393 PMCID: PMC9677464 DOI: 10.1093/bib/bbac431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 12/14/2022] Open
Abstract
The reconstruction of genomes is a critical step in genome-resolved metagenomics and for multi-omic data integration from microbial communities. Here, we present binny, a binning tool that produces high-quality metagenome-assembled genomes (MAG) from both contiguous and highly fragmented genomes. Based on established metrics, binny outperforms or is highly competitive with commonly used and state-of-the-art binning methods and finds unique genomes that could not be detected by other methods. binny uses k-mer-composition and coverage by metagenomic reads for iterative, nonlinear dimension reduction of genomic signatures as well as subsequent automated contig clustering with cluster assessment using lineage-specific marker gene sets. When compared with seven widely used binning algorithms, binny provides substantial amounts of uniquely identified MAGs and almost always recovers the most near-complete ($\gt 95\%$ pure, $\gt 90\%$ complete) and high-quality ($\gt 90\%$ pure, $\gt 70\%$ complete) genomes from simulated datasets from the Critical Assessment of Metagenome Interpretation initiative, as well as substantially more high-quality draft genomes, as defined by the Minimum Information about a Metagenome-Assembled Genome standard, from a real-world benchmark comprised of metagenomes from various environments than any other tested method.
Collapse
Affiliation(s)
| | | | | | - Patrick May
- Corresponding authors: Patrick May, Bioinformatics Core, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 1 Boulevard du Jazz, L-4370, Esch-sur-Alzette, Luxembourg. Tel: +352 46 6644 6263; E-mail: ; Anna Heintz-Buschart, Biosystems Data Analysis, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands. Tel: +31 020 525 6547; E-mail:
| | - Anna Heintz-Buschart
- Corresponding authors: Patrick May, Bioinformatics Core, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 1 Boulevard du Jazz, L-4370, Esch-sur-Alzette, Luxembourg. Tel: +352 46 6644 6263; E-mail: ; Anna Heintz-Buschart, Biosystems Data Analysis, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands. Tel: +31 020 525 6547; E-mail:
| |
Collapse
|
9
|
Chakoory O, Comtet-Marre S, Peyret P. RiboTaxa: combined approaches for rRNA genes taxonomic resolution down to the species level from metagenomics data revealing novelties. NAR Genom Bioinform 2022; 4:lqac070. [PMID: 36159175 PMCID: PMC9492272 DOI: 10.1093/nargab/lqac070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/04/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Metagenomic classifiers are widely used for the taxonomic profiling of metagenomics data and estimation of taxa relative abundance. Small subunit rRNA genes are a gold standard for phylogenetic resolution of microbiota, although the power of this marker comes down to its use as full-length. We aimed at identifying the tools that can efficiently lead to taxonomic resolution down to the species level. To reach this goal, we benchmarked the performance and accuracy of rRNA-specialized versus general-purpose read mappers, reference-targeted assemblers and taxonomic classifiers. We then compiled the best tools (BBTools, FastQC, SortMeRNA, MetaRib, EMIRGE, VSEARCH, BBMap and QIIME 2’s Sklearn classifier) to build a pipeline called RiboTaxa. Using metagenomics datasets, RiboTaxa gave the best results compared to other tools (i.e. Kraken2, Centrifuge, METAXA2, phyloFlash, SPINGO, BLCA, MEGAN) with precise taxonomic identification and relative abundance description without false positive detection (F-measure of 100% and 83.7% at genus level and species level, respectively). Using real datasets from various environments (i.e. ocean, soil, human gut) and from different approaches (e.g. metagenomics and gene capture by hybridization), RiboTaxa revealed microbial novelties not discerned by current bioinformatics analysis opening new biological perspectives in human and environmental health.
Collapse
Affiliation(s)
- Oshma Chakoory
- Université Clermont Auvergne, INRAE, MEDIS , F-63000 Clermont-Ferrand, France
| | - Sophie Comtet-Marre
- Université Clermont Auvergne, INRAE, MEDIS , F-63000 Clermont-Ferrand, France
| | - Pierre Peyret
- Université Clermont Auvergne, INRAE, MEDIS , F-63000 Clermont-Ferrand, France
| |
Collapse
|
10
|
Koning K, McFarlane R, Gosse JT, Lawrence S, Carr L, Horne D, Van Wagoner N, Boddy CN, Cheeptham N. Biomineralization in Cave Bacteria—Popcorn and Soda Straw Crystal Formations, Morphologies, and Potential Metabolic Pathways. Front Microbiol 2022; 13:933388. [PMID: 35847116 PMCID: PMC9283089 DOI: 10.3389/fmicb.2022.933388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022] Open
Abstract
Caves are extreme, often oligotrophic, environments that house diverse groups of microorganisms. Many of these microbes can perform microbiologically induced carbonate precipitation (MICP) to form crystalline secondary cave deposits known as speleothems. The urease family is a group of enzymes involved in MICP that catalyze the breakdown of urea, which is a source of energy, into ammonia and carbonate. Carbonate anions are effluxed to the extracellular surface of the bacterium where it then binds to environmental calcium to form calcium carbonate which then continues to grow in crystal form. Here, we studied bacterial communities from speleothems collected from the Iron Curtain Cave (ICC) in Chilliwack, B.C., Canada, to characterize these organisms and determine whether urease-positive (U+) bacteria were present in the cave and their potential impact on speleothem formation. The ICC is a carbonate cave located on the northside of Chipmunk Ridge, presenting a unique environment with high iron content sediment and limestone structures throughout. With six pools of water throughout the cave, the environment is highly humid, with temperatures ranging between 4 and 12°C depending on the time of year. Ninety-nine bacterial strains were isolated from popcorn (PCS) and soda straw (SSS) speleothems. These isolates were screened for urease enzymatic activity, with 11 candidates found to be urease-positive. After incubation, species-specific crystal morphologies were observed. Popcorn speleothem provided more bacterial diversity overall when compared to soda straw speleothem when examined under a culture-based method. Nearly twice as many U+ isolates were isolated from popcorn speleothems compared to soda straw speleothems. The U+ candidates were identified to the genus level by 16S rRNA analysis, and two isolates underwent whole-genome sequencing. Two novel species were identified as Sphingobacterium sp. PCS056 and Pseudarthrobacter sp. SSS035. Both isolates demonstrated the most crystal production as well as the most morphologically dissimilar crystal shapes in broth culture and were found to produce crystals as previously observed in both agar and broth media. The results from this study are consistent with the involvement of urease-positive bacteria isolated from the ICC in the formation of cave speleothems. 16S rRNA sequencing revealed a diverse set of microbes inhabiting the speleothems that have urease activity. Whole-genome sequencing of the two chosen isolates confirmed the presence of urease pathways, while revealing differences in urease pathway structure and number. This research contributes to understanding microbial-associated cave formation and degradation, with applications to cave conservation, microbiota composition, and their role in shaping the cave environment.
Collapse
Affiliation(s)
- Keegan Koning
- Department of Biology, Faculty of Science, Thompson Rivers University, Kamloops, BC, Canada
| | - Richenda McFarlane
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Jessica T. Gosse
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Sara Lawrence
- Department of Biology, Faculty of Science, Thompson Rivers University, Kamloops, BC, Canada
| | - Lynnea Carr
- Department of Biology, Faculty of Science, Thompson Rivers University, Kamloops, BC, Canada
| | - Derrick Horne
- The University of British Columbia Bioimaging Facility, Biological Sciences Building, Vancouver, BC, Canada
| | - Nancy Van Wagoner
- Department of Physical Sciences, Faculty of Science, Thompson Rivers University, Kamloops, BC, Canada
| | - Christopher N. Boddy
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Naowarat Cheeptham
- Department of Biology, Faculty of Science, Thompson Rivers University, Kamloops, BC, Canada
- *Correspondence: Naowarat Cheeptham,
| |
Collapse
|
11
|
Comparative Genomic Analyses of the Genus Nesterenkonia Unravels the Genomic Adaptation to Polar Extreme Environments. Microorganisms 2022; 10:microorganisms10020233. [PMID: 35208688 PMCID: PMC8875376 DOI: 10.3390/microorganisms10020233] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 02/06/2023] Open
Abstract
The members of the Nesterenkonia genus have been isolated from various habitats, like saline soil, salt lake, sponge-associated and the human gut, some of which are even located in polar areas. To identify their stress resistance mechanisms and draw a genomic profile across this genus, we isolated four Nesterenkonia strains from the lakes in the Tibetan Plateau, referred to as the third pole, and compared them with all other 30 high-quality Nesterenkonia genomes that are deposited in NCBI. The Heaps’ law model estimated that the pan-genome of this genus is open and the number of core, shell, cloud, and singleton genes were 993 (6.61%), 2782 (18.52%), 4117 (27.40%), and 7132 (47.47%), respectively. Phylogenomic and ANI/AAI analysis indicated that all genomes can be divided into three main clades, named NES-1, NES-2, and NES-3. The strains isolated from lakes in the Tibetan Plateau were clustered with four strains from different sources in the Antarctic and formed a subclade within NES-2, described as NES-AT. Genome features of this subclade, including GC (guanine + cytosine) content, tRNA number, carbon/nitrogen atoms per residue side chain (C/N-ARSC), and amino acid composition, in NES-AT individuals were significantly different from other strains, indicating genomic adaptation to cold, nutrient-limited, osmotic, and ultraviolet conditions in polar areas. Functional analysis revealed the enrichment of specific genes involved in bacteriorhodopsin synthesis, biofilm formation, and more diverse nutrient substance metabolism genes in the NES-AT clade, suggesting potential adaptation strategies for energy metabolism in polar environments. This study provides a comprehensive profile of the genomic features of the Nesterenkonia genus and reveals the possible mechanism for the survival of Nesterenkonia isolates in polar areas.
Collapse
|