1
|
Cong X, Liu X, Zhou D, Xu Y, Liu J, Tong F. Characterization and comparison of the fecal bacterial microbiota in Red Back Pine Root Snake ( Oligodon formosanus) and Chinese Slug-Eating Snake ( Pareas chinensis). Front Microbiol 2025; 16:1575405. [PMID: 40309103 PMCID: PMC12040955 DOI: 10.3389/fmicb.2025.1575405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 03/25/2025] [Indexed: 05/02/2025] Open
Abstract
Introduction The gastrointestinal tracts and oral cavities of animals harbor complex microbial communities that assist hosts in nutrient absorption and immune responses, thereby influencing behavior, development, reproduction, and overall health. Methods We utilized metagenomic sequencing technology to conduct a detailed analysis of the fecal bacterial communities of six Red Back Pine Root Snakes (Oligodon formosanus, XT) and three Chinese Slug-Eating Snakes (Pareas chinensis, Z) individuals. The microbial composition was assessed through taxonomic profiling, alpha diversity analysis, and functional annotation using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Results The results indicated that Proteobacteria, Bacteroidetes, Firmicutes, Verrucomicrobia, Actinobacteria, and Fusobacteria were the dominant phyla in XT samples, while Z samples additionally contained Patescibacteria. Alpha diversity analysis revealed significant differences in species abundance at the family level, with Z samples exhibiting higher microbial richness than XT. Furthermore, KEGG analysis showed that XT had higher functional gene abundance in pathways related to transcription, translation, environmental adaptation, membrane transport, cellular communities (prokaryotes), motility, and replication/repair compared to Z. Discussion This study provides a comparative analysis of their gut microbiomes, offering valuable insights for future research on zoonotic diseases, host-microbe interactions, and ecological, evolutionary, behavioral, and seasonal influences on snake microbiota. These findings contribute to a broader understanding of microbial ecology in reptiles and its implications for conservation and disease dynamics.
Collapse
Affiliation(s)
- Xiao Cong
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiangnan Liu
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Dan Zhou
- Fu Shun Vocational Technology Institute, Fushun, China
| | - Yunfeng Xu
- Fu Shun Vocational Technology Institute, Fushun, China
| | - Jinru Liu
- Fu Shun Vocational Technology Institute, Fushun, China
| | - Fei Tong
- Fu Shun Vocational Technology Institute, Fushun, China
| |
Collapse
|
2
|
Degregori S, Wang X, Kommala A, Schulhof N, Moradi S, MacDonald A, Eblen K, Jukovich S, Smith E, Kelleher E, Suzuki K, Hall Z, Knight R, Amato KR. Comparative gut microbiome research through the lens of ecology: theoretical considerations and best practices. Biol Rev Camb Philos Soc 2025; 100:748-763. [PMID: 39530277 PMCID: PMC11885713 DOI: 10.1111/brv.13161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 10/20/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Comparative approaches in animal gut microbiome research have revealed patterns of phylosymbiosis, dietary and physiological convergences, and environment-host interactions. However, most large-scale comparative studies, especially those that are highly cited, have focused on mammals, and efforts to integrate comparative approaches with existing ecological frameworks are lacking. While mammals serve as useful model organisms, developing generalised principles of how animal gut microbiomes are shaped and how these microbiomes interact bidirectionally with host ecology and evolution requires a more complete sampling of the animal kingdom. Here, we provide an overview of what past comparative studies have taught us about the gut microbiome, and how community ecology theory may help resolve certain contradictions in comparative gut microbiome research. We explore whether certain hypotheses are supported across clades, and how the disproportionate focus on mammals has introduced potential bias into gut microbiome theory. We then introduce a methodological solution by which public gut microbiome data of understudied hosts can be compiled and analysed in a comparative context. Our aggregation and analysis of 179 studies shows that generating data sets with rich host diversity is possible with public data and that key gut microbes associated with mammals are widespread across the animal kingdom. We also show the effects that sample size and taxonomic rank have on comparative gut microbiome studies and that results of multivariate analyses can vary significantly with these two parameters. While challenges remain in developing a universal model of the animal gut microbiome, we show that existing ecological frameworks can help bring us one step closer to integrating the gut microbiome into animal ecology and evolution.
Collapse
Affiliation(s)
- Samuel Degregori
- Department of AnthropologyNorthwestern University1810 Hinman AvenueEvanstonIL60208USA
| | - Xiaolin Wang
- Department of AnthropologyNorthwestern University1810 Hinman AvenueEvanstonIL60208USA
| | - Akhil Kommala
- Department of AnthropologyNorthwestern University1810 Hinman AvenueEvanstonIL60208USA
| | - Noah Schulhof
- Department of AnthropologyNorthwestern University1810 Hinman AvenueEvanstonIL60208USA
| | - Sadaf Moradi
- Department of Ecology and Evolutionary BiologyUniversity of California621 Young Drive SouthLos AngelesCA90095USA
| | - Allison MacDonald
- Department of AnthropologyNorthwestern University1810 Hinman AvenueEvanstonIL60208USA
| | - Kaitlin Eblen
- Department of Ecology and Evolutionary BiologyUniversity of California621 Young Drive SouthLos AngelesCA90095USA
| | - Sophia Jukovich
- Department of AnthropologyNorthwestern University1810 Hinman AvenueEvanstonIL60208USA
| | - Emma Smith
- Department of AnthropologyNorthwestern University1810 Hinman AvenueEvanstonIL60208USA
| | - Emily Kelleher
- Department of AnthropologyNorthwestern University1810 Hinman AvenueEvanstonIL60208USA
| | - Kota Suzuki
- Department of AnthropologyNorthwestern University1810 Hinman AvenueEvanstonIL60208USA
| | - Zoey Hall
- Department of AnthropologyNorthwestern University1810 Hinman AvenueEvanstonIL60208USA
| | - Rob Knight
- Department of PediatricsUniversity of CaliforniaSan DiegoLa JollaCA92093USA
| | - Katherine Ryan Amato
- Department of AnthropologyNorthwestern University1810 Hinman AvenueEvanstonIL60208USA
| |
Collapse
|
3
|
Zhao C, Yang Y, Zhao P, Bai L. Comparative analysis of the fecal microbiota in Père David's deer and five other captive deer species. Front Microbiol 2025; 16:1547348. [PMID: 40207150 PMCID: PMC11979286 DOI: 10.3389/fmicb.2025.1547348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/10/2025] [Indexed: 04/11/2025] Open
Abstract
Introduction Gut microbes are essential for host nutrition, immunity, and development. Various factors influence the composition and function of the gut microbial community. However, there is limited knowledge regarding the comparison of gut microbiota across different deer species, particularly those in the World Deer Park of Baotou (Inner Mongolia, China). Methods This study utilized 16S rRNA gene amplicon sequencing to analyze the fecal microbiota and potential microbial function in Père David's Deer (Elaphurus davidianus), Sika deer (Cervus nippon), American Wapiti (Cervus canadensis), Red Deer (Cervuselaphus), Fallow Deer (Dama dama), and Reindeer (Rangifer tarandus). Results and discussion The findings indicated no significant differences in alpha diversity, yet there was a noteworthy distinction in beta diversity among the six deer groups. At the phylum level, the predominant bacteria in the deer populations were Firmicutes, Bacteroidetes, and Proteobacteria. At the genus level, 54 core bacterial microbiota were identified. The top four genera in AW, FD, PD, and SD were Ruminococcaceae UCG-005, Rikenellaceae RC9 gut group, RuminococcaceaeUCG-010 and Christensenellaceae R-7 group. The results of the neutral model revealed that neutral processes predominantly governed the gut microbiota community assembly in different deer species, particularly in Père David's deer. PICRUSt2 predictions showed significant enrichment of fecal bacterial functions related to fatty acid, lipid, metabolic regulator, and amino acid biosynthesis. This comparative analysis sheds light on the microbial community structure, community assembly, and potential functions, offering improved insights into the management and conservation of deer species, especially Père David's deer. Future research might focus on exploring metagenomic functions and dynamics in wild settings or across different seasons using metagenomics or metatranscriptomics.
Collapse
Affiliation(s)
| | | | | | - LiGe Bai
- College of Ecology and Environment, Baotou Teacher's College, Baotou, China
| |
Collapse
|
4
|
Zeng S, Huang Z, Kriengkrai S, Zhou R, Yuan D, Tuấn NV, Zhu Z, Zheng L, Hou Q, Li X, Chen Q, Zhang L, Hou D, Deng Z, Bao S, Wang W, Khoruamkid S, Goh SL, Weng S, He J. Warming-driven migration of enterotypes mediates host health and disease statuses in ectotherm Litopenaeus vannamei. Commun Biol 2025; 8:126. [PMID: 39865129 PMCID: PMC11770195 DOI: 10.1038/s42003-025-07558-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 01/15/2025] [Indexed: 01/28/2025] Open
Abstract
Global warming has threatened all-rounded hierarchical biosphere by reconstructing eco-structure and bringing biodiversity variations. Pacific white shrimp, a successful model of worldwide utilizing marine ectothermic resources, is facing huge losses due to multiple diseases relevant to intestinal microbiota (IM) dysbiosis during temperature fluctuation. However, how warming mediates shrimp health remains poorly understood. Herein, a global shrimp IM catalogue was conducted via 1,369 shrimp IM data from nine countries, including 918 samples from previously published data and 451 generated in the study. Shrimp IMs were stratified into three enterotypes with distinctive compositions and functions, dominated by Vibrio, Shewanella and Candidatus Bacilloplasma, which showed an obvious distribution bias between enterotypes and diseases. The ratio of Vibrio and Candidatus Bacilloplasma was a crucial indicator for shrimp health. Moreover, temperature was the most driving factor for microbial composition, which potentially led to the migration of enterotypes, and high probability of white feces syndrome and low risk of hepatopancreas necrosis syndrome. Collectively, the warming-driven enterotypes mediated shrimp health, which exemplified the causal relationship between temperature rising and ectothermic animals' health. These findings enlarged the cognition of shrimp health culture management from a microecological perspective, and alerted the inevitable challenge of global warming to ectothermic animals.
Collapse
Affiliation(s)
- Shenzheng Zeng
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Zhijian Huang
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China.
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
- School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, China.
| | | | - Renjun Zhou
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Derun Yuan
- Network of Aquaculture Centres in Asia-Pacific, Bangkok, Thailand
| | - Nguyễn Văn Tuấn
- Fisheries and Technical, Economic College, Bac Ninh, Vietnam
| | - Zhiming Zhu
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Luwei Zheng
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Qilu Hou
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xuanting Li
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qi Chen
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lingyu Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Dongwei Hou
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhixuan Deng
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shicheng Bao
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wenjun Wang
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | | | - Soo Loon Goh
- Goh Siong Tee Marine Product Sdn.Bhd, Penang, Malaysia
| | - Shaoping Weng
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jianguo He
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China.
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
5
|
Du X, Zhao J, Wu L, Ding S. Effects of Different Preservation Methods on the Structure and Diversity of Intestinal Microbiota of Marine Fishes. Curr Microbiol 2025; 82:81. [PMID: 39804371 DOI: 10.1007/s00284-025-04060-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 01/02/2025] [Indexed: 01/31/2025]
Abstract
The fish intestine is a complex ecosystem where microbial communities are dynamic and influenced by various factors. Preservation conditions during field collection can introduce biases affecting the microbiota amplified during sequencing. Therefore, establishing effective, standardized methods for sampling fish intestinal microbiota is crucial. This study used hybrid groupers (Epinephelus fuscoguttatus ♀ × E. lanceolatus ♂) to examine the effects of six preservation methods: dry ice (1 day), dry ice (1 day) followed by - 80 °C storage (5 days), liquid nitrogen (1 day), liquid nitrogen (1 day) with subsequent - 80 °C storage (5 days), refrigeration at 4 °C (3 days), and freezing at - 20 °C (3 days), with fresh samples as controls. High-throughput 16S rRNA sequencing assessed microbial diversity, community structure, dominant species, and OTU abundance across treatments. Results indicated that dry ice and liquid nitrogen methods, especially with - 80 °C storage, had minimal impact on microbial diversity and structure. Compared to other preservation methods, refrigeration at 4 °C and freezing at - 20 °C may result in suboptimal reproducibility and altered community structure, particularly affecting rare microbial taxa. This study underscores the need for standardized preservation techniques to ensure accurate fish intestinal microbiota analysis and provides a foundation for future research.
Collapse
Affiliation(s)
- Xueqing Du
- College of Ocean and Earth Sciences, Xiamen University, Fujian, 361005, China
| | - Jing Zhao
- College of Ocean and Earth Sciences, Xiamen University, Fujian, 361005, China
| | - Lisheng Wu
- College of Ocean and Earth Sciences, Xiamen University, Fujian, 361005, China
| | - Shaoxiong Ding
- College of Ocean and Earth Sciences, Xiamen University, Fujian, 361005, China.
| |
Collapse
|
6
|
Wang J, Hu C, Tong X, Gao Y, Liang R, Liu C, Zhao K. Microbial communities associated with the skin, gill, and gut of large yellow croaker (Larimichthys crocea). BMC Microbiol 2025; 25:16. [PMID: 39799309 PMCID: PMC11724461 DOI: 10.1186/s12866-024-03695-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/09/2024] [Indexed: 01/15/2025] Open
Abstract
The microbiota inhabiting the surface of fish mucosal tissue play important roles in the nutrition, metabolism and immune system of their host. However, most investigations on microbial symbionts have focused on the fish gut, but the microbiota associated with external mucosal tissues (such as the skin and gill) is poorly understood. This study characterised the traits and dynamic of microbial communities associated with the skin, gill and gut of large yellow croaker (Larimichthys crocea) culturing with net enclosures or pens at different sampling times (with seasonal transition). Results revealed the structure and function of microbial communities differed according to the mucosal tissues of large yellow croaker. The richness and diversity of microbiota in the skin were significantly higher than that in the gill and gut. Discriminative microbial taxa such as Psychrobacter in the skin, Enterobacterales in the gill, and Fusobacterium in the gut, and discriminative predictive functions were identified in the skin, gill and gut. Furthermore, different environmental-related factors (such as sampling time/season and culture method) had impacts on the fish microbiota differently. The diversity and composition of microbiota associated with the skin, gill and gut changed over time, and the difference in skin microbiota across sampling times was most significant among the three tissues. The culture method significantly impacted the diversity and composition of skin microbiota, but no significant difference was found in the gill and gut microbiota between net enclosure and net pen. These results indicated that the skin microbiota of large yellow croaker was more diverse and affected by environmental-related factors than other tissues. This study provides new insights into the structure, environmental response pattern, and relationship with host health of microbiota associated with the mucosal tissues of large yellow croaker.
Collapse
Affiliation(s)
- Jingan Wang
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Key Laboratory of Biomedicine and Advanced Dosage Forms, School of Life Sciences, Taizhou University, Taizhou, 318000, Zhejiang Province, China
| | - Chenghao Hu
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Key Laboratory of Biomedicine and Advanced Dosage Forms, School of Life Sciences, Taizhou University, Taizhou, 318000, Zhejiang Province, China
| | - Xiaojie Tong
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Key Laboratory of Biomedicine and Advanced Dosage Forms, School of Life Sciences, Taizhou University, Taizhou, 318000, Zhejiang Province, China
| | - Yuan Gao
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Key Laboratory of Biomedicine and Advanced Dosage Forms, School of Life Sciences, Taizhou University, Taizhou, 318000, Zhejiang Province, China
| | - Renjie Liang
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Key Laboratory of Biomedicine and Advanced Dosage Forms, School of Life Sciences, Taizhou University, Taizhou, 318000, Zhejiang Province, China
| | - Chibo Liu
- Department of Clinical Laboratory, Municipal Hospital Affiliated to Taizhou University, Taizhou, 318000, Zhejiang Province, China.
| | - Kai Zhao
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Key Laboratory of Biomedicine and Advanced Dosage Forms, School of Life Sciences, Taizhou University, Taizhou, 318000, Zhejiang Province, China.
| |
Collapse
|
7
|
Jiang S, Guo X, Qian X, Ning X, Zhang C, Yin S, Zhang K. Sex-bias of core intestinal microbiota in different stocks of Chinese mitten crabs (Eriocheir sinensis). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101281. [PMID: 38935994 DOI: 10.1016/j.cbd.2024.101281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
The differences in intestinal microbiota composition are synergistically shaped by internal and external factors of the host. The core microbiota plays a vital role in maintaining intestinal homeostasis. In this study, we conducted 16S rRNA sequencing analysis to investigate the stability of intestinal microbiota and sex-bias of six stocks of Chinese mitten crabs (105 females; and 110 males). The dominant phyla in all six stocks were Proteobacteria, Tenericutes, Bacteroidetes and Firmicutes; however, their relative abundance differed significantly. Twenty-seven core operational taxonomic units (OTUs), corresponding to 18 genera, were screened. Correlation analysis revealed that OTUs of four stocks in the Yangtze River system play important roles in maintaining the stability of intestinal microbiota. Additionally, the core intestinal microbiota was significantly sex-biased, and the top three genera in terms of relative abundance (Acinetobacter, Vibrio, and Candidatus_Hepatoplasma) were significantly dominant in female crabs. Network structure analysis also confirmed gender differences in the association pattern of intestinal microbiota. The intestinal microbiota of male crabs has a higher degree of functional enrichment. This study provided a theoretical basis for further investigating exploring the shaping effect of gender and geographical factors on the intestinal microbiota of Chinese mitten crabs.
Collapse
Affiliation(s)
- Su Jiang
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China
| | - Xinping Guo
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China
| | - Xiaobin Qian
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China
| | - Xianhui Ning
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang 222005, China
| | - Cong Zhang
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang 222005, China
| | - Shaowu Yin
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang 222005, China.
| | - Kai Zhang
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang 222005, China.
| |
Collapse
|
8
|
Du J, Wang Z, Xing Y, Gao X, Lu Z, Li D, Tian J. Long-Read Sequencing Revealing the Effectiveness of Captive Breeding Strategy for Improving the Gut Microbiota of Spotted Seal (Phoca largha). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 27:9. [PMID: 39589560 DOI: 10.1007/s10126-024-10397-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 11/20/2024] [Indexed: 11/27/2024]
Abstract
The spotted seal (Phoca largha) is the sole pinniped species that can reproduce in China and has been classified as the First-Grade State Protection animal. The conventional method for the protection and maintenance of the spotted seal population is the captive maintenance of the species in artificially controlled environments. Nevertheless, the efficacy of the captive strategy remains uncertain, with the potential to impact the health of spotted seals through alterations in gut microbiota. In this study, PacBio sequencing based on the full-length of the bacterial 16S rRNA gene was applied to faeces from captive and wild spotted seals, thereby providing a first reference for the gut microbiota profile of spotted seals at the species scale. The gut microbiota of captive spotted seals was found to be more diverse than that of the wild population. The gut microbiota of spotted seals exhibited notable variation due to captive breeding, with an enrichment of Firmicutes and a reduction in Proteobacteria. The results of the co-occurrence network analysis indicated that the gut microbiota of captive spotted seals exhibited a greater degree of complexity and stability in comparison to that observed in their wild counterparts. The analysis of community assembly mechanisms revealed an increased determinism for the gut microbiota of captive individuals, with a concomitant decrease in the contribution of drift. Furthermore, the results of the predicted functions indicated a reduction in stress responses and an enhanced ability to metabolise sugars in the gut microbiota of captive spotted seals. In conclusion, the results of this study provide evidence that the current captive breeding strategy is an effective approach for improving the gut microbiota of spotted seals. Furthermore, this study demonstrates the potential of monitoring the gut microbiota to assess the health of marine mammals and inform conservation strategies for endangered species.
Collapse
Affiliation(s)
- Jing Du
- Dalian Key Laboratory of Conservation Biology for Endangered Marine Mammals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, Liaoning, China
| | - Zhen Wang
- Dalian Key Laboratory of Conservation Biology for Endangered Marine Mammals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, Liaoning, China
| | - Yankuo Xing
- Dalian Key Laboratory of Conservation Biology for Endangered Marine Mammals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, Liaoning, China
| | - Xianggang Gao
- Dalian Key Laboratory of Conservation Biology for Endangered Marine Mammals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, Liaoning, China
| | - Zhichuang Lu
- Dalian Key Laboratory of Conservation Biology for Endangered Marine Mammals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, Liaoning, China
| | - Duohui Li
- Dalian Modern Agricultural Production Development Service Center, Dalian, 116023, Liaoning, China
| | - Jiashen Tian
- Dalian Key Laboratory of Conservation Biology for Endangered Marine Mammals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, Liaoning, China.
| |
Collapse
|
9
|
Zheng M, Wen L, He C, Chen X, Si L, Li H, Liang Y, Zheng W, Guo F. Sequencing-guided re-estimation and promotion of cultivability for environmental bacteria. Nat Commun 2024; 15:9051. [PMID: 39426960 PMCID: PMC11490580 DOI: 10.1038/s41467-024-53446-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 10/09/2024] [Indexed: 10/21/2024] Open
Abstract
The low cultivability of environmental bacteria has been widely acknowledged, but most previous estimates focused on the proportion of cultivable cells rather than cultivable taxa. Here, we estimate the proportions of cultivable cells and cultivable taxa for two sample types (soil and activated sludge) using cell counting, 16S rRNA gene amplicon sequencing, metagenomics, and cultivation on agar plates under various conditions. We find that the proportion of cultivable taxa exceeds that of cultivable cells at the sample level. A large proportion of cultivable taxa are taxonomically novel but tend to be present at very low abundance on agar plates, forming microcolonies, and some of them cease to grow during subculture. Compared with uncultivable taxa (under the conditions used in our study), cultivatable taxa tend to display higher metabolic activity as inferred by measuring rRNA copies per cell. Finally, we use the generated taxonomic and genomic information as a guide to isolate a strain representing a yet-uncultured class within the Bacteroidota and to enhance the cultivable diversity of Burkholderiales from activated sludge.
Collapse
Affiliation(s)
- Minjia Zheng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Linran Wen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Cailing He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xinlan Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Laiting Si
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Hao Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yiting Liang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Wei Zheng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Feng Guo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.
- The University Key Laboratory of Resource Microbiology in Fujian Province, Xiamen University, Xiamen, China.
- The Key Laboratory of Coastal and Wetland Ecosystems (Xiamen University), Ministry of Education, Xiamen, China.
| |
Collapse
|
10
|
Zhu F, Sun K, Zhang H, Lu J, Guo P, Zhang J, Xu Y, Lyu B. Comparative Analyses of Lycodon rufozonatus and Lycodon rosozonatus Gut Microbiota in Different Regions. Ecol Evol 2024; 14:e70480. [PMID: 39440211 PMCID: PMC11495892 DOI: 10.1002/ece3.70480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/27/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
The interactions between hosts and the gut microbiota are intricate and can significantly affect the ecology and evolution of both parties. Various host traits, including taxonomy, diet, social behaviour, and external factors such as prey availability and the local environment, all play an important role in shaping composition and diversity of the gut microbiogta. In this study, we explored the impact of intestinal microorganisms on the host in adapting to their respective ecological niches in two species of snakes. We collected feces from Lycodon rufozonatus and Lycodon rosozonatus from different geographical locations and used 16S rRNA gene sequencing technology to sequence the v3-v4 region. The results revealed that there was no significant difference in the alpha diversity of intestinal microorganisms between L. rufozonatus and L. rosozonatus. The gut microbiota of all individuals comprised four main phyla: Pseudomonadota, Bacteroidota, Bacillota, and Actinomycetota. At the genus level, the genus Salmonella dominated the enterobacterial microbiota in the samples from Hainan, while there was no obvious dominant genus in the enterobacterial microbiota of the samples from the other four localities. Comparative analysis of enzyme families annotated to the gut microbiota between L. rufozonatus and L. rosozonatus from the four sampling regions by CAZy carbohydrate annotation revealed that nine enzyme families differed significantly in terms of glycoside hydrolases (GHs). In addition, we compared the composition of gut microbial communities between L. rufozonatus and L. rosozonatus and investigated the impact of the differences on their functions. Our results will provide insights into the coevolution of host and gut microbes.
Collapse
Affiliation(s)
- Fei Zhu
- School of Life SciencesGuizhou Normal UniversityGuiyangGuizhouChina
| | - Ke Sun
- School of Life SciencesGuizhou Normal UniversityGuiyangGuizhouChina
| | - He Zhang
- Guizhou Academy of ForestryGuiyangGuizhouChina
| | - Jing Lu
- School of Life SciencesGuizhou Normal UniversityGuiyangGuizhouChina
| | - Peng Guo
- Faculty of Agriculture, Forestry and Food EngineeringYibin UniversityYibinSichuanChina
| | - Jiaqi Zhang
- Faculty of Agriculture, Forestry and Food EngineeringYibin UniversityYibinSichuanChina
| | - Yu Xu
- School of Life SciencesGuizhou Normal UniversityGuiyangGuizhouChina
| | - Bing Lyu
- Faculty of Agriculture, Forestry and Food EngineeringYibin UniversityYibinSichuanChina
| |
Collapse
|
11
|
Zhu X, Jiang N, Mai T, Wu S, Yao Y, Du Y, Lin C, Lin L, Ji X. Gut Microbial Communities Are Seasonally Variable in Warm-Climate Lizards Hibernating in the Winter Months. Microorganisms 2024; 12:1974. [PMID: 39458285 PMCID: PMC11509526 DOI: 10.3390/microorganisms12101974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Hibernation is an energy-saving and adaptive strategy adopted by a diverse array of animals, rarely including warm-climate species, to survive in the harsh winter environment. Here, we collected large-intestinal microbial samples from two species of warm-climate lizards, one (the Reeves' butterfly lizard Leiolepis reevesii) hibernating in the winter months and one (the many-lined sun skink Eutropis multifasciata) not doing so, in summer and winter to analyze and compare their microbiota using 16S rRNA gene amplicon sequencing technology. Gut microbiota were seasonally variable in L. reevesii but not in E. multifasciata. The decreased Firmicutes/Bacteroidetes ratio and increased relative abundance of Verrucomicrobia in hibernating butterfly lizards in a state of long-term fasting should help them live through the winter months, as bacteria of the phyla Bacteroidetes and Verrucomicrobia can use host-derived mucin glycans in the absence of dietary substrates. Facultative plant feeding by omnivorous butterfly lizards resulted in a significant increase in the relative abundance of bacteria of the phylum Firmicutes (e.g., Lachnospiraceae) with the ability to degrade plant fibers. This study not only validates the role of gut microbiota in dietary adaptation in lizards but also shows that gut microbial communities are seasonally variable in warm-climate lizards hibernating in the winter months.
Collapse
Affiliation(s)
- Xiaming Zhu
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (X.Z.); (N.J.)
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
| | - Neng Jiang
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (X.Z.); (N.J.)
| | - Tingye Mai
- Hainan Key Laboratory of Herpetological Research, College of Fisheries and Life Sciences, Hainan Tropical Ocean University, Sanya 572022, China; (T.M.); (S.W.); (Y.Y.); (Y.D.); (C.L.)
| | - Shulin Wu
- Hainan Key Laboratory of Herpetological Research, College of Fisheries and Life Sciences, Hainan Tropical Ocean University, Sanya 572022, China; (T.M.); (S.W.); (Y.Y.); (Y.D.); (C.L.)
| | - Yuntao Yao
- Hainan Key Laboratory of Herpetological Research, College of Fisheries and Life Sciences, Hainan Tropical Ocean University, Sanya 572022, China; (T.M.); (S.W.); (Y.Y.); (Y.D.); (C.L.)
| | - Yu Du
- Hainan Key Laboratory of Herpetological Research, College of Fisheries and Life Sciences, Hainan Tropical Ocean University, Sanya 572022, China; (T.M.); (S.W.); (Y.Y.); (Y.D.); (C.L.)
| | - Chixian Lin
- Hainan Key Laboratory of Herpetological Research, College of Fisheries and Life Sciences, Hainan Tropical Ocean University, Sanya 572022, China; (T.M.); (S.W.); (Y.Y.); (Y.D.); (C.L.)
| | - Longhui Lin
- Herpetological Research Center, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiang Ji
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
- Hainan Key Laboratory of Herpetological Research, College of Fisheries and Life Sciences, Hainan Tropical Ocean University, Sanya 572022, China; (T.M.); (S.W.); (Y.Y.); (Y.D.); (C.L.)
| |
Collapse
|
12
|
Zhang H, Wang J, Jing Y. Larimichthys crocea (large yellow croaker): A bibliometric study. Heliyon 2024; 10:e37393. [PMID: 39296167 PMCID: PMC11409083 DOI: 10.1016/j.heliyon.2024.e37393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/19/2024] [Accepted: 08/28/2024] [Indexed: 09/21/2024] Open
Abstract
Larimichthys crocea is an important economic fish of East Asia, and numerous studies have been conducted on its breeding, aquaculture, preservation and processing; however, there is no systematic review of the literature on the research of Larimichthys crocea. Derwent Data Analyzer (DDA) was used to analyze 1192 Larimichthys crocea research papers indexed by SCI-E, CSCD and KCI from 2001 to 2023. The number of research publications on Larimichthys crocea has rapidly increased, and institutions and scholars from China, the United States, South Korea, Japan, and Norway have conducted the majority of Larimichthys crocea research. The immune response, Pseudomonas plecoglossicida, gene expression, lipid immune response, transcriptomics and other areas have attracted the most attention. To increase the immunity and disease resistance of Larimichthys crocea and improve its survival, growth, storage and transport, researchers have carried out a large amount of research, which has promoted not only the culture of Larimichthys crocea but also the restoration of wild Larimichthys crocea and the rehabilitation of the ecological environment.
Collapse
Affiliation(s)
- Hongyan Zhang
- Library, Zhejiang Ocean University, Zhoushan, 316000, PR China
| | - Jiacan Wang
- School of Economics and Management, Zhejiang Ocean University, Zhoushan, 316000, PR China
| | - Yuan Jing
- Periodicals Agency, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| |
Collapse
|
13
|
Huang F, Graham NJD, Su Z, Xu L, Yu W. Capabilities of Microbial Consortia from Disparate Environment Matrices in the Decomposition of Nature Organic Matter by Biofiltration. WATER RESEARCH 2024; 262:122047. [PMID: 39003956 DOI: 10.1016/j.watres.2024.122047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024]
Abstract
Dissolved organic matter (DOM) plays a pivotal role in drinking water treatment, influencing the performance of unit processes and final water quality (e.g. disinfection byproduct risk). Biofiltration is an effective method of reducing DOM, but currently lacks a comprehensive appreciation of the association between microbial profiles and biofiltration performance. In this study, bench-scale biofiltration units inoculated with microbial consortia from river and soil matrices were operated successively for comparing their efficacy in terms of DOM removal. The results showed that biofiltration units receiving soil microbes were significantly superior (p < 0.05) to those receiving river inoculated microbes in terms of decomposing DOM recalcitrant fractions and reducing DBP formation potential, resulting in DOC and DBP precursor removals of up to 58.4 % and 87.9 %, respectively. Characterization of the taxonomic composition revealed that differences in the microbial assembly of the two biofilter groups were subject to deterministic rather than stochastic factors. Furthermore, more complicated interspecific relationships and niche structures in soil inoculated biofilters were deciphered by co-occurrence network, providing a plausible profile on a taxonomic division of labor in DOM stepwise degradation. Accordingly, the contribution of microbial compositions was found to be of greater importance than the GAC mass and biomass attached to the media. Thus, this study has advanced the understanding of microbial-mediated DOM decomposition in biofiltration, and also provided a promising strategy for enhancing the process for water use via developing appropriate engineered consortia of bacteria.
Collapse
Affiliation(s)
- Fan Huang
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Nigel J D Graham
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Zhaoyang Su
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Lei Xu
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Wenzheng Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China.
| |
Collapse
|
14
|
Khan I, Bu R, Ali Z, Iqbal MS, Shi H, Ding L, Hong M. Metagenomics Analysis Reveals the Composition and Functional Differences of Fecal Microbiota in Wild, Farm, and Released Chinese Three-Keeled Pond Turtles ( Mauremys reevesii). Animals (Basel) 2024; 14:1750. [PMID: 38929370 PMCID: PMC11201187 DOI: 10.3390/ani14121750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
The intestine of living organisms harbors different microbiota associated with the biological functioning and health of the host and influences the process of ecological adaptation. Here, we studied the intestinal microbiota's composition and functional differences using 16S rRNA and metagenomic analysis in the wild, farm, and released Chinese three-keeled pond turtle (Mauremys reevesii). At the phylum level, Bacteroidota dominated, followed by Firmicutes, Fusobacteriota, and Actinobacteriota in the wild group, but Chloroflexi was more abundant in the farm and released groups. Moreover, Chryseobacterium, Acinetobacter, Comamonas, Sphingobacterium, and Rhodobacter were abundant in the released and farm cohorts, respectively. Cetobacterium, Paraclostridium, Lysobacter, and Leucobacter showed an abundance in the wild group. The Kyoto Encyclopedia of Genes and Genomes (KEGG) database revealed that the relative abundance of most pathways was significantly higher in the wild turtles (carbohydrate metabolism, lipid metabolism, metabolism of cofactors, and vitamins). The comprehensive antibiotic resistance database (CARD) showed that the antibiotic resistance gene (ARG) subtype macB was the most abundant in the farm turtle group, while tetA was higher in the wild turtles, and srpYmcr was higher in the released group. Our findings shed light on the association between the intestinal microbiota of M. reevesii and its habitats and could be useful for tracking habitats to protect and conserve this endangered species.
Collapse
Affiliation(s)
- Ijaz Khan
- Key Laboratory of Tropical Island Ecology, Ministry of Education, Hainan Key Laboratory of Tropical Animal and Plant Ecology, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (I.K.); (R.B.)
| | - Rongping Bu
- Key Laboratory of Tropical Island Ecology, Ministry of Education, Hainan Key Laboratory of Tropical Animal and Plant Ecology, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (I.K.); (R.B.)
- College of Marine Science, Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf University, Qinzhou 535000, China
| | - Zeeshan Ali
- Key Laboratory of Tropical Island Ecology, Ministry of Education, Hainan Key Laboratory of Tropical Animal and Plant Ecology, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (I.K.); (R.B.)
| | - Muhammad Shahid Iqbal
- Key Laboratory of Tropical Island Ecology, Ministry of Education, Hainan Key Laboratory of Tropical Animal and Plant Ecology, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (I.K.); (R.B.)
| | - Haitao Shi
- Key Laboratory of Tropical Island Ecology, Ministry of Education, Hainan Key Laboratory of Tropical Animal and Plant Ecology, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (I.K.); (R.B.)
| | - Li Ding
- Key Laboratory of Tropical Island Ecology, Ministry of Education, Hainan Key Laboratory of Tropical Animal and Plant Ecology, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (I.K.); (R.B.)
| | - Meiling Hong
- Key Laboratory of Tropical Island Ecology, Ministry of Education, Hainan Key Laboratory of Tropical Animal and Plant Ecology, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (I.K.); (R.B.)
| |
Collapse
|
15
|
Diwan A, Harke SN, Panche AN. Host-microbiome interaction in fish and shellfish: An overview. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2023; 4:100091. [PMID: 37091066 PMCID: PMC10113762 DOI: 10.1016/j.fsirep.2023.100091] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/28/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023] Open
Abstract
The importance of the gut microbiome in the management of various physiological activities including healthy growth and performance of fish and shellfish is now widely considered and being studied in detail for potential applications in aquaculture farming and the future growth of the fish industry. The gut microbiome in all animals including fish is associated with a number of beneficial functions for the host, such as stimulating optimal gastrointestinal development, producing and supplying vitamins to the host, and improving the host's nutrient uptake by providing additional enzymatic activities. Besides nutrient uptake, the gut microbiome is involved in strengthening the immune system and maintaining mucosal tolerance, enhancing the host's resilience against infectious diseases, and the production of anticarcinogenic and anti-inflammatory compounds. Because of its significant role, the gut microbiome is very often considered an "extra organ," as it plays a key role in intestinal development and regulation of other physiological functions. Recent studies suggest that the gut microbiome is involved in energy homeostasis by regulating feeding, digestive and metabolic processes, as well as the immune response. Consequently, deciphering gut microbiome dynamics in cultured fish and shellfish species will play an indispensable role in promoting animal health and aquaculture productivity. It is mentioned that the microbiome community available in the gut tract, particularly in the intestine acts as an innovative source of natural product discovery. The microbial communities that are associated with several marine organisms are the source of natural products with a diverse array of biological activities and as of today, more than 1000 new compounds have been reported from such microbial species. Exploration of such new ingredients from microbial species would create more opportunities for the development of the bio-pharma/aquaculture industries. Considering the important role of the microbiome in the whole life span of fish and shellfish, it is necessary to understand the interaction process between the host and microbial community. However, information pertaining to host-microbiome interaction, particularly at the cellular level, gene expression, metabolic pathways, and immunomodulation mechanisms, the available literature is scanty. It has been reported that there are three ways of interaction involving the host-microbe-environment operates to maintain homeostasis in the fish and shellfish gut i.e. host intrinsic factors, the environment that shapes the gut microbiome composition, and the core microbial community present in the gut system itself has equal influence on the host biology. In the present review, efforts have been made to collect comprehensive information on various aspects of host-microbiome interaction, particularly on the immune system and health maintenance, management of diseases, nutrient uptake, digestion and absorption, gene expression, and metabolism in fish and shellfish.
Collapse
Affiliation(s)
- A.D. Diwan
- Institute of Biosciences and Technology, Mahatma Gandhi Mission (MGM) University, Aurangabad, 431003, Maharashtra, India
| | - Sanjay N Harke
- Institute of Biosciences and Technology, Mahatma Gandhi Mission (MGM) University, Aurangabad, 431003, Maharashtra, India
| | - Archana N Panche
- Novo Nordisk Centre for Biosustainability, Technical University of Denmark, B220 Kemitorvet, 2800 Kgs, Lyngby, Denmark
| |
Collapse
|
16
|
Shang Y, Zhong H, Liu G, Wang X, Wu X, Wei Q, Shi L, Zhang H. Characteristics of Microbiota in Different Segments of the Digestive Tract of Lycodon rufozonatus. Animals (Basel) 2023; 13:ani13040731. [PMID: 36830518 PMCID: PMC9952230 DOI: 10.3390/ani13040731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
The gastrointestinal tract of animals contains microbiota, forming a complex microecosystem. Gut microbes and their metabolites can regulate the development of host innate and adaptive immune systems. Animal immune systems maintain intestinal symbiotic microbiota homeostasis. However, relatively few studies have been published on reptiles, particularly snakes, and even fewer studies on different parts of the digestive tracts of these animals. Herein, we used 16S rRNA gene sequencing to investigate the microbial community composition and adaptability in the stomach and small and large intestines of Lycodon rufozonatus. Proteobacteria, Bacteroidetes, and Firmicutes were most abundant in the stomach; Fusobacteria in the small intestine; and Proteobacteria, Bacteroidetes, Fusobacteria, and Firmicutes in the large intestine. No dominant genus could be identified in the stomach; however, dominant genera were evident in the small and large intestines. The microbial diversity index was significantly higher in the stomach than in the small and large intestines. Moreover, the influence of the microbial community structure on function was clarified through function prediction. Collectively, the gut microbes in the different segments of the digestive tract revealed the unique features of the L. rufozonatus gut microbiome. Our results provide insights into the co-evolutionary relationship between reptile gut microbiota and their hosts.
Collapse
Affiliation(s)
- Yongquan Shang
- College of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Huaming Zhong
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China
| | - Gang Liu
- College of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Xibao Wang
- College of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Xiaoyang Wu
- College of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Qinguo Wei
- College of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Lupeng Shi
- College of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Honghai Zhang
- College of Life Sciences, Qufu Normal University, Qufu 273165, China
- Correspondence:
| |
Collapse
|
17
|
Liao X, Zhao P, Hou L, Adyari B, Xu EG, Huang Q, Hu A. Network analysis reveals significant joint effects of microplastics and tetracycline on the gut than the gill microbiome of marine medaka. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:129996. [PMID: 36152547 DOI: 10.1016/j.jhazmat.2022.129996] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/22/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Microplastics could accumulate and enrich antibiotics in the aquatic environment. Despite this, the joint effects of microplastics and antibiotics on aquatic organisms are not clear. Here, we investigated the changes of microbial interactions in both gill and gut of marine medaka exposed to polystyrene microbeads (PS) and/or tetracycline for 30 days by using co-occurrence network analysis based on 16S rRNA gene amplicon sequences. We found that the single and combined effects of PS and tetracycline were more profound on the gut than on the gill microbiome. SourceTracker analysis showed that the relative contributions from the gill microbiome to the gut microbiome increased under combined exposure. Moreover, the combined exposure reduced the complexity and stability of the gut microbial network more than those induced by any single exposure, suggesting the synergistic effects of PS and tetracycline on the gut microbiome. The PS and tetracycline combined exposure also caused a shift in the keystone taxa of the gut microbial network. However, no similar pattern was found for gill microbial networks. Furthermore, single and combined exposure to PS and/or tetracycline altered the associations between the gut network taxa and indicator liver metabolites. Altogether, these findings enhanced our understanding of the hazards of the co-occurring environmental microplastics and antibiotics to the fish commensal microbiome.
Collapse
Affiliation(s)
- Xin Liao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peiqiang Zhao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China; School of Public Utilities, Jiangsu Urban and Rural Construction College, Changzhou 213147, China
| | - Liyuan Hou
- Department of Civil and Environmental Engineering, Utah state university, Utah UT 84322, USA
| | - Bob Adyari
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Environmental Engineering, Universitas Pertamina, Jakarta 12220, Indonesia
| | - Elvis Genbo Xu
- Department of Biology, University of Southern Denmark, Odense 5230, Denmark
| | - Qiansheng Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China; National Basic Science Data Center, Beijing 100190, China.
| | - Anyi Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
18
|
Ekundayo TC, Ijabadeniyi OA, Igbinosa EO, Okoh AI. Using machine learning models to predict the effects of seasonal fluxes on Plesiomonas shigelloides population density. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120734. [PMID: 36455774 DOI: 10.1016/j.envpol.2022.120734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Seasonal variations (SVs) affect the population density (PD), fate, and fitness of pathogens in environmental water resources and the public health impacts. Therefore, this study is aimed at applying machine learning intelligence (MLI) to predict the impacts of SVs on P. shigelloides population density (PDP) in the aquatic milieu. Physicochemical events (PEs) and PDP from three rivers acquired via standard microbiological and instrumental techniques across seasons were fitted to MLI algorithms (linear regression (LR), multiple linear regression (MR), random forest (RF), gradient boosted machine (GBM), neural network (NN), K-nearest neighbour (KNN), boosted regression tree (BRT), extreme gradient boosting (XGB) regression, support vector regression (SVR), decision tree regression (DTR), M5 pruned regression (M5P), artificial neural network (ANN) regression (with one 10-node hidden layer (ANN10), two 6- and 4-node hidden layers (ANN64), and two 5- and 5-node hidden layers (ANN55)), and elastic net regression (ENR)) to assess the implications of the SVs of PEs on aquatic PDP. The results showed that SVs significantly influenced PDP and PEs in the water (p < 0.0001), exhibiting a site-specific pattern. While MLI algorithms predicted PDP with differing absolute flux magnitudes for the contributing variables, DTR predicted the highest PDP value of 1.707 log unit, followed by XGB (1.637 log unit), but XGB (mean-squared-error (MSE) = 0.0025; root-mean-squared-error (RMSE) = 0.0501; R2 =0.998; medium absolute deviation (MAD) = 0.0275) outperformed other models in terms of regression metrics. Temperature and total suspended solids (TSS) ranked first and second as significant factors in predicting PDP in 53.3% (8/15) and 40% (6/15), respectively, of the models, based on the RMSE loss after permutations. Additionally, season ranked third among the 7 models, and turbidity (TBS) ranked fourth at 26.7% (4/15), as the primary significant factor for predicting PDP in the aquatic milieu. The results of this investigation demonstrated that MLI predictive modelling techniques can promisingly be exploited to complement the repetitive laboratory-based monitoring of PDP and other pathogens, especially in low-resource settings, in response to seasonal fluxes and can provide insights into the potential public health risks of emerging pathogens and TSS pollution (e.g., nanoparticles and micro- and nanoplastics) in the aquatic milieu. The model outputs provide low-cost and effective early warning information to assist watershed managers and fish farmers in making appropriate decisions about water resource protection, aquaculture management, and sustainable public health protection.
Collapse
Affiliation(s)
- Temitope C Ekundayo
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, Eastern Cape, South Africa; Department of Biotechnology and Food Science, Durban University of Technology, Steve Biko Campus, Steve Biko Rd, Musgrave, Berea, 4001, Durban, South Africa; Department of Microbiology, University of Medical Sciences, Ondo City, Ondo State, Nigeria.
| | - Oluwatosin A Ijabadeniyi
- Department of Biotechnology and Food Science, Durban University of Technology, Steve Biko Campus, Steve Biko Rd, Musgrave, Berea, 4001, Durban, South Africa
| | - Etinosa O Igbinosa
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, Eastern Cape, South Africa; Department of Microbiology, Faculty of Life Sciences University of Benin, Private Mail Bag 1154, Benin City, 300283, Nigeria
| | - Anthony I Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, Eastern Cape, South Africa; Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
| |
Collapse
|
19
|
Tan R, Jin M, Chen Z, Shao Y, Song Y, Yin J, Wang L, Chen T, Li J, Yang D. Exogenous antibiotic resistance gene contributes to intestinal inflammation by modulating the gut microbiome and inflammatory cytokine responses in mouse. Gut Microbes 2023; 15:2156764. [PMID: 36573825 PMCID: PMC9809935 DOI: 10.1080/19490976.2022.2156764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Dysregulation of the gut microbiota by environmental factors is associated with a variety of autoimmune and immune-mediated diseases. In addition, naturally-occurring extracellular antibiotic resistance genes (eARGs) might directly enter the gut via the food chain. However, following gut microbiota exposure to eARGs, the ecological processes shaping the microbiota community assembly, as well as the interplay between the microbiota composition, metabolic function, and the immune responses, are not well understood. Increasing focus on the One Health approach has led to an urgent need to investigate the direct health damage caused by eARGs. Herein, we reveal the significant influence of eARGs on microbiota communities, strongly driven by stochastic processes. How eARGs-stimulate variations in the composition and metabolomic function of the gut microbiota led to cytokine responses in mice of different age and sex were investigated. The results revealed that cytokines were significantly associated with immunomodulatory microbes, metabolites, and ARGs biomarkers. Cytokine production was associated with specific metabolic pathways (arachidonic acid and tryptophan metabolic pathways), as confirmed by ex vivo cytokine responses and recovery experiments in vivo. Furthermore, the gut microbial profile could be applied to accurately predict the degree of intestinal inflammation ascribed to the eARGs (area under the curve = 0.9616). The present study provided a comprehensive understanding of the influence of an eARGs on immune responses and intestinal barrier damage, shedding light on the interplay between eARGs, microbial, metabolites, and the gut antibiotic resistome in modulating the human immune system.
Collapse
Affiliation(s)
- Rong Tan
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, China,Junwen Li Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No. 1 Dali Road, Tianjin 300050, China
| | - Min Jin
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, China
| | - Zhengshan Chen
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, China
| | - Yifan Shao
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, China
| | - Yuanyuan Song
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, China
| | - Jing Yin
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, China
| | - Lifang Wang
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, China
| | - Tianjiao Chen
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, China
| | - Junwen Li
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, China,Junwen Li Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No. 1 Dali Road, Tianjin 300050, China
| | - Dong Yang
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, China,CONTACT Dong Yang Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No. 1 Dali Road, Tianjin300050, China
| |
Collapse
|
20
|
Kormas K, Nikouli E, Kousteni V, Damalas D. Midgut Bacterial Microbiota of 12 Fish Species from a Marine Protected Area in the Aegean Sea (Greece). MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02154-x. [PMID: 36529834 DOI: 10.1007/s00248-022-02154-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Fish microbiome science is progressing fast, but it is biased toward farmed or laboratory fish species against natural fish populations, which remain considerably underinvestigated. We analyzed the midgut bacterial microbiota of 45 specimens of 12 fish species collected from the Gyaros Island marine protected area (Aegean Sea, Greece). The species belong to seven taxonomic families and are either herbivores or omnivores. Mucosa midgut bacterial diversity was assessed by amplicon metabarcoding of the 16S rRNA V3-V4 gene region. A total of 854 operational taxonomic units (OTUs) were identified. In each fish species, between 2 and 18 OTUs dominated with cumulative relative abundance ≥ 70%. Most of the dominating bacterial taxa have been reported to occur both in wild and farmed fish populations. The midgut bacterial communities were different among the 12 fish species, except for Pagrus pagrus and Pagellus erythrinus, which belong to the Sparidae family. No differentiation of the midgut bacterial microbiota was found based on feeding habits, i.e., omnivorous vs. carnivorous. Comparing wild and farmed P. pagrus midgut bacterial microbiota revealed considerable variation between them. Our results expand the gut microbiota of wild fish and support the host species effect as the more likely factor shaping intestinal bacterial microbiota.
Collapse
Affiliation(s)
- Konstantinos Kormas
- Department of Ichthyology and Aquatic Environment, University of Thessaly, 384 46, Volos, Greece.
| | - Eleni Nikouli
- Department of Ichthyology and Aquatic Environment, University of Thessaly, 384 46, Volos, Greece
| | - Vasiliki Kousteni
- Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research, 710 03, Heraklion, Greece
- Fisheries Research Institute, Hellenic Agricultural Organization - Demeter, 640 07, Nea Peramos, Greece
| | - Dimitrios Damalas
- Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research, 710 03, Heraklion, Greece
| |
Collapse
|
21
|
Chen CZ, Li P, Liu L, Li ZH. Exploring the interactions between the gut microbiome and the shifting surrounding aquatic environment in fisheries and aquaculture: A review. ENVIRONMENTAL RESEARCH 2022; 214:114202. [PMID: 36030922 DOI: 10.1016/j.envres.2022.114202] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/10/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
The rise of "new" sequencing technologies and the development of sophisticated bioinformatics tools have dramatically increased the study of the aquaculture microbiome. Microbial communities exist in complex and dynamic communities that play a vital role in the stability of healthy ecosystems. The gut microbiome contributes to multiple aspects of the host's physiological health status, ranging from nutritional regulation to immune modulation. Although studies of the gut microbiome in aquaculture are growing rapidly, the interrelationships between the aquaculture microbiome and its aquatic environment have not been discussed and summarized. In particular, few reviews have focused on the potential mechanisms driving the alteration of the gut microbiome by surrounding aquatic environmental factors. Here, we review current knowledge on the host gut microbiome and its interrelationship with the microbiome of the surrounding environment, mainly including the main methods for characterizing the gut microbiome, the composition and function of microbial communities, the dynamics of microbial interactions, and the relationship between the gut microbiome and the surrounding water/sediment microbiome. Our review highlights two potential mechanisms for how surrounding aquatic environmental factors drive the gut microbiome. This may deepen the understanding of the interactions between the microbiome and environmental factors. Lastly, we also briefly describe the research gaps in current knowledge and prospects for the future orientation of research. This review provides a framework for studying the complex relationship between the host gut microbiome and environmental stresses to better facilitate the widespread application of microbiome technologies in fisheries and aquaculture.
Collapse
Affiliation(s)
- Cheng-Zhuang Chen
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ling Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| |
Collapse
|