1
|
Wu D, Seshadri R, Kyrpides NC, Ivanova NN. A metagenomic perspective on the microbial prokaryotic genome census. SCIENCE ADVANCES 2025; 11:eadq2166. [PMID: 39823337 PMCID: PMC11740963 DOI: 10.1126/sciadv.adq2166] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 12/17/2024] [Indexed: 01/19/2025]
Abstract
Following 30 years of sequencing, we assessed the phylogenetic diversity (PD) of >1.5 million microbial genomes in public databases, including metagenome-assembled genomes (MAGs) of uncultivated microbes. As compared to the vast diversity uncovered by metagenomic sequences, cultivated taxa account for a modest portion of the overall diversity, 9.73% in bacteria and 6.55% in archaea, while MAGs contribute 48.54% and 57.05%, respectively. Therefore, a substantial fraction of bacterial (41.73%) and archaeal PD (36.39%) still lacks any genomic representation. This unrepresented diversity manifests primarily at lower taxonomic ranks, exemplified by 134,966 species identified in 18,087 metagenomic samples. Our study exposes diversity hotspots in freshwater, marine subsurface, sediment, soil, and other environments, whereas human samples yielded minimal novelty within the context of existing datasets. These results offer a roadmap for future genome recovery efforts, delineating uncaptured taxa in underexplored environments and underscoring the necessity for renewed isolation and sequencing.
Collapse
Affiliation(s)
- Dongying Wu
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Rekha Seshadri
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Nikos C. Kyrpides
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Natalia N. Ivanova
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
2
|
Li J, Huang F, Zhou Y, Huang T, Tong X, Zhang M, Chen J, Zhang Z, Du H, Liu Z, Zhou M, Xiahou Y, Ai H, Chen C, Huang L. Comprehensive lung microbial gene and genome catalogs assist the mechanism survey of Mesomycoplasma hyopneumoniae strains causing pig lung lesions. IMETA 2024; 3:e258. [PMID: 39742304 PMCID: PMC11683470 DOI: 10.1002/imt2.258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 01/03/2025]
Abstract
Understanding the community structure of the lower respiratory tract microbiome is crucial for elucidating its roles in respiratory tract diseases. However, there are few studies about this topic due to the difficulty in obtaining microbial samples from both healthy and disease individuals. Here, using 744 high-depth metagenomic sequencing data of lower respiratory tract microbial samples from 675 well-phenotyped pigs, we constructed a lung microbial gene catalog containing the largest scale of 10,031,593 nonredundant genes to date, 44.8% of which are novel. We obtained 356 metagenome-assembled genomes (MAGs) which were further clustered into 256 species-level genome bins with 41.8% being first reported in the current databases. Based on these data sets and through integrated analysis of the isolation of the related bacterial strains, in vitro infection, and RNA sequencing, we identified and confirmed that Mesomycoplasma hyopneumoniae (M. hyopneumoniae) MAG_47 and its adhesion-related virulence factors (VFs) were associated with lung lesions in pigs. Differential expression levels of adhesion- and immunomodulation-related VFs likely determined the heterogenicity of adhesion and pathogenicity among M. hyopneumoniae strains. M. hyopneumoniae adhesion activated several pathways, including nuclear factor kappa-light-chain-enhancer of activated B, mitogen-activated protein kinase, cell apoptosis, T helper 1 and T helper 2 cell differentiation, tumor necrosis factor signaling, interleukin-6/janus kinase 2/signal transducer and activator of transcription signaling, and response to reactive oxygen species, leading to cilium loss, epithelial cell‒cell barrier disruption, and lung tissue lesions. Finally, we observed the similar phylogenetic compositions of the lung microbiome between humans with Mycoplasma pneumoniae and pigs infected with M. hyopneumoniae. The results provided important insights into pig lower respiratory tract microbiome and its relationship with lung health.
Collapse
Affiliation(s)
- Jingquan Li
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Fei Huang
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Yunyan Zhou
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Tao Huang
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Xinkai Tong
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Mingpeng Zhang
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Jiaqi Chen
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Zhou Zhang
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Huipeng Du
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Zifeng Liu
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Meng Zhou
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Yiwen Xiahou
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Huashui Ai
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Congying Chen
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Lusheng Huang
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| |
Collapse
|
3
|
Xu W, Xu Y, Sun R, Rey Redondo E, Leung KK, Wan SH, Li J, Yung CCM. Revealing the intricate temporal dynamics and adaptive responses of prokaryotic and eukaryotic microbes in the coastal South China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:176019. [PMID: 39236827 DOI: 10.1016/j.scitotenv.2024.176019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/15/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
This comprehensive two-year investigation in the coastal South China Sea has advanced our understanding of marine microbes at both community and genomic levels. By combining metagenomics and metatranscriptomics, we have revealed the intricate temporal dynamics and remarkable adaptability of microbial communities and phytoplankton metagenome-assembled genomes (MAGs) in response to environmental fluctuations. We observed distinct seasonal shifts in microbial community composition and function: cyanobacteria were predominant during warmer months, whereas photosynthetic protists were more abundant during colder seasons. Notably, metabolic marker KOs of photosynthesis were consistently active throughout the year, underscoring the persistent role of these processes irrespective of seasonal changes. Our analysis reveals that environmental parameters such as temperature, salinity, and nitrate concentrations profoundly influence microbial community composition, while temperature and silicate have emerged as crucial factors shaping their functional traits. Through the recovery and analysis of 37 phytoplankton MAGs, encompassing nine prokaryotic cyanobacteria and 28 eukaryotic protists from diverse phyla, we have gained insights into their genetic diversity and metabolic capabilities. Distinct profiles of photosynthesis-related pathways including carbon fixation, carotenoid biosynthesis, photosynthesis-antenna proteins, and photosynthesis among the MAGs indicated their genetic adaptations to changing environmental conditions. This study not only enhances our understanding of microbial dynamics in coastal marine ecosystems but also sheds light on the ecological roles and adaptive responses of different microbial groups to environmental changes.
Collapse
Affiliation(s)
- Wenqian Xu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yangbing Xu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ruixian Sun
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Elvira Rey Redondo
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ka Kiu Leung
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Siu Hei Wan
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Jiying Li
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Charmaine C M Yung
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
4
|
Krinos AI, Mars Brisbin M, Hu SK, Cohen NR, Rynearson TA, Follows MJ, Schulz F, Alexander H. Missing microbial eukaryotes and misleading meta-omic conclusions. Nat Commun 2024; 15:9873. [PMID: 39543100 PMCID: PMC11564645 DOI: 10.1038/s41467-024-52212-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 08/23/2024] [Indexed: 11/17/2024] Open
Abstract
Meta-omics is commonly used for large-scale analyses of microbial eukaryotes, including species or taxonomic group distribution mapping, gene catalog construction, and inference on the functional roles and activities of microbial eukaryotes in situ. Here, we explore the potential pitfalls of common approaches to taxonomic annotation of protistan meta-omic datasets. We re-analyze three environmental datasets at three levels of taxonomic hierarchy in order to illustrate the crucial importance of database completeness and curation in enabling accurate environmental interpretation. We show that taxonomic membership of sequence clusters estimates community composition more accurately than returning exact sequence labels, and overlap between clusters can address database shortcomings. Clustering approaches can be applied to diverse environments while continuing to exploit the wealth of annotation data collated in databases, and selecting and evaluating these databases is a critical part of correctly annotating protistan taxonomy in environmental datasets. We argue that ongoing curation of genetic resources is crucial in accurately annotating protists in in situ meta-omic datasets. Moreover, we propose that precise taxonomic annotation of meta-omic data is a clustering problem rather than a feasible alignment problem.
Collapse
Affiliation(s)
- Arianna I Krinos
- MIT-WHOI Joint Program in Oceanography/Applied Ocean Science and Engineering, Cambridge and Woods Hole, Cambridge, MA, USA.
- Department of Earth, Atmospheric, and Planetary Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Margaret Mars Brisbin
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
- College of Marine Science, University of South Florida, St. Petersburg, FL, USA
| | - Sarah K Hu
- Department of Oceanography, Texas A&M University, College Station, TX, USA
| | - Natalie R Cohen
- Skidaway Institute of Oceanography, University of Georgia, Savannah, GA, USA
| | - Tatiana A Rynearson
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, USA
| | - Michael J Follows
- Department of Earth, Atmospheric, and Planetary Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Frederik Schulz
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Harriet Alexander
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
| |
Collapse
|
5
|
Rajeev M, Jung I, Kang I, Cho JC. Genome-centric metagenomics provides insights into the core microbial community and functional profiles of biofloc aquaculture. mSystems 2024; 9:e0078224. [PMID: 39315779 PMCID: PMC11494986 DOI: 10.1128/msystems.00782-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
Bioflocs are microbial aggregates that play a pivotal role in shaping animal health, gut microbiota, and water quality in biofloc technology (BFT)-based aquaculture systems. Despite the worldwide application of BFT in aquaculture industries, our comprehension of the community composition and functional potential of the floc-associated microbiota (FAB community; ≥3 µm size fractions) remains rudimentary. Here, we utilized genome-centric metagenomic approach to investigate the FAB community in shrimp aquaculture systems, resulting in the reconstruction of 520 metagenome-assembled genomes (MAGs) spanning both bacterial and archaeal domains. Taxonomic analysis identified Pseudomonadota and Bacteroidota as core community members, with approximately 93% of recovered MAGs unclassified at the species level, indicating a large uncharacterized phylogenetic diversity hidden in the FAB community. Functional annotation of these MAGs unveiled their complex carbohydrate-degrading potential and involvement in carbon, nitrogen, and sulfur metabolisms. Specifically, genomic evidence supported ammonium assimilation, autotrophic nitrification, denitrification, dissimilatory nitrate reduction to ammonia, thiosulfate oxidation, and sulfide oxidation pathways, suggesting the FAB community's versatility for both aerobic and anaerobic metabolisms. Conversely, genes associated with heterotrophic nitrification, anaerobic ammonium oxidation, assimilatory nitrate reduction, and sulfate reduction were undetected. Members of Rhodobacteraceae emerged as the most abundant and metabolically versatile taxa in this intriguing community. Our MAGs compendium is expected to expand the available genome collection from such underexplored aquaculture environments. By elucidating the microbial community structure and metabolic capabilities, this study provides valuable insights into the key biogeochemical processes occurring in biofloc aquacultures and the major microbial contributors driving these processes. IMPORTANCE Biofloc technology has emerged as a sustainable aquaculture approach, utilizing microbial aggregates (bioflocs) to improve water quality and animal health. However, the specific microbial taxa within this intriguing community responsible for these benefits are largely unknown. Compounding this challenge, many bacterial taxa resist laboratory cultivation, hindering taxonomic and genomic analyses. To address these gaps, we employed metagenomic binning approach to recover over 500 microbial genomes from floc-associated microbiota of biofloc aquaculture systems operating in South Korea and China. Through taxonomic and genomic analyses, we deciphered the functional gene content of diverse microbial taxa, shedding light on their potential roles in key biogeochemical processes like nitrogen and sulfur metabolisms. Notably, our findings underscore the taxa-specific contributions of microbes in aquaculture environments, particularly in complex carbon degradation and the removal of toxic substances like ammonia, nitrate, and sulfide.
Collapse
Affiliation(s)
- Meora Rajeev
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, South Korea
- Institute for Specialized Teaching and Research, Inha University, Incheon, South Korea
| | - Ilsuk Jung
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, South Korea
| | - Ilnam Kang
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, South Korea
- Center for Molecular and Cell Biology, Inha University, Incheon, South Korea
| | - Jang-Cheon Cho
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, South Korea
- Center for Molecular and Cell Biology, Inha University, Incheon, South Korea
| |
Collapse
|
6
|
Anthony WE, Allison SD, Broderick CM, Chavez Rodriguez L, Clum A, Cross H, Eloe-Fadrosh E, Evans S, Fairbanks D, Gallery R, Gontijo JB, Jones J, McDermott J, Pett-Ridge J, Record S, Rodrigues JLM, Rodriguez-Reillo W, Shek KL, Takacs-Vesbach T, Blanchard JL. From soil to sequence: filling the critical gap in genome-resolved metagenomics is essential to the future of soil microbial ecology. ENVIRONMENTAL MICROBIOME 2024; 19:56. [PMID: 39095861 PMCID: PMC11295382 DOI: 10.1186/s40793-024-00599-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Soil microbiomes are heterogeneous, complex microbial communities. Metagenomic analysis is generating vast amounts of data, creating immense challenges in sequence assembly and analysis. Although advances in technology have resulted in the ability to easily collect large amounts of sequence data, soil samples containing thousands of unique taxa are often poorly characterized. These challenges reduce the usefulness of genome-resolved metagenomic (GRM) analysis seen in other fields of microbiology, such as the creation of high quality metagenomic assembled genomes and the adoption of genome scale modeling approaches. The absence of these resources restricts the scale of future research, limiting hypothesis generation and the predictive modeling of microbial communities. Creating publicly available databases of soil MAGs, similar to databases produced for other microbiomes, has the potential to transform scientific insights about soil microbiomes without requiring the computational resources and domain expertise for assembly and binning.
Collapse
Affiliation(s)
| | - Steven D Allison
- University of California Irvine, Irvine, CA, USA
- Department of Earth System Science, University of California, Irvine, CA, USA
| | - Caitlin M Broderick
- W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA
| | | | - Alicia Clum
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Hugh Cross
- National Ecological Observatory Network - Battelle, Boulder, CO, USA
| | | | - Sarah Evans
- W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA
| | - Dawson Fairbanks
- University of California Riverside, Riverside, CA, USA
- The University of Arizona, Tucson, AZ, USA
| | | | | | - Jennifer Jones
- W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA
| | - Jason McDermott
- Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Jennifer Pett-Ridge
- Lawrence Livermore National Laboratory, Livermore, CA, USA
- Life & Environmental Sciences Department, University of California Merced, Merced, CA, 95343, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Kim N, Ma J, Kim W, Kim J, Belenky P, Lee I. Genome-resolved metagenomics: a game changer for microbiome medicine. Exp Mol Med 2024; 56:1501-1512. [PMID: 38945961 PMCID: PMC11297344 DOI: 10.1038/s12276-024-01262-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/06/2024] [Accepted: 03/25/2024] [Indexed: 07/02/2024] Open
Abstract
Recent substantial evidence implicating commensal bacteria in human diseases has given rise to a new domain in biomedical research: microbiome medicine. This emerging field aims to understand and leverage the human microbiota and derivative molecules for disease prevention and treatment. Despite the complex and hierarchical organization of this ecosystem, most research over the years has relied on 16S amplicon sequencing, a legacy of bacterial phylogeny and taxonomy. Although advanced sequencing technologies have enabled cost-effective analysis of entire microbiota, translating the relatively short nucleotide information into the functional and taxonomic organization of the microbiome has posed challenges until recently. In the last decade, genome-resolved metagenomics, which aims to reconstruct microbial genomes directly from whole-metagenome sequencing data, has made significant strides and continues to unveil the mysteries of various human-associated microbial communities. There has been a rapid increase in the volume of whole metagenome sequencing data and in the compilation of novel metagenome-assembled genomes and protein sequences in public depositories. This review provides an overview of the capabilities and methods of genome-resolved metagenomics for studying the human microbiome, with a focus on investigating the prokaryotic microbiota of the human gut. Just as decoding the human genome and its variations marked the beginning of the genomic medicine era, unraveling the genomes of commensal microbes and their sequence variations is ushering us into the era of microbiome medicine. Genome-resolved metagenomics stands as a pivotal tool in this transition and can accelerate our journey toward achieving these scientific and medical milestones.
Collapse
Affiliation(s)
- Nayeon Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Junyeong Ma
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Wonjong Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jungyeon Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912, USA.
| | - Insuk Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
- POSTECH Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| |
Collapse
|
8
|
Jia S, Wang S, Zhuang Y, Gao L, Zhang X, Ye L, Zhang XX, Shi P. Free-living lifestyle preferences drive the antibiotic resistance promotion during drinking water chlorination. WATER RESEARCH 2024; 249:120922. [PMID: 38043346 DOI: 10.1016/j.watres.2023.120922] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/05/2023]
Abstract
The risk associated with antibiotic resistance genes (ARGs) in size-fractionated bacterial community during drinking water chlorination remains unclear, and is of paramount importance for risk mitigation through process selection and optimization. This study employed metagenomic approaches to reveal the alterations of ARGs, their potential functions and hosts within the free-living and particle-associated fractions. The total relative abundance of ARGs, mobile genetic elements (MGEs), and virulence factor genes (VFGs) significantly increased in the free-living fraction after chlorination. The contribution of the free-living fraction to the ARG relative abundance rose from 16.40 ± 1.31 % to 93.62 ± 0.47 % after chlorination. Multidrug resistance genes (e.g. mexF and mexW) were major contributors, and their co-occurrence with MGEs in the free-living fraction was enhanced after chlorination. Considering multiple perspectives, including presence, mobility, and pathogenicity, chlorination led to a significant risk of the antibiotic resistome in the free-living fraction. Moreover, potential functions of ARGs, such as cell wall/membrane/envelope biogenesis, defense mechanisms, and transcription in the free-living fraction, were intensified following chlorination. Potential pathogens, including Pseudomonas aeruginosa, Pseudomonas alcaligenes, and Acinetobacter junii, were identified as the predominant hosts of multidrug resistance genes, with their increased abundances primarily contributing to the rise of the corresponding ARGs. Overall, alterations of hosts as well as enhancing mobility and biological functions could collectively aid the proliferation and spread of ARGs in the free-living fraction after chlorination. This study provides novel insights into antibiotic resistance evolution in size-fractionated bacteria community and offers a management strategy for microbiological safety in drinking water.
Collapse
Affiliation(s)
- Shuyu Jia
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuya Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan Zhuang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Linjun Gao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xian Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lin Ye
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Peng Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, 163 Xianlin Road, Nanjing 210023, China.
| |
Collapse
|
9
|
Zheng J, Huang L, Yi H, Yan Y, Zhang X, Akresi J, Yin Y. Carbohydrate-active enzyme annotation in microbiomes using dbCAN. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.575125. [PMID: 38260309 PMCID: PMC10802576 DOI: 10.1101/2024.01.10.575125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
CAZymes or carbohydrate-active enzymes are critically important for human gut health, lignocellulose degradation, global carbon recycling, soil health, and plant disease. We developed dbCAN as a web server in 2012 and actively maintain it for automated CAZyme annotation. Considering data privacy and scalability, we provide run_dbcan as a standalone software package since 2018 to allow users perform more secure and scalable CAZyme annotation on their local servers. Here, we offer a comprehensive computational protocol on automated CAZyme annotation of microbiome sequencing data, covering everything from short read pre-processing to data visualization of CAZyme and glycan substrate occurrence and abundance in multiple samples. Using a real-world metagenomic sequencing dataset, this protocol describes commands for dataset and software preparation, metagenome assembly, gene prediction, CAZyme prediction, CAZyme gene cluster (CGC) prediction, glycan substrate prediction, and data visualization. The expected results include publication-quality plots for the abundance of CAZymes, CGCs, and substrates from multiple CAZyme annotation routes (individual sample assembly, co-assembly, and assembly-free). For the individual sample assembly route, this protocol takes ∼33h on a Linux computer with 40 CPUs, while other routes will be faster. This protocol does not require programming experience from users, but it does assume a familiarity with the Linux command-line interface and the ability to run Python scripts in the terminal. The target audience includes the tens of thousands of microbiome researchers who routinely use our web server. This protocol will encourage them to perform more secure, rapid, and scalable CAZyme annotation on their local computer servers.
Collapse
|
10
|
Liu S, Zhang Z, Wang X, Ma Y, Ruan H, Wu X, Li B, Mou X, Chen T, Lu Z, Zhao W. Biosynthetic potential of the gut microbiome in longevous populations. Gut Microbes 2024; 16:2426623. [PMID: 39529240 PMCID: PMC11559365 DOI: 10.1080/19490976.2024.2426623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/26/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024] Open
Abstract
Gut microbiome plays a pivotal role in combating diseases and facilitating healthy aging, and natural products derived from biosynthetic gene clusters (BGCs) of the human microbiome exhibit significant biological activities. However, the natural products of the gut microbiome in long-lived populations remain poorly understood. Here, we integrated six cohorts of long-lived populations, encompassing a total of 1029 fecal metagenomic samples, and employed the metagenomic single sample assembled BGCs (MSSA-BGCs) analysis pipeline to investigate the natural products and their associated species. Our findings reveal that the BGC composition of the extremely long-lived group differed significantly from that of younger elderly and young individuals across five cohorts. Terpene and Type I PKS BGCs were enriched in the extremely long-lived, whereas cyclic-lactone-autoinducer BGCs were more prevalent in the young. Association analysis indicated that terpene BGCs were strongly associated with the abundance of Akkermansia muciniphila, which was also more abundant in the long-lived elderly across at least three cohorts. We assembled 18 A. muciniphila draft genomes using metagenomic data from the extremely long-lived group across six cohorts and discovered that they all harbor two classes of terpene BGCs, which aligns with the 97 complete genomes of A. muciniphila strains retrieved from the NCBI database. The core domains of these two BGC classes are squalene/phytoene synthases involved in the biosynthesis of tri- and tetraterpenes. Furthermore, the abundance of fecal A. muciniphila was significantly associated with eight types of triterpenoids. Targeted terpenoid metabolomic analysis revealed that two triterpenoids, Holstinone C and colubrinic acid, were enriched in the A. muciniphila culture solution compared to the medium, thereby confirming the production of triterpenoids by A. muciniphila. The natural products derived from the gut of long-lived populations provide intriguing indications of their potential beneficial roles in regulating health.
Collapse
Affiliation(s)
- Sheng Liu
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zhao Zhang
- Research and Development Center, Center of Human Microecology Engineering and Technology of Guangdong Province, Guangzhou, Guangdong, China
| | - Xudong Wang
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yan Ma
- Research and Development Center, Center of Human Microecology Engineering and Technology of Guangdong Province, Guangzhou, Guangdong, China
| | - Hengfang Ruan
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xing Wu
- Research and Development Center, Center of Human Microecology Engineering and Technology of Guangdong Province, Guangzhou, Guangdong, China
| | - Baoxia Li
- Research and Development Center, Center of Human Microecology Engineering and Technology of Guangdong Province, Guangzhou, Guangdong, China
| | - Xiangyu Mou
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Tao Chen
- Research and Development Center, Center of Human Microecology Engineering and Technology of Guangdong Province, Guangzhou, Guangdong, China
| | - Zhengqi Lu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenjing Zhao
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
11
|
Quan J, Xu C, Ruan D, Ye Y, Qiu Y, Wu J, Zhou S, Luan M, Zhao X, Chen Y, Lin D, Sun Y, Yang J, Zheng E, Cai G, Wu Z, Yang J. Composition, function, and timing: exploring the early-life gut microbiota in piglets for probiotic interventions. J Anim Sci Biotechnol 2023; 14:143. [PMID: 37957747 PMCID: PMC10641937 DOI: 10.1186/s40104-023-00943-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/20/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND The establishment of a robust gut microbiota in piglets during their early developmental stage holds the potential for long-term advantageous effects. However, the optimal timeframe for introducing probiotics to achieve this outcome remains uncertain. RESULTS In the context of this investigation, we conducted a longitudinal assessment of the fecal microbiota of 63 piglets at three distinct pre-weaning time points. Simultaneously, we gathered vaginal and fecal samples from 23 sows. Employing 16S rRNA gene and metagenomic sequencing methodologies, we conducted a comprehensive analysis of the fluctuation patterns in microbial composition, functional capacity, interaction networks, and colonization resistance within the gut microbiota of piglets. As the piglets progressed in age, discernible modifications in intestinal microbial diversity, composition, and function were observed. A source-tracking analysis unveiled the pivotal role of fecal and vaginal microbiota derived from sows in populating the gut microbiota of neonatal piglets. By D21, the microbial interaction network displayed a more concise and efficient configuration, accompanied by enhanced colonization resistance relative to the other two time points. Moreover, we identified three strains of Ruminococcus sp. at D10 as potential candidates for improving piglets' weight gain during the weaning phase. CONCLUSIONS The findings of this study propose that D10 represents the most opportune juncture for the introduction of external probiotic interventions during the early stages of piglet development. This investigation augments our comprehension of the microbiota dynamics in early-life of piglets and offers valuable insights for guiding forthcoming probiotic interventions.
Collapse
Affiliation(s)
- Jianping Quan
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, Guangdong, China
- Yunfu Subcenter of Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu, Guangdong, China
- National Engineering Research Center for Breeding Swine Industry, Wens Foodstuff Group Co., Ltd., Yunfu, Guangdong, People's Republic of China
| | - Cineng Xu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | - Donglin Ruan
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | - Yong Ye
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | - Yibin Qiu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | - Jie Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | - Shenping Zhou
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | - Menghao Luan
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | - Xiang Zhao
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | - Yue Chen
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | - Danyang Lin
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | - Ying Sun
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | - Jifei Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | - Enqin Zheng
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Gengyuan Cai
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, Guangdong, China
- Yunfu Subcenter of Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu, Guangdong, China
| | - Zhenfang Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China.
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, Guangdong, China.
- Yunfu Subcenter of Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu, Guangdong, China.
- National Engineering Research Center for Breeding Swine Industry, Wens Foodstuff Group Co., Ltd., Yunfu, Guangdong, People's Republic of China.
| | - Jie Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China.
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, Guangdong, China.
| |
Collapse
|
12
|
Dang H, Ewald JM, Mattes TE. Genome-Resolved Metagenomics and Metatranscriptomics Reveal Insights into the Ecology and Metabolism of Anaerobic Microbial Communities in PCB-Contaminated Sediments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16386-16398. [PMID: 37856784 PMCID: PMC10621002 DOI: 10.1021/acs.est.3c05439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
Growth of organohalide-respiring bacteria such as Dehalococcoides mccartyi on halogenated organics (e.g., polychlorinated biphenyls (PCBs)) at contaminated sites or in enrichment culture requires interaction and support from other microbial community members. To evaluate naturally occurring interactions between Dehalococcoides and key supporting microorganisms (e.g., production of H2, acetate, and corrinoids) in PCB-contaminated sediments, metagenomic and metatranscriptomic sequencing was conducted on DNA and RNA extracted from sediment microcosms, showing evidence of both Dehalococcoides growth and PCB dechlorination. Using a genome-resolved approach, 160 metagenome-assembled genomes (MAGs), including three Dehalococcoides MAGs, were recovered. A novel reductive dehalogenase gene, distantly related to the chlorophenol dehalogenase gene cprA (pairwise amino acid identity: 23.75%), was significantly expressed. Using MAG gene expression data, 112 MAGs were assigned functional roles (e.g., corrinoid producers, acetate/H2 producers, etc.). A network coexpression analysis of all 160 MAGs revealed correlations between 39 MAGs and the Dehalococcoides MAGs. The network analysis also showed that MAGs assigned with functional roles that support Dehalococcoides growth (e.g., corrinoid assembly, and production of intermediates required for corrinoid synthesis) displayed significant coexpression correlations with Dehalococcoides MAGs. This work demonstrates the power of genome-resolved metagenomic and metatranscriptomic analyses, which unify taxonomy and function, in investigating the ecology of dehalogenating microbial communities.
Collapse
Affiliation(s)
- Hongyu Dang
- Department of Civil and Environmental
Engineering, 4105 Seamans Center, University
of Iowa, Iowa City, Iowa 52242, United States
| | - Jessica M. Ewald
- Department of Civil and Environmental
Engineering, 4105 Seamans Center, University
of Iowa, Iowa City, Iowa 52242, United States
| | - Timothy E. Mattes
- Department of Civil and Environmental
Engineering, 4105 Seamans Center, University
of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
13
|
Rajeev M, Jung I, Lim Y, Kim S, Kang I, Cho JC. Metagenome sequencing and recovery of 444 metagenome-assembled genomes from the biofloc aquaculture system. Sci Data 2023; 10:707. [PMID: 37848477 PMCID: PMC10582022 DOI: 10.1038/s41597-023-02622-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/06/2023] [Indexed: 10/19/2023] Open
Abstract
Biofloc technology is increasingly recognised as a sustainable aquaculture method. In this technique, bioflocs are generated as microbial aggregates that play pivotal roles in assimilating toxic nitrogenous substances, thereby ensuring high water quality. Despite the crucial roles of the floc-associated bacterial (FAB) community in pathogen control and animal health, earlier microbiota studies have primarily relied on the metataxonomic approaches. Here, we employed shotgun sequencing on eight biofloc metagenomes from a commercial aquaculture system. This resulted in the generation of 106.6 Gbp, and the reconstruction of 444 metagenome-assembled genomes (MAGs). Among the recovered MAGs, 230 were high-quality (≥90% completeness, ≤5% contamination), and 214 were medium-quality (≥50% completeness, ≤10% contamination). Phylogenetic analysis unveiled Rhodobacteraceae as dominant members of the FAB community. The reported metagenomes and MAGs are crucial for elucidating the roles of diverse microorganisms and their functional genes in key processes such as nitrification, denitrification, and remineralization. This study will contribute to scientific understanding of phylogenetic diversity and metabolic capabilities of microbial taxa in aquaculture environments.
Collapse
Affiliation(s)
- Meora Rajeev
- Department of Biological Sciences and Bioengineering, Inha University, Inharo 100, Incheon 22212, Republic of Korea
- Institute for Specialized Teaching and Research, Inha University, Inharo 100, Incheon 22212, Republic of Korea
| | - Ilsuk Jung
- Department of Biological Sciences and Bioengineering, Inha University, Inharo 100, Incheon 22212, Republic of Korea
| | - Yeonjung Lim
- Center for Molecular and Cell Biology, Inha University, Inharo 100, Incheon 22212, Republic of Korea
| | - Suhyun Kim
- Center for Molecular and Cell Biology, Inha University, Inharo 100, Incheon 22212, Republic of Korea
| | - Ilnam Kang
- Center for Molecular and Cell Biology, Inha University, Inharo 100, Incheon 22212, Republic of Korea
| | - Jang-Cheon Cho
- Department of Biological Sciences and Bioengineering, Inha University, Inharo 100, Incheon 22212, Republic of Korea.
- Center for Molecular and Cell Biology, Inha University, Inharo 100, Incheon 22212, Republic of Korea.
| |
Collapse
|
14
|
Mallawaarachchi V, Roach MJ, Decewicz P, Papudeshi B, Giles SK, Grigson SR, Bouras G, Hesse RD, Inglis LK, Hutton ALK, Dinsdale EA, Edwards RA. Phables: from fragmented assemblies to high-quality bacteriophage genomes. Bioinformatics 2023; 39:btad586. [PMID: 37738590 PMCID: PMC10563150 DOI: 10.1093/bioinformatics/btad586] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/14/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023] Open
Abstract
MOTIVATION Microbial communities have a profound impact on both human health and various environments. Viruses infecting bacteria, known as bacteriophages or phages, play a key role in modulating bacterial communities within environments. High-quality phage genome sequences are essential for advancing our understanding of phage biology, enabling comparative genomics studies and developing phage-based diagnostic tools. Most available viral identification tools consider individual sequences to determine whether they are of viral origin. As a result of challenges in viral assembly, fragmentation of genomes can occur, and existing tools may recover incomplete genome fragments. Therefore, the identification and characterization of novel phage genomes remain a challenge, leading to the need of improved approaches for phage genome recovery. RESULTS We introduce Phables, a new computational method to resolve phage genomes from fragmented viral metagenome assemblies. Phables identifies phage-like components in the assembly graph, models each component as a flow network, and uses graph algorithms and flow decomposition techniques to identify genomic paths. Experimental results of viral metagenomic samples obtained from different environments show that Phables recovers on average over 49% more high-quality phage genomes compared to existing viral identification tools. Furthermore, Phables can resolve variant phage genomes with over 99% average nucleotide identity, a distinction that existing tools are unable to make. AVAILABILITY AND IMPLEMENTATION Phables is available on GitHub at https://github.com/Vini2/phables.
Collapse
Affiliation(s)
- Vijini Mallawaarachchi
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, South Australia 5042, Australia
| | - Michael J Roach
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, South Australia 5042, Australia
| | - Przemyslaw Decewicz
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, South Australia 5042, Australia
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw 02-096, Poland
| | - Bhavya Papudeshi
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, South Australia 5042, Australia
| | - Sarah K Giles
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, South Australia 5042, Australia
| | - Susanna R Grigson
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, South Australia 5042, Australia
| | - George Bouras
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
- The Department of Surgery—Otolaryngology Head and Neck Surgery, Central Adelaide Local Health Network, Adelaide, South Australia 5000, Australia
| | - Ryan D Hesse
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, South Australia 5042, Australia
| | - Laura K Inglis
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, South Australia 5042, Australia
| | - Abbey L K Hutton
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, South Australia 5042, Australia
| | - Elizabeth A Dinsdale
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, South Australia 5042, Australia
| | - Robert A Edwards
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, South Australia 5042, Australia
| |
Collapse
|
15
|
Mallawaarachchi V, Roach MJ, Decewicz P, Papudeshi B, Giles SK, Grigson SR, Bouras G, Hesse RD, Inglis LK, Hutton ALK, Dinsdale EA, Edwards RA. Phables: from fragmented assemblies to high-quality bacteriophage genomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.04.535632. [PMID: 37066369 PMCID: PMC10104058 DOI: 10.1101/2023.04.04.535632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Microbial communities influence both human health and different environments. Viruses infecting bacteria, known as bacteriophages or phages, play a key role in modulating bacterial communities within environments. High-quality phage genome sequences are essential for advancing our understanding of phage biology, enabling comparative genomics studies, and developing phage-based diagnostic tools. Most available viral identification tools consider individual sequences to determine whether they are of viral origin. As a result of the challenges in viral assembly, fragmentation of genomes can occur, leading to the need for new approaches in viral identification. Therefore, the identification and characterisation of novel phages remain a challenge. We introduce Phables, a new computational method to resolve phage genomes from fragmented viral metagenome assemblies. Phables identifies phage-like components in the assembly graph, models each component as a flow network, and uses graph algorithms and flow decomposition techniques to identify genomic paths. Experimental results of viral metagenomic samples obtained from different environments show that Phables recovers on average over 49% more high-quality phage genomes compared to existing viral identification tools. Furthermore, Phables can resolve variant phage genomes with over 99% average nucleotide identity, a distinction that existing tools are unable to make. Phables is available on GitHub at https://github.com/Vini2/phables.
Collapse
Affiliation(s)
- Vijini Mallawaarachchi
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, Adelaide, SA, 5042, Australia
| | - Michael J Roach
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, Adelaide, SA, 5042, Australia
| | - Przemyslaw Decewicz
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw 02-096, Poland
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, Adelaide, SA, 5042, Australia
| | - Bhavya Papudeshi
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, Adelaide, SA, 5042, Australia
| | - Sarah K Giles
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, Adelaide, SA, 5042, Australia
| | - Susanna R Grigson
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, Adelaide, SA, 5042, Australia
| | - George Bouras
- Adelaide Medical School, The University of Adelaide, North Tce, Adelaide, SA, 5000, Australia
| | - Ryan D Hesse
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, Adelaide, SA, 5042, Australia
| | - Laura K Inglis
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, Adelaide, SA, 5042, Australia
| | - Abbey L K Hutton
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, Adelaide, SA, 5042, Australia
| | - Elizabeth A Dinsdale
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, Adelaide, SA, 5042, Australia
| | - Robert A Edwards
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, Adelaide, SA, 5042, Australia
| |
Collapse
|
16
|
Han Y, Zhang C, Zhao Z, Peng Y, Liao J, Jiang Q, Liu Q, Shao Z, Dong X. A comprehensive genomic catalog from global cold seeps. Sci Data 2023; 10:596. [PMID: 37684262 PMCID: PMC10491686 DOI: 10.1038/s41597-023-02521-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Cold seeps harbor abundant and diverse microbes with tremendous potential for biological applications and that have a significant influence on biogeochemical cycles. Although recent metagenomic studies have expanded our understanding of the community and function of seep microorganisms, knowledge of the diversity and genetic repertoire of global seep microbes is lacking. Here, we collected a compilation of 165 metagenomic datasets from 16 cold seep sites across the globe to construct a comprehensive gene and genome catalog. The non-redundant gene catalog comprised 147 million genes, and 36% of them could not be assigned to a function with the currently available databases. A total of 3,164 species-level representative metagenome-assembled genomes (MAGs) were obtained, most of which (94%) belonged to novel species. Of them, 81 ANME species were identified that cover all subclades except ANME-2d, and 23 syntrophic SRB species spanned the Seep-SRB1a, Seep-SRB1g, and Seep-SRB2 clades. The non-redundant gene and MAG catalog is a valuable resource that will aid in deepening our understanding of the functions of cold seep microbiomes.
Collapse
Affiliation(s)
- Yingchun Han
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Chuwen Zhang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Zhuoming Zhao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Yongyi Peng
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Jing Liao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Qiuyun Jiang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Qing Liu
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Xiyang Dong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| |
Collapse
|
17
|
Jurdzinski KT, Mehrshad M, Delgado LF, Deng Z, Bertilsson S, Andersson AF. Large-scale phylogenomics of aquatic bacteria reveal molecular mechanisms for adaptation to salinity. SCIENCE ADVANCES 2023; 9:eadg2059. [PMID: 37235649 PMCID: PMC10219603 DOI: 10.1126/sciadv.adg2059] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 04/21/2023] [Indexed: 05/28/2023]
Abstract
The crossing of environmental barriers poses major adaptive challenges. Rareness of freshwater-marine transitions separates the bacterial communities, but how these are related to brackish counterparts remains elusive, as do the molecular adaptations facilitating cross-biome transitions. We conducted large-scale phylogenomic analysis of freshwater, brackish, and marine quality-filtered metagenome-assembled genomes (11,248). Average nucleotide identity analyses showed that bacterial species rarely existed in multiple biomes. In contrast, distinct brackish basins cohosted numerous species, but their intraspecific population structures displayed clear signs of geographic separation. We further identified the most recent cross-biome transitions, which were rare, ancient, and most commonly directed toward the brackish biome. Transitions were accompanied by systematic changes in amino acid composition and isoelectric point distributions of inferred proteomes, which evolved over millions of years, as well as convergent gains or losses of specific gene functions. Therefore, adaptive challenges entailing proteome reorganization and specific changes in gene content constrains the cross-biome transitions, resulting in species-level separation between aquatic biomes.
Collapse
Affiliation(s)
- Krzysztof T. Jurdzinski
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Maliheh Mehrshad
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Luis Fernando Delgado
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Ziling Deng
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Stefan Bertilsson
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Anders F. Andersson
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| |
Collapse
|
18
|
Zhang C, Liu X, Shi LD, Li J, Xiao X, Shao Z, Dong X. Unexpected genetic and microbial diversity for arsenic cycling in deep sea cold seep sediments. NPJ Biofilms Microbiomes 2023; 9:13. [PMID: 36991068 PMCID: PMC10060404 DOI: 10.1038/s41522-023-00382-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 03/13/2023] [Indexed: 03/31/2023] Open
Abstract
Cold seeps, where cold hydrocarbon-rich fluid escapes from the seafloor, show strong enrichment of toxic metalloid arsenic (As). The toxicity and mobility of As can be greatly altered by microbial processes that play an important role in global As biogeochemical cycling. However, a global overview of genes and microbes involved in As transformation at seeps remains to be fully unveiled. Using 87 sediment metagenomes and 33 metatranscriptomes derived from 13 globally distributed cold seeps, we show that As detoxification genes (arsM, arsP, arsC1/arsC2, acr3) were prevalent at seeps and more phylogenetically diverse than previously expected. Asgardarchaeota and a variety of unidentified bacterial phyla (e.g. 4484-113, AABM5-125-24 and RBG-13-66-14) may also function as the key players in As transformation. The abundances of As cycling genes and the compositions of As-associated microbiome shifted across different sediment depths or types of cold seep. The energy-conserving arsenate reduction or arsenite oxidation could impact biogeochemical cycling of carbon and nitrogen, via supporting carbon fixation, hydrocarbon degradation and nitrogen fixation. Overall, this study provides a comprehensive overview of As cycling genes and microbes at As-enriched cold seeps, laying a solid foundation for further studies of As cycling in deep sea microbiome at the enzymatic and processual levels.
Collapse
Affiliation(s)
- Chuwen Zhang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Xinyue Liu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China
| | - Ling-Dong Shi
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Jiwei Li
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Xi Xiao
- Key Laboratory of Marine Mineral Resources, Ministry of Natural Resources, Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou, China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Xiyang Dong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| |
Collapse
|
19
|
Salazar VW, Shaban B, Quiroga MDM, Turnbull R, Tescari E, Rossetto Marcelino V, Verbruggen H, Lê Cao KA. Metaphor-A workflow for streamlined assembly and binning of metagenomes. Gigascience 2022; 12:giad055. [PMID: 37522759 PMCID: PMC10388702 DOI: 10.1093/gigascience/giad055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/05/2023] [Accepted: 07/04/2023] [Indexed: 08/01/2023] Open
Abstract
Recent advances in bioinformatics and high-throughput sequencing have enabled the large-scale recovery of genomes from metagenomes. This has the potential to bring important insights as researchers can bypass cultivation and analyze genomes sourced directly from environmental samples. There are, however, technical challenges associated with this process, most notably the complexity of computational workflows required to process metagenomic data, which include dozens of bioinformatics software tools, each with their own set of customizable parameters that affect the final output of the workflow. At the core of these workflows are the processes of assembly-combining the short-input reads into longer, contiguous fragments (contigs)-and binning, clustering these contigs into individual genome bins. The limitations of assembly and binning algorithms also pose different challenges depending on the selected strategy to execute them. Both of these processes can be done for each sample separately or by pooling together multiple samples to leverage information from a combination of samples. Here we present Metaphor, a fully automated workflow for genome-resolved metagenomics (GRM). Metaphor differs from existing GRM workflows by offering flexible approaches for the assembly and binning of the input data and by combining multiple binning algorithms with a bin refinement step to achieve high-quality genome bins. Moreover, Metaphor generates reports to evaluate the performance of the workflow. We showcase the functionality of Metaphor on different synthetic datasets and the impact of available assembly and binning strategies on the final results.
Collapse
Affiliation(s)
- Vinícius W Salazar
- Melbourne Integrative Genomics, School of Mathematics & Statistics, University of Melbourne, Parkville, VIC 3052, Victoria, Australia
| | - Babak Shaban
- Melbourne Data Analytics Platform (MDAP), University of Melbourne, Carlton, VIC 3053, Victoria, Australia
| | - Maria del Mar Quiroga
- Melbourne Data Analytics Platform (MDAP), University of Melbourne, Carlton, VIC 3053, Victoria, Australia
| | - Robert Turnbull
- Melbourne Data Analytics Platform (MDAP), University of Melbourne, Carlton, VIC 3053, Victoria, Australia
| | - Edoardo Tescari
- Melbourne Data Analytics Platform (MDAP), University of Melbourne, Carlton, VIC 3053, Victoria, Australia
| | - Vanessa Rossetto Marcelino
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC 3168, Victoria, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Victoria, Australia
- School of BioSciences, University of Melbourne, Parkville, VIC 3052, Victoria, Australia
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3052, Victoria, Australia
| | - Heroen Verbruggen
- School of BioSciences, University of Melbourne, Parkville, VIC 3052, Victoria, Australia
| | - Kim-Anh Lê Cao
- Melbourne Integrative Genomics, School of Mathematics & Statistics, University of Melbourne, Parkville, VIC 3052, Victoria, Australia
| |
Collapse
|