1
|
Li B, Liu F, He X, Liu Y, Liu X, Lu M. Leaf Beetle Symbiotic Bacteria Degrade Chlorogenic Acid of Poplar Induced by Egg Deposition to Enhance Larval Survival. PLANT, CELL & ENVIRONMENT 2025; 48:4212-4226. [PMID: 39925102 DOI: 10.1111/pce.15427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 02/11/2025]
Abstract
Insect symbiotic microbiota acting as a third-party force of plant-insect interactions, play a significant role in insect hosts tolerance to phytochemical defences. However, it remains unknown whether insect symbiotic bacteria can assist the host in degrading phytochemical defences induced by egg deposition. Plagiodera versicolora is a worldwide forest pest. Our study showed that P. versicolora egg deposition on Populus davidiana × Populus bolleana induced significant changes in the transcriptome and metabolome of leaves. Combined qRT-PCR and LC-MS quantitative analysis of metabolic pathways showed that the contents of chlorogenic acid and rutin were significantly increased upon egg deposition in poplar. Bioassays indicated that the high concentration of chlorogenic acid induced by egg deposition could significantly reduce the performance of germ-free larvae. Six symbiotic bacterial strains with potential ability to degrade chlorogenic acid were isolated and identified. Their degradation products did not affect larval survival either. In vivo inoculation assays showed that four of those symbiotic bacteria could assist in the degradation of high concentration of chlorogenic acid induced by egg deposition and improve the larval survival. Our study provides clear evidence that the insect symbiotic bacteria can mediate the tolerance of herbivorous insects against plant toxins induced by egg deposition.
Collapse
Affiliation(s)
- Bin Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Fengjie Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Xin He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Yipeng Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Xiaolong Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Min Lu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
2
|
Kong J, Zhou Z, Li Z, Shu J, Zhang S. Enriched Flavonoid Compounds Confer Enhanced Resistance to Fusarium-Induced Root Rot in Oil Tea Plants. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40243596 DOI: 10.1111/pce.15553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 04/18/2025]
Abstract
Root rot in Camellia oleifera complicates the development of targeted control measures owing to its complex aetiology. Although breeding resistant varieties of C. oleifera presents a promising solution, research into cultivation strategies and potential resistance mechanisms against root rot remains limited. In this study, we investigated six cultivars of C. oleifera that exhibit varying levels of resistance to root rot. We conducted transcriptome analysis, measurements of soil physicochemical properties and an analysis of the fungal microbiome to explore the relationship between Fusarium-induced root rot and flavonoid compounds in the rhizosphere. The resistant cultivar CL18 demonstrated superior performance concerning root rot incidence, root health status and the expression levels of genes associated with flavonoid biosynthesis in this study. Significant differences were observed in the composition and diversity of rhizosphere fungal communities among the various cultivars of C. oleifera. The abundance of Fusarium in the rhizosphere soil of CL18 was low, and a negative correlation was identified between the flavonoid content in the soil and the abundance of Fusarium. Our study uncovers the role of flavonoids in the resistance of C. oleifera to root rot, thereby offering new strategies for disease management and the breeding of resistant cultivars.
Collapse
Affiliation(s)
- Junqia Kong
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou, China
- College of Landscape Architecture, Zhejiang A&F University, Hangzhou, China
| | - Zhanhua Zhou
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou, China
| | - Zhong Li
- Zhejiang Tonglu Huifeng Biosciences Co. Ltd., Hangzhou, China
| | - Jinping Shu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Shouke Zhang
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou, China
- Zhejiang Tonglu Huifeng Biosciences Co. Ltd., Hangzhou, China
| |
Collapse
|
3
|
Deng Z, Yang W, Lin T, Wang Y, Hua X, Jiang X, Chen J, Liu D, Ye Z, Zhang Y, Lynch M, Long H, Pan J. Multidimensional insights into the biodiversity of Streptomyces in soils of China: a pilot study. Microbiol Spectr 2025; 13:e0169224. [PMID: 40172189 PMCID: PMC12054067 DOI: 10.1128/spectrum.01692-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 02/11/2025] [Indexed: 04/04/2025] Open
Abstract
Streptomyces, a diverse group of filamentous bacteria found predominantly in soil, play a crucial role in nutrient cycling and produce many valuable secondary metabolites for the pharmaceutical industry. In this pilot study, we collected 19 soil samples from 14 provinces in China to preliminarily investigate the biodiversity and genetic structure of Streptomyces in soils of China from different dimensions, using recently developed cost-efficient amplicon and whole-genome library preparation methods. Amplicon analysis showed that Actinobacteria were among the most abundant bacteria, with 0.3% of amplicon sequence variants (ASVs) belonging to Streptomyces. Meanwhile, we successfully isolated 136 Streptomyces natural strains and assembled their genomes, including 26 previously unreported species, underscoring the need for further exploration of soil Streptomyces in China. Population genetics analysis revealed that homologous recombination may primarily drive the extensive genetic diversity observed in Streptomyces, as well as a complex population structure. Complementing this, pan-genome analysis shed light on gene diversity within Streptomyces and led to the discovery of rare genes, further emphasizing the vast genetic diversity of this genus. Additionally, multiple metabolic gene clusters were found in these Streptomyces strains, as well as some potentially unique or uncommon ones were found. These findings not only highlight the biological and metabolic diversity of Streptomyces but also provide a technical framework for future studies on the global biodiversity and evolution of this genus. IMPORTANCE Streptomyces, a prominent group of Actinobacteria, holds significant importance in ecosystems and biotechnology due to their diverse array of metabolic products. However, research on the biodiversity of soil Streptomyces across extensive geographical scales in China has been limited, and their genetic diversity has rarely been evaluated using modern population genetics principles. This pilot study successfully addresses these gaps by conducting a preliminary exploration on the biodiversity of Streptomyces in Chinese soils from multiple perspectives, providing valuable insights for a deeper understanding of their biodiversity and a novel technical framework for future large-scale explorations of its diversity.
Collapse
Affiliation(s)
- Ziguang Deng
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong Province, China
| | - Wei Yang
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province, China
| | - Tongtong Lin
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province, China
| | - Yaohai Wang
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province, China
| | - Xiaojing Hua
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province, China
| | - Xiaoyu Jiang
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province, China
| | - Junhao Chen
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province, China
| | - Dan Liu
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province, China
| | - Zhiqiang Ye
- School of Life Sciences, Central China Normal University, Wuhan, Hubei Province, China
| | - Yu Zhang
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province, China
| | - Michael Lynch
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona, USA
| | - Hongan Long
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong Province, China
| | - Jiao Pan
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province, China
| |
Collapse
|
4
|
Li X, Wang P, Wang W, Jiao B, Zhang S, Peng Y, Sang W, Zhao Y. Bacterial volatiles from aphid honeydew mediate ladybird beetles oviposition site choice. PEST MANAGEMENT SCIENCE 2025. [PMID: 40079243 DOI: 10.1002/ps.8771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/25/2025] [Accepted: 03/01/2025] [Indexed: 03/15/2025]
Abstract
BACKGROUND The cotton-melon aphid Aphis gossypii Glover is a destructive pest worldwide that causes substantial damage to diverse crops. The ladybird beetle Propylea japonica Thunberg is the dominant predatory natural enemy of A. gossypii. To date, the chemical cues of P. japonica associated with the selection of oviposition sites remain unclear. RESULTS Our results revealed that crude honeydew, but not sterilized honeydew, was strongly attractive to mated P. japonica. A total of eight bacterial strains were isolated from crude honeydew, with two (Acinetobacter sp. and Pseudomonas sp.) showing significant attractiveness. Volatiles from these bacteria were identified, and three compounds-DL-lactic acid, 4, 6-dimethyl-2-heptanone, and didodecyl phthalate-were found to significantly attract mated P. japonica in olfactometer assays. Further cage experiments confirmed that P. japonica preferred oviposition sites near these volatile substances. CONCLUSION The oviposition site selection by the ladybird beetle P. japonica was found to be influenced by volatiles produced by bacteria associated with cotton-melon aphid honeydew. These findings contribute to biologically based, environmentally friendly pest management strategies in agriculture. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xueqing Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
- College of Plant Protection, South China Agricultural University, Guangzhou, China
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan, China
| | - Pan Wang
- Institute of Vegetables, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Wenrong Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Boya Jiao
- Faculty of Science, University of Sydney, Camperdown, Australia
| | - Shichang Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Yu Peng
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan, China
| | - Wen Sang
- College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Yao Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
5
|
Liu C, Wang H, Wang Z, Liang L, Li Y, Liu D, Lu Q. Distinct assembly processes of intestinal and non-intestinal microbes of bark beetles from clues of metagenomic insights. Sci Rep 2025; 15:7910. [PMID: 40050382 PMCID: PMC11885575 DOI: 10.1038/s41598-025-91621-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 02/21/2025] [Indexed: 03/09/2025] Open
Abstract
Ips (Curculionidae: Scolytinae) bark beetles (BBs) are ecologically and economically devastating coniferous pests in the Northern Hemisphere. Although the microbial diversity associated with these beetles has been well studied, mechanisms of community assembly and the functional roles of key microbes remain poorly understood. This study investigates the microbial community structures and functions in both intestinal and non-intestinal environments of five Ips BBs using a metagenomic approach. The findings reveal similar microbial community compositions, though the α-diversity of dominant taxa differs between intestinal and non-intestinal environments due to the variability in bark beetle species, host trees, and habitats. Intestinal microbial communities are predominantly shaped homogenizing dispersal (HD) and undominated processes (UP), whereas non-intestinal microbial communities are primarily driven by heterogeneous selection (HS). Functional analysis shows that genes and enzymes associated with steroid biosynthesis and oxidative phosphorylation are primarily found in non-intestinal fungal symbionts Ogataea, Wickerhamomyce, Ophiostoma, and Ceratocystis of Ips species. Genes and enzymes involved in degrading terpenoids, phenolic compounds, and polysaccharides are predominately found in the intestinal Acinetobacter, Erwinia, and Serratia. This study provides valuable and in-depth insights into the symbiotic relationships between Ips BBs and their microbial partners, enhancing our understanding of insect-microbe coevolution and suggesting new strategies for pest management.
Collapse
Affiliation(s)
- Caixia Liu
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Chinese Academy of Forestry, Ecology and Nature Conservation Institute, Beijing, 100091, China
| | - Huimin Wang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Chinese Academy of Forestry, Ecology and Nature Conservation Institute, Beijing, 100091, China
| | - Zheng Wang
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Lingyu Liang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Chinese Academy of Forestry, Ecology and Nature Conservation Institute, Beijing, 100091, China
| | - Yaning Li
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Chinese Academy of Forestry, Ecology and Nature Conservation Institute, Beijing, 100091, China
| | - Duanchong Liu
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Chinese Academy of Forestry, Ecology and Nature Conservation Institute, Beijing, 100091, China
| | - Quan Lu
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Chinese Academy of Forestry, Ecology and Nature Conservation Institute, Beijing, 100091, China.
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
6
|
Drahun I, Morrison K, Poole EA, van Herk WG, Cassone BJ. Characterisation of the bacteriomes harboured by major wireworm pest species in the Canadian Prairies. INSECT MOLECULAR BIOLOGY 2025; 34:203-217. [PMID: 39381854 PMCID: PMC11705518 DOI: 10.1111/imb.12962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/19/2024] [Indexed: 10/10/2024]
Abstract
Nearly all insects harbour bacterial communities that can have a profound effect on their life history, including regulating and shaping host metabolism, development, immunity and fitness. The bacteriomes of several coleopterans have been described; however, very little has been reported for wireworms. These long-lived larvae of click beetles (Coleoptera: Elateridae) are major agricultural pests of a variety of crops grown in the Canadian Prairies. Consequently, the goal of this study was to characterise the bacteriomes of five of the most significant pest species within the region: Limonius californicus, Hypnoidus abbreviatus, H. bicolor, Aeolus mellillus and Dalopius spp. To do this, we collected larvae from southern Manitoba fields (pre-seeding) and carried out 16S rRNA sequencing on individual specimens. Our results indicate wireworms have diverse and taxon-rich bacterial communities, with over 400 genera identified predominately from the phyla Proteobacteria, Actinobacteriota, Bacteroidota and Firmicutes. However, each species had nine or fewer genera comprising >80% of their bacteriome. Network analyses revealed some community structuring consistent among species, which may culminate in shaping/regulating host biology. Moreover, the microbial signatures were influenced by both ontogeny (early vs. late stage larvae) and reproductive strategy (sexual vs. parthenogenetic), with a myriad of other factors likely contributing to bacterial diversity that are impossible to resolve from our study. Overall, this metagenomics study represents the first to characterise the bacteriomes of wireworms in the Canadian Prairies and the findings could assist in the development of sustainable management strategies for these important agricultural pests.
Collapse
Affiliation(s)
- Ivan Drahun
- Department of BiologyBrandon UniversityBrandonManitobaCanada
| | - Keagan Morrison
- Department of BiologyBrandon UniversityBrandonManitobaCanada
| | - Elise A. Poole
- Department of BiologyBrandon UniversityBrandonManitobaCanada
| | - Willem G. van Herk
- Agassiz Research and Development CentreAgriculture and Agri‐Food CanadaAgassizBritish ColumbiaCanada
| | | |
Collapse
|
7
|
Li X, Fang T, Gao T, Gui H, Chen Y, Zhou L, Zhang Y, Yang Y, Xu L, Long Y. Widespread presence of gut bacterium Glutamicibacter ectropisis sp. nov. confers enhanced resistance to the pesticide bifenthrin in tea pests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176784. [PMID: 39414054 DOI: 10.1016/j.scitotenv.2024.176784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/21/2024] [Accepted: 10/05/2024] [Indexed: 10/18/2024]
Abstract
The gut microbiota in Lepidopterans demonstrates variability and susceptibility to environmental influences, thereby presenting opportunities for the acquisition of novel bacterial strains. Ectropis grisescens (Warren), a notorious Lepidopteran pest, causes substantial damage to tea crops. Prolonged application usage of bifenthrin for the management of this pest has led to increased resistance. This study aims to investigate the relationship between the gut microbiota, as shaped by long-term pesticide use and the resistance of E. grisescenes. We employed high-throughput sequencing of the 16S rRNA gene to analyze the gut microbiota compositions in bifenthrin-resistant (BIF-R) and bifenthrin-sensitive (BIF-S) strains. Bifenthrin-degrading strains were isolated from the gut of BIF-R using selective media. The degradation efficiency and products of bifenthrin by the key strain were detected using gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). The effect of the key strain on host resistance was verified in vivo. Finally, the distribution and abundance of the degrading bacterium, in conjunction with insect's pesticide resistance, were assessed in 22 distinct E. grisescens populations. Bifenthrin resistance was diminished in BIF-R following the removal of gut bacteria, a phenomenon not observed in BIF-S. Subsequent high-throughput amplicon sequencing revealed distinct structural differences in the gut microbiota between the two groups, notably an increased abundance of Glutamicibacter in BIF-R. A newly identified bacterial strain from BIF-R larvae, Glutamicibacter ectropisis (B1), demonstrated bifenthrin degradation efficiency and the main metabolite was 2,4-di-tert-butylphenol. Inoculation of B1 into BIF-S larvae conferred increased resistance to bifenthrin. Furthermore, we confirmed the prevalence of B1 in the gut of E. grisescens across 22 tea-growing areas in China. A positive correlation was observed between the absolute abundance of B1 and bifenthrin resistance in E. grisescens. This study represents the first identification of a novel gut bacterium, G. ectropisis, which mediates host resistance through the direct degradation of bifenthrin. This mechanism has been widely validated across 22 distinct populations.
Collapse
Affiliation(s)
- Xiayu Li
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Ting Fang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Tian Gao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Hao Gui
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Ying Chen
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Linlin Zhou
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Yong Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Yunqiu Yang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China.
| | - Letian Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Yanhua Long
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
8
|
Liu Y, Wang Y, Shi W, Wu N, Liu W, Francis F, Wang X. Enterobacter-infecting phages in nitrogen-deficient paddy soil impact nitrogen-fixation capacity and rice growth by shaping the soil microbiome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177382. [PMID: 39505046 DOI: 10.1016/j.scitotenv.2024.177382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 09/03/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024]
Abstract
Bacteriophages ("phage") play important roles in nutrient cycling and ecology in environments by regulating soil microbial community structure. Here, metagenomic sequencing showed that a low relative abundance of nitrogen-fixing bacteria but high abundance of Enterobacter-infecting phages in paddy soil where rice plants showed nitrogen deficiency. From soil in the same field, we also isolated and identified a novel virulent phage (named here as Apdecimavirus NJ2) that infects several species of Enterobacter and characterized its impact on nitrogen fixation in the soil and in plants. It has the morphology of the Autographiviridae family, with a dsDNA genome of 39,605 bp, 47 predicted open reading frames and 52.64 % GC content. Based on genomic characteristics, comparative genomics and phylogenetic analysis, Apdecimavirus NJ2 should be a novel species in the genus Apdecimavirus, subfamily Studiervirinae. After natural or sterilized field soil was potted and inoculated with the phage, soil nitrogen-fixation capacity and rice growth were impaired, the abundance of Enterobacter decreased, along with the bacterial community composition and biodiversity changed compared with that of the unadded control paddy soil. Our work provides strong evidence that phages can affect the soil nitrogen cycle by changing the bacterial community. Controlling phages in the soil could be a useful strategy for improving soil nitrogen fixation.
Collapse
Affiliation(s)
- Yu Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Functional & Evolutionary Entomology, University of Liège, Gembloux Agro-BioTech, Passage des Déportés, 2, 5030 Gembloux, Belgium
| | - Yajiao Wang
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences, Baoding 071000, China
| | - Wenchong Shi
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Nan Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wenwen Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Frederic Francis
- Functional & Evolutionary Entomology, University of Liège, Gembloux Agro-BioTech, Passage des Déportés, 2, 5030 Gembloux, Belgium.
| | - Xifeng Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
9
|
Zhang N, Qian Z, He J, Shen X, Lei X, Sun C, Fan J, Felton GW, Shao Y. Gut bacteria of lepidopteran herbivores facilitate digestion of plant toxins. Proc Natl Acad Sci U S A 2024; 121:e2412165121. [PMID: 39392666 PMCID: PMC11494336 DOI: 10.1073/pnas.2412165121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/27/2024] [Indexed: 10/12/2024] Open
Abstract
Lepidopterans commonly feed on plant material, being the most significant insect herbivores in nature. Despite plant resistance to herbivory, such as producing toxic secondary metabolites, herbivores have developed mechanisms encoded in their genomes to tolerate or detoxify plant defensive compounds. Recent studies also highlight the role of gut microbiota in mediating detoxification in herbivores; however, convincing evidence supporting the significant contribution of gut symbionts is rare in Lepidoptera. Here, we show that the growth of various lepidopteran species was inhibited by a mulberry-derived secondary metabolite, 1-deoxynojirimycin (DNJ); as expected, the specialist silkworm Bombyx mori grew well, but interestingly, gut microbiota of early-instar silkworms was affected by the DNJ level, and several bacterial species responded positively to enriched DNJ. Among these, a bacterial strain isolated from the silkworm gut (Pseudomonas fulva ZJU1) can degrade and utilize DNJ as the sole energy source, and after inoculation into nonspecialists (e.g., beet armyworm Spodoptera exigua), P. fulva ZJU1 increased host resistance to DNJ and significantly promoted growth. We used genomic and transcriptomic analyses to identify genes potentially involved in DNJ degradation, and CRISPR-Cas9-mediated mutagenesis verified the function of ilvB, a key binding protein, in metabolizing DNJ. Furthermore, the ilvB deletion mutant, exhibiting normal bacterial growth, could no longer enhance nonspecialist performance, supporting a role in DNJ degradation in vivo. Therefore, our study demonstrated causality between the gut microbiome and detoxification of plant chemical defense in Lepidoptera, facilitating a mechanistic understanding of host-microbe relationships across this complex, abundant insect group.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Economic Zoology, Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou310058, China
| | - Zhaoyi Qian
- Department of Economic Zoology, Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou310058, China
| | - Jintao He
- Department of Economic Zoology, Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou310058, China
| | - Xiaoqiang Shen
- Department of Economic Zoology, Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou310058, China
| | - Xiaoyu Lei
- Department of Economic Zoology, Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou310058, China
| | - Chao Sun
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou310058, China
| | - Jie Fan
- Department of Chemistry, Zhejiang University, Hangzhou310027, China
| | - Gary W. Felton
- Department of Entomology and Center for Chemical Ecology, Pennsylvania State University, University Park, PA16802
| | - Yongqi Shao
- Department of Economic Zoology, Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou310058, China
- Key Laboratory for Molecular Animal Nutrition, Ministry of Education, Hangzhou310058, China
| |
Collapse
|
10
|
Yu C, Guan Y, Wang Q, Li Y, Wang L, Yu W, Wu J. Effects of calcium phosphate and phosphorus-dissolving bacteria on microbial structure and function during Torreya Grandis branch waste composting. BMC Microbiol 2024; 24:385. [PMID: 39358715 PMCID: PMC11445941 DOI: 10.1186/s12866-024-03535-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND BURKHOLDERIA: is a phosphorus solubilizing microorganism discovered in recent years, which can dissolve insoluble phosphorus compounds into soluble phosphorus. To investigate the effects of Burkholderia and calcium phosphate on the composting of Torreya grandis branches and leaves, as well as to explain the nutritional and metabolic markers related to the composting process. METHODS In this study, we employed amplicon sequencing and untargeted metabolomics analysis to examine the interplay among phosphorus (P) components, microbial communities, and metabolites during T. grandis branch and leaf waste composting that underwent treatment with calcium phosphate and phosphate-solubilizing bacteria (Burkholderia). There were four composting treatments, 10% calcium phosphate (CaP) or 5 ml/kg (1 × 108/ml Burkholderia) microbial inoculum (WJP) or both (CaP + WJP), and the control group (CK). RESULTS The results indicated that Burkholderia inoculation and calcium phosphate treatment affected the phosphorus composition, pH, EC, and nitrogen content. Furthermore, these treatments significantly affected the diversity and structure of bacterial and fungal communities, altering microbial and metabolite interactions. The differential metabolites associated with lipids and organic acids and derivatives treated with calcium phosphate treatment are twice as high as those treated with Burkholderia in both 21d and 42d. The results suggest that calcium phosphate treatment alters the formation of some biological macromolecules. CONCLUSION Both Burkholderia inoculation and calcium phosphate treatment affected the phosphorus composition, nitrogen content and metabolites of T. grandis branch and leaf waste compost.These results extend our comprehension of the coupling of matter transformation and community succession in composting with the addition of calcium phosphate and phosphate-solubilizing bacteria.
Collapse
Affiliation(s)
- Chenliang Yu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Yuanyuan Guan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Qi Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Yi Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Lei Wang
- Department of Landscape Architecture, Jiyang College, Zhejiang A&F University, Hangzhou, People's Republic of China
| | - Weiwu Yu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, China.
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China.
- NFGA Engineering Research Center for Torreya grandis 'Merrillii', Zhejiang A&F University, Hangzhou, China.
| | - Jiasheng Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, China.
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China.
- NFGA Engineering Research Center for Torreya grandis 'Merrillii', Zhejiang A&F University, Hangzhou, China.
| |
Collapse
|
11
|
Han S, Akhtar MR, Xia X. Functions and regulations of insect gut bacteria. PEST MANAGEMENT SCIENCE 2024; 80:4828-4840. [PMID: 38884497 DOI: 10.1002/ps.8261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/18/2024]
Abstract
The insect gut is a complicated ecosystem that inhabits a large number of symbiotic bacteria. As an important organ of the host insect, the symbiotic bacteria of the insect gut play very important roles in regulating physiological and metabolic processes. Recently, much progress has been made in the study of symbiotic bacteria in insect guts with the development of high-throughput sequencing technology and molecular biology. This review summarizes the primary functions of symbiotic bacteria in insect guts, such as enhancing insecticide resistance, facilitating food digestion, promoting detoxification, and regulating mating behavior and egg hatching. It also addresses some possible pathways of gut bacteria symbiont regulation governed by external habitats, physiological conditions and immunity of the host insect. This review provides solid foundations for further studies on novel theories, new technologies and practical applications of symbiotic bacteria in insect guts. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shuncai Han
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Youxi-Yangzhong Vegetable Pest Prevention and Control, Fujian Observation and Research Station, Fuzhou, China
| | - Muhammad Rehan Akhtar
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Youxi-Yangzhong Vegetable Pest Prevention and Control, Fujian Observation and Research Station, Fuzhou, China
| | - Xiaofeng Xia
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Youxi-Yangzhong Vegetable Pest Prevention and Control, Fujian Observation and Research Station, Fuzhou, China
| |
Collapse
|
12
|
Shan HW, Xia XJ, Feng YL, Wu W, Li HJ, Sun ZT, Li JM, Chen JP. The plant-sucking insect selects assembly of the gut microbiota from environment to enhance host reproduction. NPJ Biofilms Microbiomes 2024; 10:64. [PMID: 39080326 PMCID: PMC11289440 DOI: 10.1038/s41522-024-00539-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
Plant-sucking insects have intricate associations with a diverse array of microorganisms to facilitate their adaptation to specific ecological niches. The midgut of phytophagous true bugs is generally structured into four distinct compartments to accommodate their microbiota. Nevertheless, there is limited understanding regarding the origins of these gut microbiomes, the mechanisms behind microbial community assembly, and the interactions between gut microbiomes and their insect hosts. In this study, we conducted a comprehensive survey of microbial communities within the midgut compartments of a bean bug Riptortus pedestris, soybean plant, and bulk soil across 12 distinct geographical fields in China, utilizing high-throughput sequencing of the 16 S rRNA gene. Our findings illuminated that gut microbiota of the plant-sucking insects predominantly originated from the surrounding soil environment, and plants also play a subordinate role in mediating microbial acquisition for the insects. Furthermore, our investigation suggested that the composition of the insect gut microbiome was probably shaped by host selection and/or microbe-microbe interactions at the gut compartment level, with marginal influence from soil and geographical factors. Additionally, we had unveiled a noteworthy dynamic in the acquisition of core bacterial taxa, particularly Burkholderia, which were initially sourced from the environment and subsequently enriched within the insect midgut compartments. This bacterial enrichment played a significant role in enhancing insect host reproduction. These findings contribute to our evolving understanding of microbiomes within the insect-plant-soil ecosystem, shedding additional light on the intricate interactions between insects and their microbiomes that underpin the ecological significance of microbial partnerships in host adaptation.
Collapse
Affiliation(s)
- Hong-Wei Shan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| | - Xie-Jiang Xia
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Yi-Lu Feng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Wei Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Hong-Jie Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Zong-Tao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jun-Min Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jian-Ping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
13
|
Wang J, Zhang S, Kong J, Chang J. Pecan secondary metabolites influenced the population of Zeuzera coffeae by affecting the structure and function of the larval gut microbiota. Front Microbiol 2024; 15:1379488. [PMID: 38680914 PMCID: PMC11045946 DOI: 10.3389/fmicb.2024.1379488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/02/2024] [Indexed: 05/01/2024] Open
Abstract
Background The plant secondary metabolites (PSMs), as important plant resistance indicators, are important targets for screening plant insect resistance breeding. In this study, we aimed to investigate whether the population of Zeuzera coffeae (ZC) is affected by different varieties of Carya illinoinensis PSMs content. At the same time, the structure and function of the gut microbiome of ZC were also analyzed in relation to different pecan varieties. Methods We counted the populations of ZC larvae in four pecan varieties and determined the content of four types of PSMs. The structure and function of the larval gut microbiota were studied in connection to the number of larvae and the content of PSMs. The relationships were investigated between larval number, larval gut microbiota, and PSM content. Results We found that the tannins, total phenolics, and total saponins of 4 various pecans PSMs stifled the development of the ZC larval population. The PSMs can significantly affect the diversity and abundance of the larval gut microbiota. Enrichment of ASV46 (Pararhizobium sp.), ASV994 (Olivibacter sp.), ASV743 (Rhizobium sp.), ASV709 (Rhizobium sp.), ASV671 (Luteolibacter sp.), ASV599 (Agrobacterium sp.), ASV575 (Microbacterium sp.), and ASV27 (Rhizobium sp.) in the gut of larvae fed on high-resistance cultivars was positively associated with their tannin, total saponin, and total phenolic content. The results of the gut microbiome functional prediction for larvae fed highly resistant pecan varieties showed that the enriched pathways in the gut were related to the breakdown of hazardous chemicals. Conclusion Our findings provide further evidence that pecan PSMs influence the structure and function of the gut microbiota, which in turn affects the population stability of ZC. The study's findings can serve as a theoretical foundation for further work on selecting ZC-resistant cultivars and developing green management technology for ZC.
Collapse
Affiliation(s)
- Jie Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Shouke Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Junqia Kong
- College of Landscape Architecture, Zhejiang A&F University, Hangzhou, China
| | - Jun Chang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| |
Collapse
|
14
|
Li J, Fu N, Wang M, Gao C, Gao B, Ren L, Tao J, Luo Y. Functional and Compositional Changes in Sirex noctilio Gut Microbiome in Different Habitats: Unraveling the Complexity of Invasive Adaptation. Int J Mol Sci 2024; 25:2526. [PMID: 38473774 PMCID: PMC10931295 DOI: 10.3390/ijms25052526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/04/2024] [Accepted: 02/14/2024] [Indexed: 03/14/2024] Open
Abstract
The mutualistic symbiosis relationship between the gut microbiome and their insect hosts has attracted much scientific attention. The native woodwasp, Sirex nitobei, and the invasive European woodwasp, Sirex noctilio, are two pests that infest pines in northeastern China. Following its encounter with the native species, however, there is a lack of research on whether the gut microbiome of S. noctilio changed, what causes contributed to these alterations, and whether these changes were more conducive to invasive colonization. We used high-throughput and metatranscriptomic sequencing to investigate S. noctilio larval gut and frass from four sites where only S. noctilio and both two Sirex species and investigated the effects of environmental factors, biological interactions, and ecological processes on S. noctilio gut microbial community assembly. Amplicon sequencing of two Sirex species revealed differential patterns of bacterial and fungal composition and functional prediction. S. noctilio larval gut bacterial and fungal diversity was essentially higher in coexistence sites than in separate existence sites, and most of the larval gut bacterial and fungal community functional predictions were significantly different as well. Moreover, temperature and precipitation positively correlate with most of the highly abundant bacterial and fungal genera. Source-tracking analysis showed that S. noctilio larvae at coexistence sites remain dependent on adult gut transmission (vertical transmission) or recruitment to frass (horizontal transmission). Meanwhile, stochastic processes of drift and dispersal limitation also have important impacts on the assembly of S. noctilio larval gut microbiome, especially at coexistence sites. In summary, our results reveal the potential role of changes in S. noctilio larval gut microbiome in the successful colonization and better adaptation of the environment.
Collapse
Affiliation(s)
- Jiale Li
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China; (J.L.); (N.F.); (M.W.); (C.G.); (B.G.); (J.T.)
- Sino-France Joint Laboratory for Invasive Forest Pests in Eurasia, Beijing Forestry University, Beijing 100083, China
| | - Ningning Fu
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China; (J.L.); (N.F.); (M.W.); (C.G.); (B.G.); (J.T.)
- Department of Forest Protection, College of Forestry, Hebei Agricultural University, Baoding 071033, China
| | - Ming Wang
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China; (J.L.); (N.F.); (M.W.); (C.G.); (B.G.); (J.T.)
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Chenglong Gao
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China; (J.L.); (N.F.); (M.W.); (C.G.); (B.G.); (J.T.)
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China
| | - Bingtao Gao
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China; (J.L.); (N.F.); (M.W.); (C.G.); (B.G.); (J.T.)
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China
| | - Lili Ren
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China; (J.L.); (N.F.); (M.W.); (C.G.); (B.G.); (J.T.)
- Sino-France Joint Laboratory for Invasive Forest Pests in Eurasia, Beijing Forestry University, Beijing 100083, China
| | - Jing Tao
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China; (J.L.); (N.F.); (M.W.); (C.G.); (B.G.); (J.T.)
- Sino-France Joint Laboratory for Invasive Forest Pests in Eurasia, Beijing Forestry University, Beijing 100083, China
| | - Youqing Luo
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China; (J.L.); (N.F.); (M.W.); (C.G.); (B.G.); (J.T.)
- Sino-France Joint Laboratory for Invasive Forest Pests in Eurasia, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
15
|
Zhang S, Song F, Wang J, Li X, Zhang Y, Zhou W, Xu L. Gut microbiota facilitate adaptation of invasive moths to new host plants. THE ISME JOURNAL 2024; 18:wrae031. [PMID: 38423525 PMCID: PMC10980833 DOI: 10.1093/ismejo/wrae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/23/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Gut microbiota are important in the adaptation of phytophagous insects to their plant hosts. However, the interaction between gut microbiomes and pioneering populations of invasive insects during their adaptation to new hosts, particularly in the initial phases of invasion, has been less studied. We studied the contribution of the gut microbiome to host adaptation in the globally recognized invasive pest, Hyphantria cunea, as it expands its range into southern China. The southern population of H. cunea shows effective adaptation to Metasequoia glyptostroboides and exhibits greater larval survival on Metasequoia than the original population. Genome resequencing revealed no significant differences in functions related to host adaptation between the two populations. The compatibility between southern H. cunea populations and M. glyptostroboides revealed a correlation between the abundance of several gut bacteria genera (Bacteroides, Blautia, and Coprococcus) and H. cunea survival. Transplanting the larval gut microbiome from southern to northern populations enhanced the adaptability of the latter to the previously unsuitable plant M. glyptostroboides. This research provides evidence that the gut microbiome of pioneering populations can enhance the compatibility of invasive pests to new hosts and enable more rapid adaptation to new habitats.
Collapse
Affiliation(s)
- Shouke Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Feng Song
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Jie Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Xiayu Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yuxin Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Wenwu Zhou
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests & Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Letian Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| |
Collapse
|
16
|
Zhang Y, Liu S, Huang XY, Zi HB, Gao T, Ji RJ, Sheng J, Zhi D, Zhang YL, Gong CM, Yang YQ. Altitude as a key environmental factor shaping microbial communities of tea green leafhoppers ( Matsumurasca onukii). Microbiol Spectr 2023; 11:e0100923. [PMID: 37921460 PMCID: PMC10714740 DOI: 10.1128/spectrum.01009-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/19/2023] [Indexed: 11/04/2023] Open
Abstract
IMPORTANCE Host-associated microbial communities play an important role in the fitness of insect hosts. However, the factors shaping microbial communities in wild populations, including environmental factors and interactions among microbial species, remain largely unknown. The tea green leafhopper has a wide geographical distribution and is highly adaptable, providing a suitable model for studying the effect of ecological drivers on microbiomes. This is the first large-scale culture-independent study investigating the microbial communities of M. onukii sampled from different locations. Altitude as a key environmental factor may have shaped microbial communities of M. onukii by affecting the relative abundance of endosymbionts, especially Wolbachia. The results of this study, therefore, offer not only an in-depth view of the microbial diversity of this species but also an insight into the influence of environmental factors.
Collapse
Affiliation(s)
- Yong Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- College of Life Science, Anhui Agricultural University, Hefei, Anhui, China
| | - Song Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Xue-yu Huang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Hua-bin Zi
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Tian Gao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Rui-jie Ji
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Juan Sheng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Dian Zhi
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Ying-lao Zhang
- College of Life Science, Anhui Agricultural University, Hefei, Anhui, China
| | - Chun-mei Gong
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Yun-qiu Yang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| |
Collapse
|
17
|
Zhang Y, Zhang S, Xu L. The pivotal roles of gut microbiota in insect plant interactions for sustainable pest management. NPJ Biofilms Microbiomes 2023; 9:66. [PMID: 37735530 PMCID: PMC10514296 DOI: 10.1038/s41522-023-00435-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023] Open
Abstract
The gut microbiota serves as a critical "organ" in the life cycle of animals, particularly in the intricate interplay between herbivorous pests and plants. This review summarizes the pivotal functions of the gut microbiota in mediating the insect-plant interactions, encompassing their influence on host insects, modulation of plant physiology, and regulation of the third trophic level species within the ecological network. Given these significant functions, it is plausible to harness these interactions and their underlying mechanisms to develop novel eco-friendly pest control strategies. In this context, we also outline some emerging pest control methods based on the intestinal microbiota or bacteria-mediated interactions, such as symbiont-mediated RNAi and paratransgenesis, albeit these are still in their nascent stages and confront numerous challenges. Overall, both opportunities and challenges coexist in the exploration of the intestinal microbiota-mediated interactions between insect pests and plants, which will not only enrich the fundamental knowledge of plant-insect interactions but also facilitate the development of sustainable pest control strategies.
Collapse
Affiliation(s)
- Yuxin Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, 430062, Wuhan, China
| | - Shouke Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, 311300, Hangzhou, China.
| | - Letian Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, 430062, Wuhan, China.
| |
Collapse
|
18
|
Li Z, Huang S, He X, Ma H, Zhou X, Lin H, Zhang S. Specific Enriched Acinetobacter in Camellia Weevil Gut Facilitate the Degradation of Tea Saponin: Inferred from Bacterial Genomic and Transcriptomic Analyses. Microbiol Spectr 2022; 10:e0227222. [PMID: 36413019 PMCID: PMC9769793 DOI: 10.1128/spectrum.02272-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/31/2022] [Indexed: 11/24/2022] Open
Abstract
Beneficial gut bacteria can enhance herbivorous arthropod adaptation to plant secondary compounds (PSMs), and specialist herbivores provide excellent examples of this. Tea saponin (TS) of Camellia oleifera is triterpenoids toxic to seed-feeding weevil pest, Curculio chinensis (CW). Previous studies disclosed that Acinetobacter, which was specific enriched in the CW's gut, was involved in helping CW evade TS toxicity of C. oleifera. However, it is still not clear whether Acinetobacter is associated with other anti-insect compounds, and the molecular mechanism of Acinetobacter degradation of TS has not been clarified. To address these questions, we explored the relationship between host plant toxin content and Acinetobacter of CW gut bacteria. Results demonstrated that TS content significantly affected the CW gut microbiome structure and enriched bacteria functional for TS degradation. We further isolated Acinetobacter strain and conducted its genome and transcriptome analyses for bacterial characterization and investigation on its role in TS degradation. Biological tests were carried out to verify the ability of the functional bacterium within CW larvae to detoxify TS. Our results showed that TS-degrading bacteria strain (Acinetobacter sp. AS23) genome contains 47 genes relating to triterpenoids degradation. The AS23 strain improved the survival rate of CW larvae, and the steroid degradation pathway could be the key one for AS23 to degrade TS. This study provides the direct evidence that gut bacteria mediate adaptation of herbivorous insects to phytochemical resistance. IMPORTANCE Microorganism is directly exposed to the plant toxin environment and play a crucial third party in herbivores gut. Although previous studies have proved the existence of gut bacteria that help CWs degrade TS, the specific core flora and its function have not been explored. In this study, we investigated the correlation between the larva gut microbiome and plant secondary metabolites. Acinetobacter genus was the target flora related to TS degradation. There were many terpenoids genes in Acinetobacter sp. AS23 genome. Results of transcriptome analysis and biological tests suggested that steroid degradation pathway be the key pathway of AS23 to degrade TS. This study not only provides direct evidence that gut microbes mediate the rapid adaptation of herbivorous insects to phytochemical resistance, but also provides a theoretical basis for further research on the molecular mechanism of intestinal bacteria cooperating with pests to adapt to plant toxins.
Collapse
Affiliation(s)
- Zikun Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, People’s Republic of China
- College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, People’s Republic of China
| | - Suya Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, People’s Republic of China
- College of Horticulture Science, Zhejiang A & F University, Hangzhou, People’s Republic of China
| | - Xinghua He
- Zhoushan Academy of Forestry Science, Zhoushan, People’s Republic of China
| | - Haijie Ma
- College of Horticulture Science, Zhejiang A & F University, Hangzhou, People’s Republic of China
| | - Xudong Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, People’s Republic of China
- College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, People’s Republic of China
| | - Haiping Lin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, People’s Republic of China
- College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, People’s Republic of China
| | - Shouke Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, People’s Republic of China
- College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, People’s Republic of China
| |
Collapse
|