1
|
Dinglasan JLN, Otani H, Doering DT, Udwary D, Mouncey NJ. Microbial secondary metabolites: advancements to accelerate discovery towards application. Nat Rev Microbiol 2025; 23:338-354. [PMID: 39824928 DOI: 10.1038/s41579-024-01141-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2024] [Indexed: 01/20/2025]
Abstract
Microbial secondary metabolites not only have key roles in microbial processes and relationships but are also valued in various sectors of today's economy, especially in human health and agriculture. The advent of genome sequencing has revealed a previously untapped reservoir of biosynthetic capacity for secondary metabolites indicating that there are new biochemistries, roles and applications of these molecules to be discovered. New predictive tools for biosynthetic gene clusters (BGCs) and their associated pathways have provided insights into this new diversity. Advanced molecular and synthetic biology tools and workflows including cell-based and cell-free expression facilitate the study of previously uncharacterized BGCs, accelerating the discovery of new metabolites and broadening our understanding of biosynthetic enzymology and the regulation of BGCs. These are complemented by new developments in metabolite detection and identification technologies, all of which are important for unlocking new chemistries that are encoded by BGCs. This renaissance of secondary metabolite research and development is catalysing toolbox development to power the bioeconomy.
Collapse
Affiliation(s)
- Jaime Lorenzo N Dinglasan
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Hiroshi Otani
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Drew T Doering
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Daniel Udwary
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Nigel J Mouncey
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
2
|
Yibar A, Duman M, Ay H, Ajmi N, Tasci G, Gurler F, Guler S, Morick D, Saticioglu IB. Genomic Insight into Vibrio Isolates from Fresh Raw Mussels and Ready-to-Eat Stuffed Mussels. Pathogens 2025; 14:52. [PMID: 39861013 PMCID: PMC11768812 DOI: 10.3390/pathogens14010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/28/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Consuming raw or undercooked mussels can lead to gastroenteritis and septicemia due to Vibrio contamination. This study analyzed the prevalence, density, species diversity, and molecular traits of Vibrio spp. in 48 fresh raw wild mussels (FRMs) and 48 ready-to-eat stuffed mussels (RTE-SMs) through genome analysis, assessing health risks. The results showed Vibrio prevalence rates of 12.5% in FRMs and 4.2% in RTE-SMs, with V. alginolyticus as the most common species (46.7%). It was determined that the seasonal distribution of Vibrio spp. prevalence in the samples was higher in the summer months. The genome sizes of the Vibrio spp. ranged from approximately 3.9 to 6.1 Mb, with the GC contents varying between 41.9% and 50.4%. A total of 22 virulence factor (VF) classes and up to six antimicrobial resistance (AMR) genes were detected in different Vibrio species. The presence of nine different biosynthetic gene clusters (BGCs), 27 prophage regions, and eight CRISPR/Cas systems in 15 Vibrio strains provides information about their potential pathogenicity, survival strategies, and adaptation to different habitats. Overall, this study provides a comprehensive understanding of the genomic diversity of Vibrio spp. isolated from FRM and RTE-SM samples, shedding light on the prevalence, pathogenicity, and toxicity mechanisms of Vibrio-induced gastroenteritis.
Collapse
Affiliation(s)
- Artun Yibar
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa 16059, Türkiye;
| | - Muhammed Duman
- Department of Aquatic Animal Disease, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa 16059, Türkiye; (M.D.); (N.A.); (G.T.)
| | - Hilal Ay
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Yildiz Technical University, Istanbul 34220, Türkiye;
| | - Nihed Ajmi
- Department of Aquatic Animal Disease, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa 16059, Türkiye; (M.D.); (N.A.); (G.T.)
| | - Gorkem Tasci
- Department of Aquatic Animal Disease, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa 16059, Türkiye; (M.D.); (N.A.); (G.T.)
| | - Fatma Gurler
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa 16059, Türkiye;
| | - Sabire Guler
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa 16059, Türkiye;
| | - Danny Morick
- Department of Blue Biotechnologies and Sustainable Mariculture, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel;
| | - Izzet Burcin Saticioglu
- Department of Aquatic Animal Disease, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa 16059, Türkiye; (M.D.); (N.A.); (G.T.)
| |
Collapse
|
3
|
Miyada MG, Choi Y, Rich K, La Clair JJ, Burkart MD. Differentiating carrier protein interactions in biosynthetic pathways using dapoxyl solvatochromism. Chem Sci 2024; 15:19913-19919. [PMID: 39568935 PMCID: PMC11575542 DOI: 10.1039/d4sc05499g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/29/2024] [Indexed: 11/22/2024] Open
Abstract
Carrier protein-dependent synthases are ubiquitous enzymes involved both in primary and secondary metabolism. Biocatalysis within these synthases is governed by key interactions between the carrier protein, substrate, and partner enzymes. The weak and transient nature of these interactions has rendered them difficult to study. Here we develop a useful fluorescent solvatochromic probe, dapoxyl-pantetheinamide, to monitor and quantify carrier protein interactions in vitro. Upon loading with target carrier proteins, we observe dramatic shifts in fluorescence emission wavelength and intensity and further demonstrate that this tool has the potential to be applied across numerous biosynthetic pathways. The environmental sensitivity of this probe allows rapid characterization of carrier protein interactions, with the ability to quantitatively determine inhibition of protein-protein interactions. We anticipate future application of these probes for inhibitor screening and in vivo characterization.
Collapse
Affiliation(s)
- Matthew G Miyada
- Department of Chemistry and Biochemistry, University of California, San Diego 9500 Gilman Drive, La Jolla CA 92093-0358 USA
| | - Yuran Choi
- Department of Chemistry and Biochemistry, University of California, San Diego 9500 Gilman Drive, La Jolla CA 92093-0358 USA
| | - Kyle Rich
- Department of Chemistry and Biochemistry, University of California, San Diego 9500 Gilman Drive, La Jolla CA 92093-0358 USA
| | - James J La Clair
- Department of Chemistry and Biochemistry, University of California, San Diego 9500 Gilman Drive, La Jolla CA 92093-0358 USA
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego 9500 Gilman Drive, La Jolla CA 92093-0358 USA
| |
Collapse
|
4
|
Cui H, Lu J, Ding W, Zhang W. Genomic Features and Antimicrobial Activity of Phaeobacter inhibens Strains from Marine Biofilms. Mar Drugs 2024; 22:492. [PMID: 39590772 PMCID: PMC11595833 DOI: 10.3390/md22110492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/19/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Members of the genus Phaeobacter are widely distributed in the marine environment and are known for their ability to produce tropodithietic acid (TDA). Studies investigating the genomic and metabolic features of Phaeobacter strains from marine biofilms are sparse. Here, we analyze the complete genomes of 18 Phaeobacter strains isolated from biofilms on subtidal stones, with the aim of determining their potential to synthesize secondary metabolites. Based on whole-genome comparison and average nucleotide identity calculation, the isolated bacteria are classified as novel strains of Phaeobacter inhibens. Further analysis reveals a total of 153 biosynthetic gene clusters, which are assigned to 32 gene cluster families with low similarity to previously published ones. Complete TDA clusters are identified in 14 of the 18 strains, while in the other 4 strains the TDA clusters are rather incomplete and scattered across different chromosome and plasmid locations. Phylogenetic analysis suggests that their presence or absence may be potentially attributed to horizontal gene transfer. High-performance liquid chromatography-mass spectrometry analysis demonstrates the production of TDA in all the examined strains. Furthermore, the Phaeobacter strains have strong antibacterial activity against the pathogenic strain Vibrio owensii ems001, which is associated with acute hepatopancreatic necrosis in South American white shrimp. Altogether, this study ameliorates our knowledge of marine biofilm-associated Phaeobacter and offers new avenues for exploiting marine antimicrobial agents.
Collapse
Affiliation(s)
- Han Cui
- MOE Key Laboratory of Evolution & Marine Biodiversity, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (H.C.); (J.L.)
| | - Jie Lu
- MOE Key Laboratory of Evolution & Marine Biodiversity, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (H.C.); (J.L.)
| | - Wei Ding
- MOE Key Laboratory of Marine Genetics & Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China;
| | - Weipeng Zhang
- MOE Key Laboratory of Evolution & Marine Biodiversity, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (H.C.); (J.L.)
| |
Collapse
|
5
|
Miyada MG, Choi Y, Stepanauskas R, Woyke T, La Clair JJ, Burkart MD. Fluorometric Analysis of Carrier-Protein-Dependent Biosynthesis through a Conformationally Sensitive Solvatochromic Pantetheinamide Probe. ACS Chem Biol 2024; 19:1416-1425. [PMID: 38909314 PMCID: PMC11622929 DOI: 10.1021/acschembio.4c00169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Carrier proteins (CPs) play a fundamental role in the biosynthesis of fatty acids, polyketides, and non-ribosomal peptides, encompassing many medicinally and pharmacologically relevant compounds. Current approaches to analyze novel carrier-protein-dependent synthetic pathways are hampered by a lack of activity-based assays for natural product biosynthesis. To fill this gap, we turned to 3-methoxychromones, highly solvatochromic fluorescent molecules whose emission intensity and wavelength are heavily dependent on their immediate molecular environment. We have developed a solvatochromic carrier-protein-targeting probe which is able to selectively fluoresce when bound to a target carrier protein. Additionally, the probe displays distinct responses upon CP binding in carrier-protein-dependent synthases. This discerning approach demonstrates the design of solvatochromic fluorophores with the ability to identify biosynthetically active CP-enzyme interactions.
Collapse
Affiliation(s)
- Matthew G. Miyada
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States
| | - Yuran Choi
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States
| | - Ramunas Stepanauskas
- Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine 04544, United States
| | - Tanja Woyke
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - James J. La Clair
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States
| | - Michael D. Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States
| |
Collapse
|
6
|
Buijs Y, Geers AU, Nita I, Strube ML, Bentzon-Tilia M. SecMet-FISH: labeling, visualization, and enumeration of secondary metabolite producing microorganisms. FEMS Microbiol Ecol 2024; 100:fiae038. [PMID: 38490742 PMCID: PMC11004939 DOI: 10.1093/femsec/fiae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/23/2024] [Accepted: 03/14/2024] [Indexed: 03/17/2024] Open
Abstract
Our understanding of the role of secondary metabolites in microbial communities is challenged by intrinsic limitations of culturing bacteria under laboratory conditions and hence cultivation independent approaches are needed. Here, we present a protocol termed Secondary Metabolite FISH (SecMet-FISH), combining advantages of gene-targeted fluorescence in situ hybridization (geneFISH) with in-solution methods (in-solution FISH) to detect and quantify cells based on their genetic capacity to produce secondary metabolites. The approach capitalizes on the conserved nature of biosynthetic gene clusters (BGCs) encoding adenylation (AD) and ketosynthase (KS) domains, and thus selectively targets the genetic basis of non-ribosomal peptide and polyketide biosynthesis. The concept relies on the generation of amplicon pools using degenerate primers broadly targeting AD and KS domains followed by fluorescent labeling, detection, and quantification. Initially, we obtained AD and KS amplicons from Pseuodoalteromonas rubra, which allowed us to successfully label and visualize BGCs within P. rubra cells, demonstrating the feasibility of SecMet-FISH. Next, we adapted the protocol and optimized it for hybridization in both Gram-negative and Gram-positive bacterial cell suspensions, enabling high-throughput single cell analysis by flow cytometry. Ultimately, we used SecMet-FISH to successfully distinguish secondary metabolite producers from non-producers in a five-member synthetic community.
Collapse
Affiliation(s)
- Yannick Buijs
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Aileen Ute Geers
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Iuliana Nita
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Mikael Lenz Strube
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Mikkel Bentzon-Tilia
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|