1
|
Mazel F, Prasad A, Engel P. Host specificity of gut microbiota associated with social bees: patterns and processes. Microbiol Mol Biol Rev 2025:e0008023. [PMID: 40111037 DOI: 10.1128/mmbr.00080-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025] Open
Abstract
SUMMARYGut microbes provide benefits to some animals, but their distribution and effects across diverse hosts are still poorly described. There is accumulating evidence for host specificity (i.e., a pattern where different microbes tend to associate with distinct host lineages), but the causes and consequences of this pattern are unclear. Combining experimental tests in the laboratory with broad surveys in the wild is a promising approach to gaining a comprehensive and mechanistic understanding of host specificity prevalence, origin, and importance. Social bees represent an ideal testbed for this endeavor because they are phylogenetically and functionally diverse, with host-specific, stable, and tractable gut microbiota. Furthermore, the western honeybee (Apis mellifera) is an emerging experimental model system for studying microbiota-host interactions. In this review, we summarize data on the prevalence and strength of host specificity of the social bee gut microbiota (bumblebees, stingless bees, and honeybees), as well as the potential and proven ecological and molecular mechanisms that maintain host specificity. Overall, we found that host specificity in bees is relatively strong and likely results from several processes, including host filtering mediated by the immune system and priority effects. However, more research is needed across multiple social bee species to confirm these findings. To help future research, we summarize emerging hypotheses in the field and propose several experimental and comparative tests. Finally, we conclude this review by highlighting the need to understand how host specificity can influence host health.
Collapse
Affiliation(s)
- Florent Mazel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
- NCCR Microbiomes, Lausanne, Switzerland
| | - Aiswarya Prasad
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Philipp Engel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
- NCCR Microbiomes, Lausanne, Switzerland
| |
Collapse
|
2
|
Maihoff F, Bofinger L, Brenzinger K, Keller A, Classen A. Exploring climate-related gut microbiome variation in bumble bees: An experimental and observational perspective. Ecology 2025; 106:e70066. [PMID: 40129109 PMCID: PMC11933737 DOI: 10.1002/ecy.70066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/13/2025] [Accepted: 02/07/2025] [Indexed: 03/26/2025]
Abstract
Rising temperatures negatively affect bumble bee fitness directly through physiological impacts and indirectly by disrupting mutualistic interactions between bees and other organisms, which are crucial in determining species-specific responses to climate change. Gut microbial symbionts, key regulators of host nutrition and health, may be the Achilles' heel of thermal responses in insects. They not only modulate biotic interactions with plants and pathogens but also exhibit varying thermal sensitivity themselves. Understanding how environmental changes disrupt microbiome communities is a crucial first step to determine potential consequences for host population responses. We analyzed gut bacterial communities of six bumble bee species inhabiting different climatic niches along an elevational gradient in the German Alps using 16S ribosomal DNA amplicon sequencing. We first investigated whether inter- and intraspecific differences in gut bacterial communities can be linked to species' elevational niches, which differ in temperature, flower resource composition, and likely pathogen pressure. A reciprocal translocation experiment between distinct climatic regions tested how the gut bacterial communities of Bombus terrestris and Bombus lucorum change short-term when exposed to new environments. Finally, we exposed these species to heat and cold wave scenarios within climate chambers to disentangle pure temperature-driven effects on the microbiome from other environmental effects. Interspecific variation in microbiome composition exceeded intraspecific variation. Species exhibit varying levels of gut microbiome stability, where stability is defined as the within-group variance: lower stability, indicated by greater within-group variance, is predominantly observed in species inhabiting higher elevations. Transplanted species showed subtle short-term gut microbiome adjustments, marked by an increase in Lactobacillaceae upon exposure to warmer regions; however, the gut microbiomes of these bumble bees did not change under laboratory temperature scenarios. We conclude that marked differences in the gut microbiomes of bumble bees could lead to species-specific responses to environmental change. For example, less stable microbiomes in bumble bees inhabiting higher elevations might indicate an increased sensitivity to pathogens. Short-term microbiome changes following translocation indicate that species with relatively stable microbiomes, such as B. lucorum and B. terrestris, can rapidly integrate new bacteria, which could increase their capacity to cope with new environments under climate change.
Collapse
Affiliation(s)
- Fabienne Maihoff
- Department of Animal Ecology and Tropical BiologyBiocenter, University of WürzburgWürzburgGermany
| | - Lukas Bofinger
- Department of Animal Ecology and Tropical BiologyBiocenter, University of WürzburgWürzburgGermany
| | - Kristof Brenzinger
- Department of Animal Ecology and Tropical BiologyBiocenter, University of WürzburgWürzburgGermany
| | - Alexander Keller
- Cellular and Organismic Networks, Center for Organismic Adaptation (CORA), Faculty of BiologyLMU MunichPlanegg‐MartinsriedGermany
| | - Alice Classen
- Department of Animal Ecology and Tropical BiologyBiocenter, University of WürzburgWürzburgGermany
- Animal Ecology GroupInstitute of Ecology, University of BremenBremenGermany
| |
Collapse
|
3
|
Vega MF, Libonatti C, Ramos OY, Basualdo M. [Characterization of a microbial community isolated from honey bee colonies]. Rev Argent Microbiol 2024; 56:265-269. [PMID: 38762351 DOI: 10.1016/j.ram.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/01/2023] [Accepted: 01/11/2024] [Indexed: 05/20/2024] Open
Abstract
The microbial communities within honey bee colonies contribute to the defense against pathogens. The goal of this study was to isolate, identify, and lyophilize lactic acid bacteria and bifidobacteria from the gut of nurse bees and bee bread in Apis mellifera colonies. Bacterial cultures from the intestinal content were conducted, and subsequently identified, sequenced, and lyophilized. Cross-antagonism among them was also assessed. Studies based on 16 S rRNA gene Sanger sequencing revealed that the MC3 strain had 100% identity with Bifidobacterium choladohabitans, the PP2B strain showed 99.16% similarity with Enterococcus faecium, while the PP1 strain exhibited 99.49% similarity with Lacticaseibacillus sp. and the PP1B strain showed 99.32% similarity with Lacticaseibacillus sp. There was no evidence of cross-antagonism among the strains, and the lyophilization process showed good stability and conservation. This is the first report of the isolation of B. choladohabitans from honey bee gut in Argentina, and also associates the presence of E. faecium with bee bread.
Collapse
Affiliation(s)
- María Fernanda Vega
- Universidad Nacional del Centro de la Provincia de Buenos Aires- PROANVET, Facultad de Ciencias Veterinarias, Tandil, Provincia de Buenos Aires, Argentina.
| | - Carina Libonatti
- Universidad Nacional del Centro de la Provincia de Buenos Aires- PROANVET, Facultad de Ciencias Veterinarias, Tandil, Provincia de Buenos Aires, Argentina
| | - Ornela Y Ramos
- Universidad Nacional del Centro de la Provincia de Buenos Aires- PROANVET, Facultad de Ciencias Veterinarias, Tandil, Provincia de Buenos Aires, Argentina; CONICET
| | - Marina Basualdo
- Universidad Nacional del Centro de la Provincia de Buenos Aires- PROANVET, Facultad de Ciencias Veterinarias, Tandil, Provincia de Buenos Aires, Argentina
| |
Collapse
|
4
|
Maccaro JJ, Figueroa LL, McFrederick QS. From pollen to putrid: Comparative metagenomics reveals how microbiomes support dietary specialization in vulture bees. Mol Ecol 2024; 33:e17421. [PMID: 38828760 DOI: 10.1111/mec.17421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/12/2024] [Accepted: 05/20/2024] [Indexed: 06/05/2024]
Abstract
For most animals, the microbiome is key for nutrition and pathogen defence, and is often shaped by diet. Corbiculate bees, including honey bees, bumble bees, and stingless bees, share a core microbiome that has been shaped, at least in part, by the challenges associated with pollen digestion. However, three species of stingless bees deviate from the general rule of bees obtaining their protein exclusively from pollen (obligate pollinivores) and instead consume carrion as their sole protein source (obligate necrophages) or consume both pollen and carrion (facultative necrophages). These three life histories can provide missing insights into microbiome evolution associated with extreme dietary transitions. Here, we investigate, via shotgun metagenomics, the functionality of the microbiome across three bee diet types: obligate pollinivory, obligate necrophagy, and facultative necrophagy. We find distinct differences in microbiome composition and gene functional profiles between the diet types. Obligate necrophages and pollinivores have more specialized microbes, whereas facultative necrophages have a diversity of environmental microbes associated with several dietary niches. Our study suggests that necrophagous bee microbiomes may have evolved to overcome cellular stress and microbial competition associated with carrion. We hypothesize that the microbiome evolved social phenotypes, such as biofilms, that protect the bees from opportunistic pathogens present on carcasses, allowing them to overcome novel nutritional challenges. Whether specific microbes enabled diet shifts or diet shifts occurred first and microbial evolution followed requires further research to disentangle. Nonetheless, we find that necrophagous microbiomes, vertebrate and invertebrate alike, have functional commonalities regardless of their taxonomy.
Collapse
Affiliation(s)
- Jessica J Maccaro
- Department of Entomology, University of California Riverside, Riverside, California, USA
| | - Laura L Figueroa
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Quinn S McFrederick
- Department of Entomology, University of California Riverside, Riverside, California, USA
| |
Collapse
|
5
|
Tilocca B, Greco V, Piras C, Ceniti C, Paonessa M, Musella V, Bava R, Palma E, Morittu VM, Spina AA, Castagna F, Urbani A, Britti D, Roncada P. The Bee Gut Microbiota: Bridging Infective Agents Potential in the One Health Context. Int J Mol Sci 2024; 25:3739. [PMID: 38612550 PMCID: PMC11012054 DOI: 10.3390/ijms25073739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
The bee gut microbiota plays an important role in the services the bees pay to the environment, humans and animals. Alongside, gut-associated microorganisms are vehiculated between apparently remote habitats, promoting microbial heterogeneity of the visited microcosms and the transfer of the microbial genetic elements. To date, no metaproteomics studies dealing with the functional bee microbiota are available. Here, we employ a metaproteomics approach to explore a fraction of the bacterial, fungal, and unicellular parasites inhabiting the bee gut. The bacterial community portrays a dynamic composition, accounting for specimens of human and animal concern. Their functional features highlight the vehiculation of virulence and antimicrobial resistance traits. The fungal and unicellular parasite fractions include environment- and animal-related specimens, whose metabolic activities support the spatial spreading of functional features. Host proteome depicts the major bee physiological activities, supporting the metaproteomics strategy for the simultaneous study of multiple microbial specimens and their host-crosstalks. Altogether, the present study provides a better definition of the structure and function of the bee gut microbiota, highlighting its impact in a variety of strategies aimed at improving/overcoming several current hot topic issues such as antimicrobial resistance, environmental pollution and the promotion of environmental health.
Collapse
Affiliation(s)
- Bruno Tilocca
- Department of Health Science, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (C.P.); (C.C.); (M.P.); (V.M.); (R.B.); (E.P.); (V.M.M.); (A.A.S.); (F.C.); (D.B.)
| | - Viviana Greco
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of the Sacred Hearth, 00168 Rome, Italy; (V.G.); (A.U.)
- Unity of Chemistry, Biochemistry and Clinical Molecular Biology, Department of Diagnostic and Laboratory Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Cristian Piras
- Department of Health Science, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (C.P.); (C.C.); (M.P.); (V.M.); (R.B.); (E.P.); (V.M.M.); (A.A.S.); (F.C.); (D.B.)
| | - Carlotta Ceniti
- Department of Health Science, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (C.P.); (C.C.); (M.P.); (V.M.); (R.B.); (E.P.); (V.M.M.); (A.A.S.); (F.C.); (D.B.)
| | - Mariachiara Paonessa
- Department of Health Science, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (C.P.); (C.C.); (M.P.); (V.M.); (R.B.); (E.P.); (V.M.M.); (A.A.S.); (F.C.); (D.B.)
| | - Vincenzo Musella
- Department of Health Science, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (C.P.); (C.C.); (M.P.); (V.M.); (R.B.); (E.P.); (V.M.M.); (A.A.S.); (F.C.); (D.B.)
| | - Roberto Bava
- Department of Health Science, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (C.P.); (C.C.); (M.P.); (V.M.); (R.B.); (E.P.); (V.M.M.); (A.A.S.); (F.C.); (D.B.)
| | - Ernesto Palma
- Department of Health Science, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (C.P.); (C.C.); (M.P.); (V.M.); (R.B.); (E.P.); (V.M.M.); (A.A.S.); (F.C.); (D.B.)
| | - Valeria Maria Morittu
- Department of Health Science, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (C.P.); (C.C.); (M.P.); (V.M.); (R.B.); (E.P.); (V.M.M.); (A.A.S.); (F.C.); (D.B.)
| | - Anna Antonella Spina
- Department of Health Science, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (C.P.); (C.C.); (M.P.); (V.M.); (R.B.); (E.P.); (V.M.M.); (A.A.S.); (F.C.); (D.B.)
| | - Fabio Castagna
- Department of Health Science, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (C.P.); (C.C.); (M.P.); (V.M.); (R.B.); (E.P.); (V.M.M.); (A.A.S.); (F.C.); (D.B.)
| | - Andrea Urbani
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of the Sacred Hearth, 00168 Rome, Italy; (V.G.); (A.U.)
- Unity of Chemistry, Biochemistry and Clinical Molecular Biology, Department of Diagnostic and Laboratory Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Domenico Britti
- Department of Health Science, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (C.P.); (C.C.); (M.P.); (V.M.); (R.B.); (E.P.); (V.M.M.); (A.A.S.); (F.C.); (D.B.)
| | - Paola Roncada
- Department of Health Science, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (C.P.); (C.C.); (M.P.); (V.M.); (R.B.); (E.P.); (V.M.M.); (A.A.S.); (F.C.); (D.B.)
| |
Collapse
|
6
|
Yao Y, Liu C, Zhang Y, Lin Y, Chen T, Xie J, Chang H, Fu Y, Cheng J, Li B, Yu X, Lyu X, Feng Y, Bian X, Jiang D. The Dynamic Changes of Brassica napus Seed Microbiota across the Entire Seed Life in the Field. PLANTS (BASEL, SWITZERLAND) 2024; 13:912. [PMID: 38592934 PMCID: PMC10975644 DOI: 10.3390/plants13060912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024]
Abstract
The seed microbiota is an important component given by nature to plants, protecting seeds from damage by other organisms and abiotic stress. However, little is known about the dynamic changes and potential functions of the seed microbiota during seed development. In this study, we investigated the composition and potential functions of the seed microbiota of rapeseed (Brassica napus). A total of 2496 amplicon sequence variants (ASVs) belonging to 504 genera in 25 phyla were identified, and the seed microbiota of all sampling stages were divided into three groups. The microbiota of flower buds, young pods, and seeds at 20 days after flowering (daf) formed the first group; that of seeds at 30 daf, 40 daf and 50 daf formed the second group; that of mature seeds and parental seeds were clustered into the third group. The functions of seed microbiota were identified by using PICRUSt2, and it was found that the substance metabolism of seed microbiota was correlated with those of the seeds. Finally, sixty-one core ASVs, including several potential human pathogens, were identified, and a member of the seed core microbiota, Sphingomonas endophytica, was isolated from seeds and found to promote seedling growth and enhance resistance against Sclerotinia sclerotiorum, a major pathogen in rapeseed. Our findings provide a novel perspective for understanding the composition and functions of microbiota during seed development and may enhance the efficiency of mining beneficial seed microbes.
Collapse
Affiliation(s)
- Yao Yao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Y.); (C.L.); (T.C.); (J.X.); (B.L.); (X.Y.); (X.L.); (Y.F.); (X.B.)
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (Y.L.); (Y.F.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Changxing Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Y.); (C.L.); (T.C.); (J.X.); (B.L.); (X.Y.); (X.L.); (Y.F.); (X.B.)
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (Y.L.); (Y.F.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yu Zhang
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (Y.L.); (Y.F.)
| | - Yang Lin
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (Y.L.); (Y.F.)
| | - Tao Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Y.); (C.L.); (T.C.); (J.X.); (B.L.); (X.Y.); (X.L.); (Y.F.); (X.B.)
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (Y.L.); (Y.F.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Y.); (C.L.); (T.C.); (J.X.); (B.L.); (X.Y.); (X.L.); (Y.F.); (X.B.)
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (Y.L.); (Y.F.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Haibin Chang
- Huanggang Academy of Agricultural Science, Huanggang 438000, China;
| | - Yanping Fu
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (Y.L.); (Y.F.)
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Y.); (C.L.); (T.C.); (J.X.); (B.L.); (X.Y.); (X.L.); (Y.F.); (X.B.)
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (Y.L.); (Y.F.)
| | - Bo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Y.); (C.L.); (T.C.); (J.X.); (B.L.); (X.Y.); (X.L.); (Y.F.); (X.B.)
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (Y.L.); (Y.F.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xiao Yu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Y.); (C.L.); (T.C.); (J.X.); (B.L.); (X.Y.); (X.L.); (Y.F.); (X.B.)
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (Y.L.); (Y.F.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xueliang Lyu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Y.); (C.L.); (T.C.); (J.X.); (B.L.); (X.Y.); (X.L.); (Y.F.); (X.B.)
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (Y.L.); (Y.F.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yanbo Feng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Y.); (C.L.); (T.C.); (J.X.); (B.L.); (X.Y.); (X.L.); (Y.F.); (X.B.)
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (Y.L.); (Y.F.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xuefeng Bian
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Y.); (C.L.); (T.C.); (J.X.); (B.L.); (X.Y.); (X.L.); (Y.F.); (X.B.)
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (Y.L.); (Y.F.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Y.); (C.L.); (T.C.); (J.X.); (B.L.); (X.Y.); (X.L.); (Y.F.); (X.B.)
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (Y.L.); (Y.F.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
7
|
Motta EVS, Moran NA. The honeybee microbiota and its impact on health and disease. Nat Rev Microbiol 2024; 22:122-137. [PMID: 38049554 PMCID: PMC10998682 DOI: 10.1038/s41579-023-00990-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 12/06/2023]
Abstract
Honeybees (Apis mellifera) are key pollinators that support global agriculture and are long-established models for developmental and behavioural research. Recently, they have emerged as models for studying gut microbial communities. Earlier research established that hindguts of adult worker bees harbour a conserved set of host-restricted bacterial species, each showing extensive strain variation. These bacteria can be cultured axenically and introduced to gnotobiotic hosts, and some have basic genetic tools available. In this Review, we explore the most recent research showing how the microbiota establishes itself in the gut and impacts bee biology and health. Microbiota members occupy specific niches within the gut where they interact with each other and the host. They engage in cross-feeding and antagonistic interactions, which likely contribute to the stability of the community and prevent pathogen invasion. An intact gut microbiota provides protection against diverse pathogens and parasites and contributes to the processing of refractory components of the pollen coat and dietary toxins. Absence or disruption of the microbiota results in altered expression of genes that underlie immunity, metabolism, behaviour and development. In the field, such disruption by agrochemicals may negatively impact bees. These findings demonstrate a key developmental and protective role of the microbiota, with broad implications for bee health.
Collapse
Affiliation(s)
- Erick V S Motta
- Department of Integrative Biology, University of Texas, Austin, TX, USA
| | - Nancy A Moran
- Department of Integrative Biology, University of Texas, Austin, TX, USA.
| |
Collapse
|
8
|
Castillo DC, Sinpoo C, Phokasem P, Yongsawas R, Sansupa C, Attasopa K, Suwannarach N, Inwongwan S, Noirungsee N, Disayathanoowat T. Distinct fungal microbiomes of two Thai commercial stingless bee species, Lepidotrigona terminata and Tetragonula pagdeni suggest a possible niche separation in a shared habitat. Front Cell Infect Microbiol 2024; 14:1367010. [PMID: 38469352 PMCID: PMC10925696 DOI: 10.3389/fcimb.2024.1367010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/07/2024] [Indexed: 03/13/2024] Open
Abstract
Stingless bees, a social corbiculate bee member, play a crucial role in providing pollination services. Despite their importance, the structure of their microbiome, particularly the fungal communities, remains poorly understood. This study presents an initial characterization of the fungal community associated with two Thai commercial stingless bee species, Lepidotrigona terminata (Smith) and Tetragonula pagdeni (Schwarz) from Chiang Mai, Thailand. Utilizing ITS amplicon sequencing, we identified distinct fungal microbiomes in these two species. Notably, fungi from the phyla Ascomycota, Basidiomycota, Mucoromycota, Mortierellomycota, and Rozellomycota were present. The most dominant genera, which varied significantly between species, included Candida and Starmerella. Additionally, several key enzymes associated with energy metabolism, structural strength, and host defense reactions, such as adenosine triphosphatase, alcohol dehydrogenase, β-glucosidase, chitinase, and peptidylprolyl isomerase, were predicted. Our findings not only augment the limited knowledge of the fungal microbiome in Thai commercial stingless bees but also provide insights for their sustainable management through understanding their microbiome.
Collapse
Affiliation(s)
- Diana C. Castillo
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Department of Biological Sciences, College of Science, Central Luzon State University, Science City of Muñoz, Nueva Ecija, Philippines
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai, Thailand
| | - Chainarong Sinpoo
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
| | - Patcharin Phokasem
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
| | - Rujipas Yongsawas
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai, Thailand
| | - Chakriya Sansupa
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Korrawat Attasopa
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai, Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Nakarin Suwannarach
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Sahutchai Inwongwan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Nuttapol Noirungsee
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Terd Disayathanoowat
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
9
|
Steffan SA, Dharampal PS, Kueneman JG, Keller A, Argueta-Guzmán MP, McFrederick QS, Buchmann SL, Vannette RL, Edlund AF, Mezera CC, Amon N, Danforth BN. Microbes, the 'silent third partners' of bee-angiosperm mutualisms. Trends Ecol Evol 2024; 39:65-77. [PMID: 37940503 DOI: 10.1016/j.tree.2023.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 11/10/2023]
Abstract
While bee-angiosperm mutualisms are widely recognized as foundational partnerships that have shaped the diversity and structure of terrestrial ecosystems, these ancient mutualisms have been underpinned by 'silent third partners': microbes. Here, we propose reframing the canonical bee-angiosperm partnership as a three-way mutualism between bees, microbes, and angiosperms. This new conceptualization casts microbes as active symbionts, processing and protecting pollen-nectar provisions, consolidating nutrients for bee larvae, enhancing floral attractancy, facilitating plant fertilization, and defending bees and plants from pathogens. In exchange, bees and angiosperms provide their microbial associates with food, shelter, and transportation. Such microbial communities represent co-equal partners in tripartite mutualisms with bees and angiosperms, facilitating one of the most important ecological partnerships on land.
Collapse
Affiliation(s)
- Shawn A Steffan
- US Department of Agriculture, Agricultural Research Service, 1575 Linden Drive, Madison, WI 53706, USA; Department of Entomology, University of Wisconsin, 1630 Linden Drive, Madison, WI 53706, USA.
| | - Prarthana S Dharampal
- Department of Entomology, University of Wisconsin, 1630 Linden Drive, Madison, WI 53706, USA; Biology Department, McHenry County College, 8900 Northwest Hwy #14, Crystal Lake, IL 60012, USA
| | - Jordan G Kueneman
- Department of Entomology, Cornell University, Comstock Hall, 2126, Ithaca, NY 14853, USA
| | - Alexander Keller
- Cellular and Organismic Networks, Faculty of Biology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | | | - Quinn S McFrederick
- Department of Entomology, University of California Riverside, Riverside, CA 92521, USA
| | - Stephen L Buchmann
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA; Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Rachel L Vannette
- Department of Entomology and Nematology, University of California, Davis, Davis, CA 95616, USA
| | - Anna F Edlund
- Department of Biology, Bethany College, 31 E Campus Drive, Bethany, WV 26032, USA
| | - Celeste C Mezera
- Department of Entomology, University of Wisconsin, 1630 Linden Drive, Madison, WI 53706, USA
| | - Nolan Amon
- Department of Entomology, University of Wisconsin, 1630 Linden Drive, Madison, WI 53706, USA
| | - Bryan N Danforth
- Department of Entomology, Cornell University, Comstock Hall, 2126, Ithaca, NY 14853, USA
| |
Collapse
|
10
|
Mee L, Barribeau SM. Influence of social lifestyles on host-microbe symbioses in the bees. Ecol Evol 2023; 13:e10679. [PMID: 37928198 PMCID: PMC10620586 DOI: 10.1002/ece3.10679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 11/07/2023] Open
Abstract
Microbiomes are increasingly recognised as critical for the health of an organism. In eusocial insect societies, frequent social interactions allow for high-fidelity transmission of microbes across generations, leading to closer host-microbe coevolution. The microbial communities of bees with other social lifestyles are less studied, and few comparisons have been made between taxa that vary in social structure. To address this gap, we leveraged a cloud-computing resource and publicly available transcriptomic data to conduct a survey of microbial diversity in bee samples from a variety of social lifestyles and taxa. We consistently recover the core microbes of well-studied corbiculate bees, supporting this method's ability to accurately characterise microbial communities. We find that the bacterial communities of bees are influenced by host location, phylogeny and social lifestyle, although no clear effect was found for fungal or viral microbial communities. Bee genera with more complex societies tend to harbour more diverse microbes, with Wolbachia detected more commonly in solitary tribes. We present a description of the microbiota of Euglossine bees and find that they do not share the "corbiculate core" microbiome. Notably, we find that bacteria with known anti-pathogenic properties are present across social bee genera, suggesting that symbioses that enhance host immunity are important with higher sociality. Our approach provides an inexpensive means of exploring microbiomes of a given taxa and identifying avenues for further research. These findings contribute to our understanding of the relationships between bees and their associated microbial communities, highlighting the importance of considering microbiome dynamics in investigations of bee health.
Collapse
Affiliation(s)
- Lauren Mee
- Institute of Infection, Veterinary and Ecological Sciences, Department of Evolution, Ecology and BehaviourUniversity of LiverpoolLiverpoolUK
| | - Seth M. Barribeau
- Institute of Infection, Veterinary and Ecological Sciences, Department of Evolution, Ecology and BehaviourUniversity of LiverpoolLiverpoolUK
| |
Collapse
|