1
|
Scarpellini C, Ramos Llorca A, Lanthier C, Klejborowska G, Augustyns K. The Potential Role of Regulated Cell Death in Dry Eye Diseases and Ocular Surface Dysfunction. Int J Mol Sci 2023; 24:731. [PMID: 36614174 PMCID: PMC9820812 DOI: 10.3390/ijms24010731] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
The research on new treatments for dry eye diseases (DED) has exponentially grown over the past decades. The increased prevalence of dry eye conditions, particularly in the younger population, has received much attention. Therefore, it is of utmost importance to identify novel therapeutical targets. Regulated cell death (RCD) is an essential process to control the biological homeostasis of tissues and organisms. The identification of different mechanisms of RCD stimulated the research on their involvement in different human pathologies. Whereas apoptosis has been widely studied in DED and included in the DED vicious cycle, the role of RCD still needs to be completely elucidated. In this review, we will explore the potential roles of different types of RCD in DED and ocular surface dysfunction. Starting from the evidence of oxidative stress and inflammation in dry eye pathology, we will analyse the potential therapeutic applications of the following principal RCD mechanisms: ferroptosis, necroptosis, and pyroptosis.
Collapse
Affiliation(s)
| | | | | | | | - Koen Augustyns
- Laboratory of Medicinal Chemistry, University of Antwerp, Universiteitsplein 1, B-2160 Antwerp, Belgium
| |
Collapse
|
3
|
Poudel BK, Robert MC, Simpson FC, Malhotra K, Jacques L, LaBarre P, Griffith M. In situ Tissue Regeneration in the Cornea from Bench to Bedside. Cells Tissues Organs 2021; 211:506-526. [PMID: 34380144 DOI: 10.1159/000514690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/22/2021] [Indexed: 11/19/2022] Open
Abstract
Corneal blindness accounts for 5.1% of visual deficiency and is the fourth leading cause of blindness globally. An additional 1.5-2 million people develop corneal blindness each year, including many children born with or who later develop corneal infections. Over 90% of corneal blind people globally live in low- and middle-income regions (LMIRs), where corneal ulcers are approximately 10-fold higher compared to high-income countries. While corneal transplantation is an effective option for patients in high-income countries, there is a considerable global shortage of corneal graft tissue and limited corneal transplant programs in many LMIRs. In situ tissue regeneration aims to restore diseases or damaged tissues by inducing organ regeneration. This can be achieved in the cornea using biomaterials based on extracellular matrix (ECM) components like collagen, hyaluronic acid, and silk. Solid corneal implants based on recombinant human collagen type III were successfully implanted into patients resulting in regeneration of the corneal epithelium, stroma, and sub-basal nerve plexus. As ECM crosslinking and manufacturing methods improve, the focus of biomaterial development has shifted to injectable, in situ gelling formulations. Collagen, collagen-mimetic, and gelatin-based in situ gelling formulas have shown the ability to repair corneal wounds, surgical incisions, and perforations in in-vivo models. Biomaterial approaches may not be sufficient to treat inflammatory conditions, so other cell-free therapies such as treatment with tolerogenic exosomes and extracellular vesicles may improve treatment outcomes. Overall, many of the technologies described here show promise as future medical devices or combination products with cell or drug-based therapies. In situ tissue regeneration, particularly with liquid formulas, offers the ability to triage and treat corneal injuries and disease with a single regenerative solution, providing alternatives to organ transplantation and improving patient outcomes.
Collapse
Affiliation(s)
- Bijay K Poudel
- Département d'Ophtalmologie, Université de Montréal, Montréal, Québec, Canada.,Centre de Recherche, Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
| | - Marie-Claude Robert
- Département d'Ophtalmologie, Université de Montréal, Montréal, Québec, Canada.,Centre de Recherche, Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada.,Département d'Opthalmologie, Centre hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Fiona C Simpson
- Département d'Ophtalmologie, Université de Montréal, Montréal, Québec, Canada.,Centre de Recherche, Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada.,Département d'Opthalmologie, Centre hospitalier de l'Université de Montréal, Montréal, Québec, Canada.,Institut du Génie Biomédicale, Université de Montréal, Montréal, Québec, Canada
| | - Kamal Malhotra
- Département d'Ophtalmologie, Université de Montréal, Montréal, Québec, Canada.,Centre de Recherche, Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada.,Département d'Opthalmologie, Centre hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Ludovic Jacques
- Département d'Ophtalmologie, Université de Montréal, Montréal, Québec, Canada.,Centre de Recherche, Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
| | | | - May Griffith
- Département d'Ophtalmologie, Université de Montréal, Montréal, Québec, Canada.,Centre de Recherche, Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada.,Département d'Opthalmologie, Centre hospitalier de l'Université de Montréal, Montréal, Québec, Canada.,Institut du Génie Biomédicale, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
4
|
Grimaudo MA, Pescina S, Padula C, Santi P, Concheiro A, Alvarez-Lorenzo C, Nicoli S. Topical application of polymeric nanomicelles in ophthalmology: a review on research efforts for the noninvasive delivery of ocular therapeutics. Expert Opin Drug Deliv 2019; 16:397-413. [PMID: 30889977 DOI: 10.1080/17425247.2019.1597848] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Polymeric micelles represent nowadays an interesting formulative approach for ocular drug delivery, as they act as solubility enhancers of poorly soluble drugs and promote drug transport across cornea and sclera. In particular, in the last 5 years polymeric nanomicelles have been increasingly investigated to overcome some of the important challenges of the topical treatment of ocular diseases. AREAS COVERED The aim of this review was to gather up-to-date information on the different roles that polymeric micelles (commonly in the nanosize scale) can play in ocular delivery. Thus, after a general description of ocular barriers and micelles features, the attention is focused on those properties that are relevant for ophthalmic application. Finally, their efficacy in improving the ocular delivery of different classes of therapeutics (anti-inflammatory, immunosuppressant, antiglaucoma, antifungal, and antiviral drugs) are reported. EXPERT OPINION Although still a few, in vivo experiments have clearly demonstrated the capability of polymeric nanomicelles to overcome a variety of hurdles associated to ocular therapy, notably increasing drug bioavailability. However, there are still some very important issues to be solved, such as tolerability and stability; additionally, the role of micelles in drug uptake by the ocular tissues and their potential for the treatment of posterior eye diseases still need to be clarified/verified.
Collapse
Affiliation(s)
| | - Silvia Pescina
- a Department of Food and Drug , University of Parma , Parma , Italy
| | - Cristina Padula
- a Department of Food and Drug , University of Parma , Parma , Italy
| | - Patrizia Santi
- a Department of Food and Drug , University of Parma , Parma , Italy
| | - Angel Concheiro
- b Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+DPharma Group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS) , Universidade de Santiago de Compostela , Santiago de Compostela , Spain
| | - Carmen Alvarez-Lorenzo
- b Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+DPharma Group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS) , Universidade de Santiago de Compostela , Santiago de Compostela , Spain
| | - Sara Nicoli
- a Department of Food and Drug , University of Parma , Parma , Italy
| |
Collapse
|