1
|
Altea-Manzano P, Decker-Farrell A, Janowitz T, Erez A. Metabolic interplays between the tumour and the host shape the tumour macroenvironment. Nat Rev Cancer 2025; 25:274-292. [PMID: 39833533 DOI: 10.1038/s41568-024-00786-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/10/2024] [Indexed: 01/22/2025]
Abstract
Metabolic reprogramming of cancer cells and the tumour microenvironment are pivotal characteristics of cancers, and studying these processes offer insights and avenues for cancer diagnostics and therapeutics. Recent advancements have underscored the impact of host systemic features, termed macroenvironment, on facilitating cancer progression. During tumorigenesis, these inherent features of the host, such as germline genetics, immune profile and the metabolic status, influence how the body responds to cancer. In parallel, as cancer grows, it induces systemic effects beyond the primary tumour site and affects the macroenvironment, for example, through inflammation, the metabolic end-stage syndrome of cachexia, and metabolic dysregulation. Therefore, understanding the intricate metabolic interplay between the tumour and the host is a growing frontier in advancing cancer diagnosis and therapy. In this Review, we explore the specific contribution of the metabolic fitness of the host to cancer initiation, progression and response to therapy. We then delineate the complex metabolic crosstalk between the tumour, the microenvironment and the host, which promotes disease progression to metastasis and cachexia. The metabolic relationships among the host, cancer pathogenesis and the consequent responsive systemic manifestations during cancer progression provide new perspectives for mechanistic cancer therapy and improved management of patients with cancer.
Collapse
Affiliation(s)
| | | | | | - Ayelet Erez
- Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
2
|
Puurand M, Llorente A, Linē A, Kaambre T. Exercise-induced extracellular vesicles in reprogramming energy metabolism in cancer. Front Oncol 2025; 14:1480074. [PMID: 39834935 PMCID: PMC11743358 DOI: 10.3389/fonc.2024.1480074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/06/2024] [Indexed: 01/22/2025] Open
Abstract
Cancer is caused by complex interactions between genetic, environmental, and lifestyle factors, making prevention strategies, including exercise, a promising avenue for intervention. Physical activity is associated with reduced cancer incidence and progression and systemic anti-cancer effects, including improved tumor suppression and prolonged survival in preclinical models. Exercise impacts the body's nutrient balance and stimulates the release of several exercise-induced factors into circulation. The mechanisms of how exercise modulates cancer energy metabolism and the tumor microenvironment through systemic effects mediated, in part, by extracellular vesicles (EVs) are still unknown. By transferring bioactive cargo such as miRNAs, proteins and metabolites, exercise-induced EVs may influence cancer cells by altering glycolysis and oxidative phosphorylation, potentially shifting metabolic plasticity - a hallmark of cancer. This short review explores the roles of EVs in cancer as mediators to reprogram cellular energy metabolism through exchanging information inside the tumor microenvironment, influencing immune cells, fibroblast and distant cells. Considering this knowledge, further functional studies into exercise-induced EVs and cellular energy production pathways could inform more specific exercise interventions to enhance cancer therapy and improve patient outcomes.
Collapse
Affiliation(s)
- Marju Puurand
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Alicia Llorente
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department for Mechanical, Electronics and Chemical Engineering, Oslo Metropolitan University, Oslo, Norway
| | - Aija Linē
- Cancer Biomarker group, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Tuuli Kaambre
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| |
Collapse
|
3
|
Wang R, Lu Y, Qi J, Xi Y, Shen Z, Twumasi G, Bai L, Hu J, Wang J, Li L, Liu H. Genome-wide association analysis explores the genetic loci of amino acid content in duck's breast muscle. BMC Genomics 2024; 25:486. [PMID: 38755558 PMCID: PMC11097541 DOI: 10.1186/s12864-024-10287-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/05/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Amino acids are the basic components of protein and an important index to evaluate meat quality. With the rapid development of genomics, candidate regions and genes affecting amino acid content in livestock and poultry have been gradually revealed. Hence, genome-wide association study (GWAS) can be used to screen candidate loci associated with amino acid content in duck meat. RESULT In the current study, the content of 16 amino acids was detected in 358 duck breast muscles. The proportion of Glu to the total amino acid content was relatively high, and the proportion was 0.14. However, the proportion of Met content was relatively low, at just 0.03. By comparative analysis, significant differences were found between males and females in 3 amino acids, including Ser, Met, and Phe. In addition, 12 SNPs were significantly correlated with Pro content by GWAS analysis, and these SNPs were annotated by 7 protein-coding genes; 8 significant SNPs were associated with Tyr content, and these SNPs were annotated by 6 protein-coding genes. At the same time, linkage disequilibrium (LD) analysis was performed on these regions with significant signals. The results showed that three SNPs in the 55-56 Mbp region of chromosome 3 were highly correlated with the leader SNP (chr3:55526954) that affected Pro content (r2 > 0.6). Similarly, LD analysis showed that there were three SNPs in the 21.2-21.6 Mbp region of chromosome 13, which were highly correlated with leader SNP (chr13:21421661) (r2 > 0.6). Moreover, Through functional enrichment analysis of all candidate genes. The results of GO enrichment analysis showed that several significant GO items were associated with amino acid transport function, including amino acid transmembrane transport and glutamine transport. The results further indicate that these candidate genes are closely associated with amino acid transport. Among them, key candidate genes include SLC38A1. For KEGG enrichment analysis, CACNA2D3 and CACNA1D genes were covered by significant pathways. CONCLUSION In this study, GWAS analysis found a total of 28 significant SNPs affecting amino acid content. Through gene annotation, a total of 20 candidate genes were screened. In addition, Through LD analysis and enrichment analysis, we considered that SERAC1, CACNA2D3 and SLC38A1 genes are important candidate genes affecting amino acid content in duck breast muscle.
Collapse
Affiliation(s)
- Rui Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Wenjiang District, 611130, Chengdu, Sichuan, P.R. China
- National Key Laboratory for Swine and Poultry Breeding, Chengdu, P.R. China
| | - Yinjuan Lu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Wenjiang District, 611130, Chengdu, Sichuan, P.R. China
- National Key Laboratory for Swine and Poultry Breeding, Chengdu, P.R. China
| | - Jingjing Qi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Wenjiang District, 611130, Chengdu, Sichuan, P.R. China
- National Key Laboratory for Swine and Poultry Breeding, Chengdu, P.R. China
| | - Yang Xi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Wenjiang District, 611130, Chengdu, Sichuan, P.R. China
- National Key Laboratory for Swine and Poultry Breeding, Chengdu, P.R. China
| | - Zhenyang Shen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Wenjiang District, 611130, Chengdu, Sichuan, P.R. China
- National Key Laboratory for Swine and Poultry Breeding, Chengdu, P.R. China
| | - Grace Twumasi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Wenjiang District, 611130, Chengdu, Sichuan, P.R. China
- National Key Laboratory for Swine and Poultry Breeding, Chengdu, P.R. China
| | - Lili Bai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Wenjiang District, 611130, Chengdu, Sichuan, P.R. China
- National Key Laboratory for Swine and Poultry Breeding, Chengdu, P.R. China
| | - Jiwei Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Wenjiang District, 611130, Chengdu, Sichuan, P.R. China
- National Key Laboratory for Swine and Poultry Breeding, Chengdu, P.R. China
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Wenjiang District, 611130, Chengdu, Sichuan, P.R. China
- National Key Laboratory for Swine and Poultry Breeding, Chengdu, P.R. China
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Wenjiang District, 611130, Chengdu, Sichuan, P.R. China
- National Key Laboratory for Swine and Poultry Breeding, Chengdu, P.R. China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China.
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Wenjiang District, 611130, Chengdu, Sichuan, P.R. China.
- National Key Laboratory for Swine and Poultry Breeding, Chengdu, P.R. China.
| |
Collapse
|
4
|
Lyu DW. Immunomodulatory effects of exercise in cancer prevention and adjuvant therapy: a narrative review. Front Physiol 2024; 14:1292580. [PMID: 38239881 PMCID: PMC10794543 DOI: 10.3389/fphys.2023.1292580] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024] Open
Abstract
Successful application of cancer immunotherapy has rekindled hope in cancer patients. However, a number of patients are unresponsive to immunotherapy and related treatments. This unresponsiveness in cancer patients toward different treatment regimens can be mainly attributed to severe immune dysfunction in such patients. Several reports indicate that physical exercise can significantly lead to improved cancer patient outcomes. Since exercise gets immense response from the immune system, it can be utilized to improve immune function. Leukocytes with enhanced functions are substantially mobilized into the circulation by a single bout of intense physical exercise. Chronic physical exercise results in greater muscle endurance and strength and improved cardiorespiratory function. This exercise regime is also useful in improving T-cell abundance and reducing dysfunctional T cells. The current available data strongly justify for future clinical trials to investigate physical exercise use as an adjuvant in cancer therapy; however, optimal parameters using exercise for a defined outcome are yet to be established. The components of the immune system associate with almost every tumorigenesis step. The inter-relationship between inflammation, cancer, and innate immunity has recently gained acceptance; however, the underlying cellular and molecular mechanisms behind this relationship are yet to be solved. Several studies suggest physical exercise-mediated induction of immune cells to elicit anti-tumorigenic effects. This indicates the potential of exercising in modulating the behavior of immune cells to inhibit tumor progression. However, further mechanistic details behind physical exercise-driven immunomodulation and anticancer effects have to be determined. This review aims to summarize and discuss the association between physical exercise and immune function modulation and the potential of exercise as an adjuvant therapy in cancer prevention and treatment.
Collapse
Affiliation(s)
- Da-wei Lyu
- Physical Education and Health School, East China Jiaotong University, Nanchang, Jiangxi, China
| |
Collapse
|
5
|
Zhao S, Li Y, Li G, Ye J, Wang R, Zhang X, Li F, Gao C, Li J, Jiang J, Mi Y. PI3K/mTOR inhibitor VS-5584 combined with PLK1 inhibitor exhibits synergistic anti-cancer effects on non-small cell lung cancer. Eur J Pharmacol 2023; 957:176004. [PMID: 37625683 DOI: 10.1016/j.ejphar.2023.176004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/30/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
Small molecule drugs are of significant importance in the treatment of non-small cell lung cancer (NSCLC). Here, we explored biological effects of the PI3K/mTOR inhibitor VS-5584 on NSCLC. Our findings indicated that VS-5584 administration resulted in a dose-dependent inhibition of NSCLC cell proliferation, as well as the induction of apoptosis and cycle arrest. Additionally, we observed a significant increase in intracellular reactive oxygen species (ROS) levels following VS-5584 treatment. The use of the ROS inhibitor N-acetylcysteine (NAC) effectively reduced ROS levels and decreased the proportion of apoptotic cells. Treatment with VS-5584 led to an upregulation of genes associated with apoptosis and cell cycle, such as c-caspase 3 and P21. Conversely, a downregulation of cyclin-dependent kinase 1 (CDK1) expression was observed. Next, transcriptome analyses revealed that VS-5584 treatment altered the abundance of 1520 genes/transcripts in PC-9 cells, one of which was polo-like kinase 1 (PLK1). These differentially expressed genes were primarily enriched in biological processes such as cell cycle regulation and cell apoptosis, which are closely linked to the P53 and apoptosis pathways. Co-treatment with VS-5584 and PLK1 inhibitor NMS-P937 resulted in enhanced cancer cell death, exhibiting synergistic inhibitory activity. Notably, VS-5584 inhibited the growth of NSCLC in a patient-derived xenograft (PDX) mouse model without observable abnormalities in major organs. Overall, VS-5584 effectively suppressed the growth of NSCLC cells both in vitro and in vivo. VS-5584 combined with NMS-P937 exhibited a synergistic effect in inhibiting NSCLC cell growth. These findings suggest that VS-5584 has potential as a therapeutic strategy for treating NSCLC.
Collapse
Affiliation(s)
- Senxia Zhao
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, School of Clinical Medicine, Xiamen University, Xiamen, 361003, Fujian Province, PR China
| | - Yibin Li
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, School of Clinical Medicine, Xiamen University, Xiamen, 361003, Fujian Province, PR China
| | - Gang Li
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, School of Clinical Medicine, Xiamen University, Xiamen, 361003, Fujian Province, PR China
| | - Juanping Ye
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, School of Clinical Medicine, Xiamen University, Xiamen, 361003, Fujian Province, PR China
| | - Rong Wang
- Department of Thoracic Surgery, Xiamen Key Laboratory of Thoracic Tumor Diagnosis and Treatment, Institute of Lung Cancer, The First Affiliated Hospital of Xiamen University, School of Clinical Medicine, Xiamen University, Xiamen, 361003, Fujian Province, PR China
| | - Xiaoting Zhang
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, School of Clinical Medicine, Xiamen University, Xiamen, 361003, Fujian Province, PR China
| | - Fei Li
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, School of Clinical Medicine, Xiamen University, Xiamen, 361003, Fujian Province, PR China
| | - Chang Gao
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, School of Clinical Medicine, Xiamen University, Xiamen, 361003, Fujian Province, PR China
| | - Junbiao Li
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, School of Clinical Medicine, Xiamen University, Xiamen, 361003, Fujian Province, PR China
| | - Jie Jiang
- Department of Thoracic Surgery, Xiamen Key Laboratory of Thoracic Tumor Diagnosis and Treatment, Institute of Lung Cancer, The First Affiliated Hospital of Xiamen University, School of Clinical Medicine, Xiamen University, Xiamen, 361003, Fujian Province, PR China.
| | - Yanjun Mi
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, School of Clinical Medicine, Xiamen University, Xiamen, 361003, Fujian Province, PR China.
| |
Collapse
|
6
|
Savage H, Pareek S, Lee J, Ballarò R, Minussi DC, Hayek K, Sadullozoda M, Lochmann BS, McQuade JL, LaVoy EC, Marmonti E, Patel H, Wang G, Imanishi M, Kotla S, Abe JI, Schadler K. Aerobic Exercise Alters the Melanoma Microenvironment and Modulates ERK5 S496 Phosphorylation. Cancer Immunol Res 2023; 11:1168-1183. [PMID: 37307577 PMCID: PMC10527747 DOI: 10.1158/2326-6066.cir-22-0465] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 12/16/2022] [Accepted: 06/06/2023] [Indexed: 06/14/2023]
Abstract
Exercise changes the tumor microenvironment by remodeling blood vessels and increasing infiltration by cytotoxic immune cells. The mechanisms driving these changes remain unclear. Herein, we demonstrate that exercise normalizes tumor vasculature and upregulates endothelial expression of VCAM1 in YUMMER 1.7 and B16F10 murine models of melanoma but differentially regulates tumor growth, hypoxia, and the immune response. We found that exercise suppressed tumor growth and increased CD8+ T-cell infiltration in YUMMER but not in B16F10 tumors. Single-cell RNA sequencing and flow cytometry revealed exercise modulated the number and phenotype of tumor-infiltrating CD8+ T cells and myeloid cells. Specifically, exercise caused a phenotypic shift in the tumor-associated macrophage population and increased the expression of MHC class II transcripts. We further demonstrated that ERK5 S496A knock-in mice, which are phosphorylation deficient at the S496 residue, "mimicked" the exercise effect when unexercised, yet when exercised, these mice displayed a reversal in the effect of exercise on tumor growth and macrophage polarization compared with wild-type mice. Taken together, our results reveal tumor-specific differences in the immune response to exercise and show that ERK5 signaling via the S496 residue plays a crucial role in exercise-induced tumor microenvironment changes. See related Spotlight by Betof Warner, p. 1158.
Collapse
Affiliation(s)
- Hannah Savage
- Department of Pediatric Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center UTHealth, Houston, TX, USA
| | - Sumedha Pareek
- Department of Pediatric Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center UTHealth, Houston, TX, USA
| | - Jonghae Lee
- Department of Pediatric Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Riccardo Ballarò
- Department of Pediatric Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Darlan Conterno Minussi
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center UTHealth, Houston, TX, USA
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Karma Hayek
- Faculty of Science, McGill University, Montreal, Quebec, Canada
| | - Mumina Sadullozoda
- Department of Pediatric Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Brooke S. Lochmann
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer L. McQuade
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Emily C. LaVoy
- Department of Health and Human Performance, University of Houston, Houston, TX, USA
| | - Enrica Marmonti
- Department of Pediatric Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hetal Patel
- Department of Pediatric Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guangyu Wang
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, USA
| | - Masaki Imanishi
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sivareddy Kotla
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- These authors contributed equally
| | - Jun-ichi Abe
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center UTHealth, Houston, TX, USA
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- These authors contributed equally
| | - Keri Schadler
- Department of Pediatric Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center UTHealth, Houston, TX, USA
- These authors contributed equally
| |
Collapse
|
7
|
Liu X, Xin Z, Wang K. Patient-derived xenograft model in colorectal cancer basic and translational research. Animal Model Exp Med 2023; 6:26-40. [PMID: 36543756 PMCID: PMC9986239 DOI: 10.1002/ame2.12299] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most popular malignancies globally, with 930 000 deaths in 2020. The evaluation of CRC-related pathogenesis and the discovery of potential therapeutic targets will be meaningful and helpful for improving CRC treatment. With huge efforts made in past decades, the systematic treatment regimens have been applied to improve the prognosis of CRC patients. However, the sensitivity of CRC to chemotherapy and targeted therapy is different from person to person, which is an important cause of treatment failure. The emergence of patient-derived xenograft (PDX) models shows great potential to alleviate the straits. PDX models possess similar genetic and pathological characteristics as the features of primary tumors. Moreover, PDX has the ability to mimic the tumor microenvironment of the original tumor. Thus, the PDX model is an important tool to screen precise drugs for individualized treatment, seek predictive biomarkers for prognosis supervision, and evaluate the unknown mechanism in basic research. This paper reviews the recent advances in constructed methods and applications of the CRC PDX model, aiming to provide new knowledge for CRC basic research and therapeutics.
Collapse
Affiliation(s)
- Xiaofeng Liu
- Hepatopancreatobiliary Surgery Department I, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Zechang Xin
- Hepatopancreatobiliary Surgery Department I, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Kun Wang
- Hepatopancreatobiliary Surgery Department I, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| |
Collapse
|
8
|
Kang DW, Barnes O, Vander Heiden MG, Dieli-Conwright CM. Effect of exercise on tumor markers - Is exercise anti-tumorigenic in humans?: A scoping review of preliminary clinical investigations. Crit Rev Oncol Hematol 2022; 178:103779. [PMID: 35940512 DOI: 10.1016/j.critrevonc.2022.103779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/15/2022] Open
Abstract
It has been increasingly conceptualized that exercise may be able to suppress cancer progression itself based on the preclinical evidence suggesting various mechanisms. The challenges exist in investigating the effects of exercise on tumor progression in human settings. Circulating or tissue-driven tumor markers can be a useful and cost-effective tool in monitoring the progression of some cancers. This scoping review summarized the current evidence on the use of tumor markers in clinical exercise oncology trials. A total of 14 studies were identified, and tumor markers included prostate-specific antigen for prostate cancer, carcinoembryonic antigen and circulating tumor cells for colorectal cancer, and Ki-67 for breast cancer. Treatment settings and exercise prescriptions were highly heterogeneous, while most studies did not find significant exercise-mediated effects on tumor markers. Nevertheless, we provide an insight into the utility and considerations in using tumor markers in clinical exercise oncology research.
Collapse
Affiliation(s)
- Dong-Woo Kang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Oscar Barnes
- Green Templeton College, University of Oxford, Oxford, USA
| | - Matthew G Vander Heiden
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Koch Institute for Integrative Cancer Research and the Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Christina M Dieli-Conwright
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Vulczak A, Alberici LC. Physical Exercise and Tumor Energy Metabolism. Cancer Treat Res Commun 2022; 32:100600. [PMID: 35811248 DOI: 10.1016/j.ctarc.2022.100600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 12/15/2022]
Abstract
Evidence supports the antitumoral effects of physical activity, either in experimental animal models or humans. However, the biological mechanisms by which physical exercise modulates tumoral development are still unclear. An important feature of the tumor cells is the altered energy metabolism, often associated with definitions of tumor aggressiveness. Nevertheless, exercise can cause global metabolic changes in the body, as well as modulate tumor metabolism. Here we specifically discuss the metabolic changes found in tumors and how exercise can contribute to anti-tumoral effects by modulating the mitochondrial function, and tricarboxylic acid cycle-related metabolites of cancer cells. The effect of physical exercise on tumor metabolism is a new possibility for comprehension of cancer biology and developing therapies focused on tumor energy metabolism.
Collapse
Affiliation(s)
- Anderson Vulczak
- Department of Biomolecular Sciences - School of Pharmaceutical Sciences of Ribeirao Preto - University of Sao Paulo, RibeirãoPreto, SP, Brazil
| | - Luciane Carla Alberici
- Department of Biomolecular Sciences - School of Pharmaceutical Sciences of Ribeirao Preto - University of Sao Paulo, RibeirãoPreto, SP, Brazil.
| |
Collapse
|
10
|
Leitner BP, Siebel S, Akingbesote ND, Zhang X, Perry RJ. Insulin and cancer: a tangled web. Biochem J 2022; 479:583-607. [PMID: 35244142 PMCID: PMC9022985 DOI: 10.1042/bcj20210134] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 12/13/2022]
Abstract
For a century, since the pioneering work of Otto Warburg, the interwoven relationship between metabolism and cancer has been appreciated. More recently, with obesity rates rising in the U.S. and worldwide, epidemiologic evidence has supported a link between obesity and cancer. A substantial body of work seeks to mechanistically unpack the association between obesity, altered metabolism, and cancer. Without question, these relationships are multifactorial and cannot be distilled to a single obesity- and metabolism-altering hormone, substrate, or factor. However, it is important to understand the hormone-specific associations between metabolism and cancer. Here, we review the links between obesity, metabolic dysregulation, insulin, and cancer, with an emphasis on current investigational metabolic adjuncts to standard-of-care cancer treatment.
Collapse
Affiliation(s)
- Brooks P. Leitner
- Departments of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, U.S.A
- Departments of Internal Medicine, Yale School of Medicine, New Haven, CT, U.S.A
| | - Stephan Siebel
- Departments of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, U.S.A
- Departments of Internal Medicine, Yale School of Medicine, New Haven, CT, U.S.A
- Departments of Pediatrics, Yale School of Medicine, New Haven, CT, U.S.A
| | - Ngozi D. Akingbesote
- Departments of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, U.S.A
- Departments of Internal Medicine, Yale School of Medicine, New Haven, CT, U.S.A
| | - Xinyi Zhang
- Departments of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, U.S.A
- Departments of Internal Medicine, Yale School of Medicine, New Haven, CT, U.S.A
| | - Rachel J. Perry
- Departments of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, U.S.A
- Departments of Internal Medicine, Yale School of Medicine, New Haven, CT, U.S.A
| |
Collapse
|
11
|
Wakefield ZR, Tanaka M, Pampo C, Lepler S, Rice L, Guingab-Cagmat J, Garrett TJ, Siemann DW. Normal tissue and tumor microenvironment adaptations to aerobic exercise enhance doxorubicin anti-tumor efficacy and ameliorate its cardiotoxicity in retired breeder mice. Oncotarget 2021; 12:1737-1748. [PMID: 34504647 PMCID: PMC8416558 DOI: 10.18632/oncotarget.28057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/13/2021] [Indexed: 11/25/2022] Open
Abstract
Aerobic exercise is receiving increased recognition in oncology for its multiple purported benefits. Exercise is known to induce physiologic adaptations that improve patient quality-of-life parameters as well as all-cause mortality. There also is a growing body of evidence that exercise may directly alter the tumor microenvironment to influence tumor growth, metastasis, and response to anticancer therapies. Furthermore, the physiologic adaptations to exercise in normal tissues may protect against treatment-associated toxicity and allow for greater treatment tolerance. However, the exercise prescription required to induce these beneficial tumor-related outcomes remains unclear. This study characterized the aerobic adaptations to voluntary wheel running in normal tissues and the tumor microenvironment. Female, retired breeder BALB/c mice and syngeneic breast adenocarcinoma cells were utilized in primary tumor and metastasis models. Aerobic exercise was found to induce numerous adaptations across various tissues in these mice, although primary tumor growth and metastasis were largely unaffected. However, intratumoral hypoxia and global metabolism were altered in the tumors of exercising hosts relative to non-wheel running controls. Doxorubicin chemotherapy also was found to be more efficacious at delaying tumor growth with adjuvant aerobic exercise. Additionally, doxorubicin-induced cardiac toxicity was ameliorated in exercising hosts relative to non-wheel running controls. Taken together, these data suggest that the normal tissue and tumor microenvironment adaptations to aerobic exercise can improve doxorubicin efficacy while simultaneously limiting its toxicity.
Collapse
Affiliation(s)
- Zachary R Wakefield
- Department of Radiation Oncology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Mai Tanaka
- Department of Radiation Oncology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Christine Pampo
- Department of Radiation Oncology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Sharon Lepler
- Department of Radiation Oncology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Lori Rice
- Department of Radiation Oncology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Joy Guingab-Cagmat
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Timothy J Garrett
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Dietmar W Siemann
- Department of Radiation Oncology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
12
|
Parke SC, Ng A, Martone P, Gerber LH, Zucker DS, Engle J, Gupta E, Power K, Sokolof J, Shapar S, Bagay L, Becker BE, Langelier DM. Translating 2019 ACSM Cancer Exercise Recommendations for a Physiatric Practice: Derived Recommendations from an International Expert Panel. PM R 2021; 14:996-1009. [PMID: 34213826 DOI: 10.1002/pmrj.12664] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/27/2021] [Accepted: 06/07/2021] [Indexed: 11/07/2022]
Abstract
In 2018, the American College of Sports Medicine (ACSM) reconvened an international, multi-disciplinary group of professionals to review pertinent published literature on exercise for people with cancer. The 2018 roundtable resulted in the publication of three articles in 2019. The three articles serve as an important update to the original ACSM Roundtable on Cancer, which convened in 2010. Although the focus of the three 2019 articles is on exercise, which is only one part of comprehensive cancer rehabilitation, the evidence presented in the 2019 ACSM articles has direct implications for physiatrists and other rehabilitation professionals who care for people with cancer. As such, the narrative review presented here has two primary objectives. First, we summarize the evidence within the three ACSM articles and interpret it within a familiar rehabilitation framework, namely the Dietz model of Cancer Rehabilitation, in order to facilitate implementation broadly within rehabilitation practice. Second, via expert consensus, we have tabulated relevant exercise recommendations for specific cancer populations at different points in the cancer care continuum and translated them into text, tables, and figures for ease of reference. Notably, the authors of this article are members of the Cancer Rehabilitation Physician Consortium (CRPC), a group of physicians who subspecialize in cancer rehabilitation medicine (CRM).
Collapse
Affiliation(s)
- Sara C Parke
- Department of Physical Medicine and Rehabilitation, Mayo Clinic Arizona, Phoenix, Arizona, USA
| | - Amy Ng
- Department of Palliative, Rehabilitation and Integrative Medicine, MD Anderson Cancer Center, Houston, Texas, USA
| | - Patrick Martone
- Department of Physical Medicine and Rehabilitation, MedStar National Rehabilitation Hospital, Washington, District of Columbia, USA
| | - Lynn H Gerber
- Medicine Service Line, Inova Health System, Falls Church, Virginia, USA
| | - David S Zucker
- Swedish Cancer Medicine Services, Swedish Cancer Institute Swedish Health Services, Seattle, Washington, USA
| | - Jessica Engle
- Department of Physical Medicine and Rehabilitation, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Ekta Gupta
- Department of Palliative, Rehabilitation and Integrative Medicine, MD Anderson Cancer Center, Houston, Texas, USA
| | - Katherine Power
- MedStar National Rehabilitation Network, MedStar Georgetown University Hospital, Washington, District of Columbia, USA
| | - Jonas Sokolof
- Department of Rehabilitation, NYU-Langone Health and Rusk Rehabilitation, New York, New York, USA
| | - Sam Shapar
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Leslie Bagay
- Department of Physical Medicine and Rehabilitation, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA.,HMH JFK Johnson Rehabilitation Institute, Edison, New Jersey, USA.,Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | - Bruce E Becker
- Department of Rehabilitation Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - David Michael Langelier
- Cancer Rehabilitation and Survivorship, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Pieters VM, Co IL, Wu NC, McGuigan AP. Applications of Omics Technologies for Three-Dimensional In Vitro Disease Models. Tissue Eng Part C Methods 2021; 27:183-199. [PMID: 33406987 DOI: 10.1089/ten.tec.2020.0300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Omics technologies, such as genomics, epigenomics, transcriptomics, proteomics, metabolomics, lipidomics, multiomics, and integrated modalities, have greatly contributed to our understanding of various diseases by enabling researchers to probe the molecular wiring of cellular systems in a high-throughput and precise manner. With the development of tissue-engineered three-dimensional (3D) in vitro disease models, such as organoids and spheroids, there is potential of integrating omics technologies with 3D disease models to elucidate the complex links between genotype and phenotype. These 3D disease models have been used to model cancer, infectious disease, toxicity, neurological disorders, and others. In this review, we provide an overview of omics technologies, highlight current and emerging studies, discuss the associated experimental design considerations, barriers and challenges of omics technologies, and provide an outlook on the future applications of omics technologies with 3D models. Overall, this review aims to provide a valuable resource for tissue engineers seeking to leverage omics technologies for diving deeper into biological discovery. Impact statement With the emergence of three-dimensional (3D) in vitro disease models, tissue engineers are increasingly interested to investigate these systems to address biological questions related to disease mechanism, drug target discovery, therapy resistance, and more. Omics technologies are a powerful and high-throughput approach, but their application for 3D disease models is not maximally utilized. This review illustrates the achievements and potential of using omics technologies to leverage the full potential of 3D in vitro disease models. This will improve the quality of such models, advance our understanding of disease, and contribute to therapy development.
Collapse
Affiliation(s)
- Vera M Pieters
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Ileana L Co
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Nila C Wu
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Alison P McGuigan
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada.,Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
| |
Collapse
|
14
|
In Vivo Optical Metabolic Imaging of Long-Chain Fatty Acid Uptake in Orthotopic Models of Triple-Negative Breast Cancer. Cancers (Basel) 2021; 13:cancers13010148. [PMID: 33466329 PMCID: PMC7794847 DOI: 10.3390/cancers13010148] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/23/2020] [Accepted: 12/31/2020] [Indexed: 12/16/2022] Open
Abstract
Simple Summary A dysregulated metabolism is a hallmark of cancer. Once understood, tumor metabolic reprogramming can lead to targetable vulnerabilities, spurring the development of novel treatment strategies. Beyond the common observation that tumors rely heavily on glucose, building evidence indicates that a subset of tumors use lipids to maintain their proliferative or metastatic phenotype. This study developed an intra-vital microscopy method to quantify lipid uptake in breast cancer murine models using a fluorescently labeled palmitate molecule, Bodipy FL c16. This work highlights optical imaging’s ability to both measure metabolic endpoints non-destructively and repeatedly, as well as inform small animal metabolic phenotyping beyond in vivo optical imaging of breast cancer alone. Abstract Targeting a tumor’s metabolic dependencies is a clinically actionable therapeutic approach; however, identifying subtypes of tumors likely to respond remains difficult. The use of lipids as a nutrient source is of particular importance, especially in breast cancer. Imaging techniques offer the opportunity to quantify nutrient use in preclinical tumor models to guide development of new drugs that restrict uptake or utilization of these nutrients. We describe a fast and dynamic approach to image fatty acid uptake in vivo and demonstrate its relevance to study both tumor metabolic reprogramming directly, as well as the effectiveness of drugs targeting lipid metabolism. Specifically, we developed a quantitative optical approach to spatially and longitudinally map the kinetics of long-chain fatty acid uptake in in vivo murine models of breast cancer using a fluorescently labeled palmitate molecule, Bodipy FL c16. We chose intra-vital microscopy of mammary tumor windows to validate our approach in two orthotopic breast cancer models: a MYC-overexpressing, transgenic, triple-negative breast cancer (TNBC) model and a murine model of the 4T1 family. Following injection, Bodipy FL c16 fluorescence increased and reached its maximum after approximately 30 min, with the signal remaining stable during the 30–80 min post-injection period. We used the fluorescence at 60 min (Bodipy60), the mid-point in the plateau region, as a summary parameter to quantify Bodipy FL c16 fluorescence in subsequent experiments. Using our imaging platform, we observed a two- to four-fold decrease in fatty acid uptake in response to the downregulation of the MYC oncogene, consistent with findings from in vitro metabolic assays. In contrast, our imaging studies report an increase in fatty acid uptake with tumor aggressiveness (6NR, 4T07, and 4T1), and uptake was significantly decreased after treatment with a fatty acid transport inhibitor, perphenazine, in both normal mammary pads and in the most aggressive 4T1 tumor model. Our approach fills an important gap between in vitro assays providing rich metabolic information at static time points and imaging approaches visualizing metabolism in whole organs at a reduced resolution.
Collapse
|
15
|
Koelwyn GJ, Zhuang X, Tammela T, Schietinger A, Jones LW. Exercise and immunometabolic regulation in cancer. Nat Metab 2020; 2:849-857. [PMID: 32929232 PMCID: PMC9128397 DOI: 10.1038/s42255-020-00277-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023]
Abstract
Unhealthful lifestyle factors, such as obesity, disrupt organismal homeostasis and accelerate cancer pathogenesis, partly through metabolic and immunological dysregulation. Exercise is a prototypical strategy that maintains and restores homeostasis at the organismal, tissue, cellular and molecular levels and can prevent or inhibit numerous disease conditions, including cancer. Here, we review unhealthful lifestyle factors that contribute to metabolic and immunological dysregulation and drive tumourigenesis, focusing on patient physiology (host)-tissue-tumour microenvironment interactions. We also discuss how exercise may influence distant tissue microenvironments, thereby improving tissue function through both metabolic and immunospecific pathways. Finally, we consider future directions that merit consideration in basic and clinical translational exercise studies.
Collapse
Affiliation(s)
| | - Xueqian Zhuang
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tuomas Tammela
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Cell and Developmental Biology, Weill-Cornell Medical College, New York, NY, USA
| | - Andrea Schietinger
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medical College, New York, NY, USA
| | - Lee W Jones
- Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
16
|
Ma W, Zhang Y, Yu M, Wang B, Xu S, Zhang J, Li X, Ye X. In-vitro and in-vivo anti-breast cancer activity of synergistic effect of berberine and exercise through promoting the apoptosis and immunomodulatory effects. Int Immunopharmacol 2020; 87:106787. [PMID: 32707493 DOI: 10.1016/j.intimp.2020.106787] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 06/12/2020] [Accepted: 07/04/2020] [Indexed: 01/02/2023]
Abstract
PURPOSE Breast cancer is the most common reason of cancer death in women. Berberine (BBR), a main alkaloid in Coptis chinensis, exerted anti-cancer activities. Exercise is a new immunotherapy treatment against cancer. However, it is unclear whether exercise has effects on breast cancer and whether exercise has synergistic anti-cancer effect when co-treated with BBR. Thus, it is assumed that exercise might exert an anti-cancer effect through the immune way. METHOD The anti-tumor effect of exercise and BBR in vivo was studied in mice. The MTT method, hoechst staining and cell morphology were performed to determine the synergistic effect of exercise and BBR on breast cancer in vitro. At the same time, Western blotting, intestinal microbial and SCFA detection, Q-PCR and other methods were used to study the anti-cancer molecular mechanism. RESULTS The study found that exercise and BBR co-treatment significantly slowed the progression of breast cancer in 4T1 tumor-bearing mice (p < 0.01). Compared with the TC group, the infiltration of NK cells increased in the combined group of BBR and exercise (p < 0.01), and the expression of immune factors and cytokines was also regulated. At the same time, the synergistic effect significantly increased the level of short chain fatty acids (SCFA). SCFA can promote apoptosis of 4T1 cells and change the inflammatory factors in vitro. The expression of bcl-2 and XIAP was reduced in tumor tissues, and the expression of Fas, Fadd, Bid, Cyto-C, and Caspase-3/8/9 was also increased in vitro experiments (p < 0.05). CONCLUSIONS These results indicate that the synergistic treatment of exercise and BBR can improve the immune system, regulate intestinal microbial metabolite (SCFA), activate the mitochondrial apoptosis pathway and Fas death receptor apoptosis pathway, and thus play an anticancer role. This may provide a new method for the treatment of breast cancer.
Collapse
Affiliation(s)
- Wenyu Ma
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Yaru Zhang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Min Yu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Bin Wang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Shiyu Xu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Jian Zhang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xuegang Li
- School of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China.
| | - Xiaoli Ye
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
17
|
Patel AV, Friedenreich CM, Moore SC, Hayes SC, Silver JK, Campbell KL, Winters-Stone K, Gerber LH, George SM, Fulton JE, Denlinger C, Morris GS, Hue T, Schmitz KH, Matthews CE. American College of Sports Medicine Roundtable Report on Physical Activity, Sedentary Behavior, and Cancer Prevention and Control. Med Sci Sports Exerc 2020; 51:2391-2402. [PMID: 31626056 DOI: 10.1249/mss.0000000000002117] [Citation(s) in RCA: 468] [Impact Index Per Article: 93.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION The American College of Sports Medicine convened an International Multidisciplinary Roundtable on Exercise and Cancer in March 2018 to evaluate and translate the evidence linking physical activity and cancer prevention, treatment, and control. This article discusses findings from the Roundtable in relation to the biologic and epidemiologic evidence for the role of physical activity in cancer prevention and survival. RESULTS The evidence supports that there are a number of biologically plausible mechanisms, whereby physical activity can influence cancer risk, and that physical activity is beneficial for the prevention of several types of cancer including breast, colon, endometrial, kidney, bladder, esophageal, and stomach. Minimizing time spent in sedentary behavior may also lower risk of endometrial, colon and lung cancers. Conversely, physical activity is associated with higher risk of melanoma, a serious form of skin cancer. Further, physical activity before and after a cancer diagnosis is also likely to be relevant for improved survival for those diagnosed with breast and colon cancer; with data suggesting that postdiagnosis physical activity provides greater mortality benefits than prediagnosis physical activity. CONCLUSIONS Collectively, there is consistent, compelling evidence that physical activity plays a role in preventing many types of cancer and for improving longevity among cancer survivors, although the evidence related to higher risk of melanoma demonstrates the importance of sun safe practices while being physically active. Together, these findings underscore the importance of physical activity in cancer prevention and control. Fitness and public health professionals and health care providers worldwide are encouraged to spread the message to the general population and cancer survivors to be physically active as their age, abilities, and cancer status will allow.
Collapse
Affiliation(s)
- Alpa V Patel
- Behavioral and Epidemiology Research Program, American Cancer Society, Atlanta, GA
| | - Christine M Friedenreich
- Cancer Epidemiology and Prevention Research, Cancer Control Alberta, Alberta Health Sciences, Calgary, CANADA
| | - Steven C Moore
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Sandra C Hayes
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, AUSTRALIA
| | - Julie K Silver
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA
| | - Kristin L Campbell
- Department of Physical Therapy, University of British Columbia, Vancouver, CANADA
| | | | | | - Stephanie M George
- Office of Disease Prevention, National Institutes of Health, Bethesda, MD
| | - Janet E Fulton
- Physical Activity and Health Branch, Division of Nutrition, Physical Activity, and Obesity, Centers for Disease Control and Prevention, Atlanta, GA
| | - Crystal Denlinger
- Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, PA
| | | | | | - Kathryn H Schmitz
- Department of Public Health Sciences, Penn State College of Medicine, Penn State University, Hershey, PA
| | - Charles E Matthews
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| |
Collapse
|
18
|
Vulczak A, Souza ADO, Ferrari GD, Azzolini AECS, Pereira-da-Silva G, Alberici LC. Moderate Exercise Modulates Tumor Metabolism of Triple-Negative Breast Cancer. Cells 2020; 9:cells9030628. [PMID: 32151035 PMCID: PMC7140497 DOI: 10.3390/cells9030628] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 12/24/2022] Open
Abstract
Triple-negative breast cancer (TNBC) stands out for its aggressiveness and accelerated rate of proliferation. Evidence shows that exercise may exert antitumorigenic effects, but the biochemical mechanisms underlying them remain unclear. Our objective was to evaluate the ability of exercise to modulate tumor growth and energy metabolism in an experimental TNBC model. Female BALB/c mice were sedentary or trained for 12 weeks and inoculated with 1 × 104 4T1 cells in the eighth week. Analyzes of macronutrient oxidation, mitochondrial respiration, and expression of genes related to cell metabolism were performed. The results showed that the trained group had a smaller tumor mass and the mitochondria in the tumors presented lower respiratory rates in the state of maximum electron transport capacity. Additionally, the tumors of the exercised group showed a higher expression of genes related to tumor suppressors, while the genes linked with cellular growth were similar between groups. Furthermore, the training modulated the corporal macronutrient oxidation to almost exclusive carbohydrate oxidation, while the sedentary condition metabolized both carbohydrate and lipids. Therefore, the exercise reduced tumor growth, with an impact on mitochondrial and macronutrient metabolism. Our results shed light on the understanding of the antitumorigenic effects of physical exercise, particularly regarding the metabolic transformations in TNBC.
Collapse
Affiliation(s)
- Anderson Vulczak
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto, SP 14040-903, Brazil; (A.d.O.S.); (G.D.F.); (A.E.C.S.A.)
- Department of Maternal and Child Nursing and Public Health, School of Nurse of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto, SP 14040-902, Brazil;
- Correspondence: (A.V.); (L.C.A.); Tel.: +55-016-3315-4435 (L.C.A.)
| | - Anderson de Oliveira Souza
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto, SP 14040-903, Brazil; (A.d.O.S.); (G.D.F.); (A.E.C.S.A.)
| | - Gustavo Duarte Ferrari
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto, SP 14040-903, Brazil; (A.d.O.S.); (G.D.F.); (A.E.C.S.A.)
| | - Ana Elisa Caleiro Seixas Azzolini
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto, SP 14040-903, Brazil; (A.d.O.S.); (G.D.F.); (A.E.C.S.A.)
| | - Gabriela Pereira-da-Silva
- Department of Maternal and Child Nursing and Public Health, School of Nurse of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto, SP 14040-902, Brazil;
| | - Luciane Carla Alberici
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto, SP 14040-903, Brazil; (A.d.O.S.); (G.D.F.); (A.E.C.S.A.)
- Correspondence: (A.V.); (L.C.A.); Tel.: +55-016-3315-4435 (L.C.A.)
| |
Collapse
|
19
|
Gendoo DMA. Bioinformatics and computational approaches for analyzing patient-derived disease models in cancer research. Comput Struct Biotechnol J 2020; 18:375-380. [PMID: 32128067 PMCID: PMC7044647 DOI: 10.1016/j.csbj.2020.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/26/2020] [Indexed: 12/31/2022] Open
Abstract
Patient-derived organoids (PDO) and patient-derived xenografts (PDX) continue to emerge as important preclinical platforms for investigations into the molecular landscape of cancer. While the advantages and disadvantage of these models have been described in detail, this review focuses in particular on the bioinformatics and state-of-the art techniques that accompany preclinical model development. We discuss the strength and limitations of currently used technologies, particularly 'omics profiling and bioinformatics analyses, in addressing the 'efficacy' of preclinical models, both for tumour characterization as well as their use in identifying potential therapeutics. We select pancreatic ductal adenocarcinoma (PDAC) as a case study to highlight the state of the art of the field, and address new avenues for improved bioinformatics characterization of preclinical models.
Collapse
Affiliation(s)
- Deena M A Gendoo
- Centre for Computational Biology, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
20
|
Buss LA, Dachs GU. Effects of Exercise on the Tumour Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1225:31-51. [PMID: 32030646 DOI: 10.1007/978-3-030-35727-6_3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Epidemiological evidence suggests that exercise improves survival in cancer patients. However, much is still unknown regarding the mechanisms of this positive survival effect and there are indications that exercise may not be universally beneficial for cancer patients. The key to understanding in which situations exercise is beneficial may lie in understanding its influence on the tumour microenvironment (TME)-and conversely, the influence of the tumour on physical functioning. The TME consists of a vast multitude of different cell types, mechanical and chemical stressors and humoral factors. The interplay of these different components greatly influences tumour cell characteristics and, subsequently, tumour growth rate and aggression. Exercise exerts whole-body physiological effects and can directly and indirectly affect the TME. In this chapter, we first discuss the possible role of exercise capacity ('fitness') and exercise adaptability on tumour responsiveness to exercise. We summarise how exercise affects aspects of the TME such as tumour perfusion, vascularity, hypoxia (reduced oxygenation) and immunity. Additionally, we discuss the role of myokines and other circulating factors in eliciting these changes in the TME. Finally, we highlight unanswered questions and key areas for future research in exercise oncology and the TME.
Collapse
Affiliation(s)
- Linda A Buss
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Gabi U Dachs
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand.
| |
Collapse
|
21
|
Oruç Z, Kaplan MA. Effect of exercise on colorectal cancer prevention and treatment. World J Gastrointest Oncol 2019; 11:348-366. [PMID: 31139306 PMCID: PMC6522766 DOI: 10.4251/wjgo.v11.i5.348] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/17/2019] [Accepted: 05/06/2019] [Indexed: 02/05/2023] Open
Abstract
In recent years, because of improved cancer screening, detection and treatment modalities, a rapid increase in the population of colorectal and other cancer survivors has been observed. The increasing population has justified the requirement of preventive strategies such as lifestyle modifications with regard to obesity, physical activity, diet and smoking. Physical activity may prevent approximately 15% of the colon cancers. Furthermore, several observational studies have demonstrated the efficacy and dose-dependent and anti-cancer effects of exercise on decreasing the mortality and risk of recurrence before and after the colorectal cancer (CRC) diagnosis. However, the required exercise dose, type and intensity are yet unclear. The results of randomised prospective studies are expected to determine the optimal amount, type and intensity of exercise and formulate the most appropriate exercise plan and guidelines, according to the requirements and comorbidities of the patients. In addition, recent studies have focused on the molecular and genetic mechanisms underlying the effect of physical activity on disease outcomes and recurrence rates. This review aimed to investigate the effects of physical activity and the biological basis of these effects in preventing the risk and recurrence of CRC and decreasing the hazards of cancer and cancer treatment.
Collapse
Affiliation(s)
- Zeynep Oruç
- Department of Medical Oncology, Mersin City Hospital, Mersin 33000, Turkey
| | - Muhammed Ali Kaplan
- Department of Medical Oncology, Faculty of Medicine, Dicle University, Diyarbakır 21280, Turkey
| |
Collapse
|
22
|
Zhang X, Ashcraft KA, Betof Warner A, Nair SK, Dewhirst MW. Can Exercise-Induced Modulation of the Tumor Physiologic Microenvironment Improve Antitumor Immunity? Cancer Res 2019; 79:2447-2456. [PMID: 31068341 DOI: 10.1158/0008-5472.can-18-2468] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 01/10/2019] [Accepted: 03/05/2019] [Indexed: 12/12/2022]
Abstract
The immune system plays an important role in controlling cancer growth. However, cancers evolve to evade immune detection. Immune tolerance and active immune suppression results in unchecked cancer growth and progression. A major contributor to immune tolerance is the tumor physiologic microenvironment, which includes hypoxia, hypoglucosis, lactosis, and reduced pH. Preclinical and human studies suggest that exercise elicits mobilization of leukocytes into circulation (also known as "exercise-induced leukocytosis"), especially cytotoxic T cells and natural killer cells. However, the tumor physiologic microenvironment presents a significant barrier for these cells to enter the tumor and, once there, properly function. We hypothesize that the effect of exercise on the immune system's ability to control cancer growth is linked to how exercise affects the tumor physiologic microenvironment. Normalization of the microenvironment by exercise may promote more efficient innate and adaptive immunity within the tumor. This review summarizes the current literature supporting this hypothesis.
Collapse
Affiliation(s)
- Xiaojie Zhang
- Duke University Medical Center, Durham, North Carolina
| | | | | | - Smita K Nair
- Duke University Medical Center, Durham, North Carolina
| | | |
Collapse
|