1
|
Hallaji M, Allahyari M, Teimoori-Toolabi L, Yasami-Khiabani S, Golkar M, Fard-Esfahani P. Targeted cancer treatment using a novel EGFR-specific Fc-fusion peptide based on GE11 peptide. Sci Rep 2025; 15:5107. [PMID: 39934226 PMCID: PMC11814073 DOI: 10.1038/s41598-025-89143-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025] Open
Abstract
Fc-fusion peptides, also known as peptibodies, are a promising new category of targeted therapeutics that offer alternatives to monoclonal antibodies (mAbs) for cancer treatment. This study focuses on an Fc-fusion peptide consisting of the Fc region of IgG1 and an epidermal growth factor receptor (EGFR)-targeting peptide, GE11, which was identified using the phage display method and demonstrated high affinity for the receptor. The fusion peptide (FcIgG-GE11) was successfully expressed in Escherichia coli and purified using ion-exchange chromatography. Flow cytometry confirmed its specific binding to EGFR. Like Cetuximab, the FcIgG-GE11 peptibody exhibited effective, dose- and time-dependent growth inhibition of EGFR-overexpressing cancer cell lines. Additionally, the results showed that the FcIgG-GE11 peptibody induced cell death or cycle arrest in certain cancer cell lines, with varying responses depending on the cancer type. The results of In-Cell ELISA when comparing the effects of the FcIgG-GE11 peptibody to Cetuximab on Tyr 1173 phosphorylation were similar. In addition, the relative potency of the FcIgG-GE11 peptibody compared to Cetuximab was assessed using the MTT results by Slope Ratio Analysis. These findings suggest that FcIgG-GE11 peptibody can provide a specific and efficient tool for both targeting and treating cancer cells.
Collapse
Affiliation(s)
- Malihe Hallaji
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Mojgan Allahyari
- Recombinant Protein Production Department, Research and Production Complex, Pasteur Institute of Iran, Karaj, Iran
| | - Ladan Teimoori-Toolabi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | - Majid Golkar
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran.
| | | |
Collapse
|
2
|
de Araujo Fernandes AG, Lafratta AE, Luz CP, Levy D, de Paula Faria D, Buchpiguel CA, Abram U, Deflon VM, Navarro Marques FL. [ 99mTc]Technetium and Rhenium Dithiocarbazate Complexes: Chemical Synthesis and Biological Assessment. Pharmaceutics 2025; 17:100. [PMID: 39861748 PMCID: PMC11768621 DOI: 10.3390/pharmaceutics17010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/24/2024] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Dithiocarbazates (DTCs) and their metal complexes have been studied regarding their property as anticancer activities. In this work, using S-benzyl-5-hydroxy-3-methyl-5-phenyl-4,5-dihydro-1H-pirazol-1-carbodithionate (H2bdtc), we prepared [ReO(bdtc)(Hbdtc)] and [[99mTc]TcO(bdtc)(Hbdtc)] complexes for tumor uptake and animal biodistribution studies. METHODS Re complex was prepared by a reaction of H2bdtc and (NBu4)[ReOCl4], the final product was characterized by IR, 1H NMR, CHN, and MS-ESI. 99mTc complex was prepared by the reaction of H2bdtc and [[99mTc]TcO4- and analyzed by planar and HPLC radiochromatography, and the stability was evaluated against amino acids and plasma. Biodistribution was performed in C57B/6 mice with B16F10 and TM1M implanted tumor. RESULTS Re is asymmetric coordinated by two dithiocarbazate ligands, one with O,N,S chelation, and the other with N,S chelation; [[99mTc]TcO(bdtc)(Hbdtc)] was prepared with a radiochemical yield of around 93%. The radioactive complex is hydrophobic (LogP = 1.03), stable for 6 h in PBS and L-histidine solution; stable for 1 h in plasma, but unstable in the presence of L-cysteine. Ex vivo biodistribution demonstrated that the compound has a fast and persistent (until 2 h) uptake by the spleen (55.46%), and tumor B16F10 and TM1M uptake is lower than 1%. In vivo SPECT/CT imaging confirmed ex vivo biodistribution, except by heterogenous TM1M accumulation but not in the B16-F10 lineage. CONCLUSIONS H2bdtc proved to be an interesting chelator for rhenium or [99mTc]technetium. The right spleen uptake opened the opportunity to deepen the study of the molecule in this tissue and justifies future studies to identify the reason of heterogenous uptake in TM1M tumor uptake.
Collapse
Affiliation(s)
- André Gustavo de Araujo Fernandes
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos 13566-590, SP, Brazil;
- Departamento de Ciências Exatas, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, BA, Brazil
| | - Alyne Eloise Lafratta
- Laboratory of Nuclear Medicine (LIM-43), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-911, SP, Brazil; (A.E.L.); (C.P.L.); (D.d.P.F.); (C.A.B.)
| | - Carolina Portela Luz
- Laboratory of Nuclear Medicine (LIM-43), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-911, SP, Brazil; (A.E.L.); (C.P.L.); (D.d.P.F.); (C.A.B.)
| | - Debora Levy
- Lipids, Oxidation, and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-900, SP, Brazil;
| | - Daniele de Paula Faria
- Laboratory of Nuclear Medicine (LIM-43), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-911, SP, Brazil; (A.E.L.); (C.P.L.); (D.d.P.F.); (C.A.B.)
| | - Carlos Alberto Buchpiguel
- Laboratory of Nuclear Medicine (LIM-43), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-911, SP, Brazil; (A.E.L.); (C.P.L.); (D.d.P.F.); (C.A.B.)
| | - Ulrich Abram
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstr. 34-36, D-14195 Berlin, Germany;
| | - Victor Marcelo Deflon
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos 13566-590, SP, Brazil;
| | - Fabio Luiz Navarro Marques
- Laboratory of Nuclear Medicine (LIM-43), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-911, SP, Brazil; (A.E.L.); (C.P.L.); (D.d.P.F.); (C.A.B.)
| |
Collapse
|
3
|
Gé LG, Danielsen MB, Nielsen AY, Skavenborg ML, Langkjær N, Thisgaard H, McKenzie CJ. Radiocobalt-Labeling of a Polypyridylamine Chelate Conjugated to GE11 for EGFR-Targeted Theranostics. Molecules 2025; 30:212. [PMID: 39860082 PMCID: PMC11767697 DOI: 10.3390/molecules30020212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
The overexpression of the epidermal growth factor receptor (EGFR) in certain types of prostate cancers and glioblastoma makes it a promising target for targeted radioligand therapy. In this context, pairing an EGFR-targeting peptide with the emerging theranostic pair comprising the Auger electron emitter cobalt-58m (58mCo) and the Positron Emission Tomography-isotope cobalt-55 (55Co) would be of great interest for creating novel radiopharmaceuticals for prostate cancer and glioblastoma theranostics. In this study, GE11 (YHWYGYTPQNVI) was investigated for its EGFR-targeting potential when conjugated using click chemistry to N1-((triazol-4-yl)methyl)-N1,N2,N2-tris(pyridin-2-ylmethyl)ethane-1,2-diamine (TZTPEN). This chelator is suitable for binding Co2+ and Co3+. With cobalt-57 (57Co) serving as a surrogate radionuclide for 55/58mCo, the novel GE11-TZTPEN construct was successfully radiolabeled with a high radiochemical yield (99%) and purity (>99%). [57Co]Co-TZTPEN-GE11 showed high stability in PBS (pH 5) and specific uptake in EGFR-positive cell lines. Disappointingly, no tumor uptake was observed in EGFR-positive tumor-bearing mice, with most activity being accumulated predominantly in the liver, gall bladder, kidneys, and spleen. Some bone uptake was also observed, suggesting in vivo dissociation of 57Co from the complex. In conclusion, [57Co]Co-TZTPEN-GE11 shows poor pharmacokinetics in a mouse model and is, therefore, not deemed suitable as a targeting radiopharmaceutical for EGFR.
Collapse
Affiliation(s)
- Lorraine Gaenaelle Gé
- Department of Nuclear Medicine, Odense University Hospital, Kloevervaenget 47, 5000 Odense C, Denmark; (L.G.G.); (A.Y.N.); (N.L.)
- Department of Clinical Research, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Mathias Bogetoft Danielsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark; (M.B.D.); (M.L.S.)
| | - Aaraby Yoheswaran Nielsen
- Department of Nuclear Medicine, Odense University Hospital, Kloevervaenget 47, 5000 Odense C, Denmark; (L.G.G.); (A.Y.N.); (N.L.)
| | - Mathias Lander Skavenborg
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark; (M.B.D.); (M.L.S.)
| | - Niels Langkjær
- Department of Nuclear Medicine, Odense University Hospital, Kloevervaenget 47, 5000 Odense C, Denmark; (L.G.G.); (A.Y.N.); (N.L.)
| | - Helge Thisgaard
- Department of Nuclear Medicine, Odense University Hospital, Kloevervaenget 47, 5000 Odense C, Denmark; (L.G.G.); (A.Y.N.); (N.L.)
- Department of Clinical Research, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Christine J. McKenzie
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark; (M.B.D.); (M.L.S.)
| |
Collapse
|
4
|
Ferreira AH, Real CC, Malafaia O. Heterobivalent Dual-Target Peptide for Integrin-α vβ 3 and Neuropeptide Y Receptors on Breast Tumor. Pharmaceuticals (Basel) 2024; 17:1328. [PMID: 39458969 PMCID: PMC11510292 DOI: 10.3390/ph17101328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Heterodimer peptides targeting more than one receptor can be advantageous, as tumors can simultaneously express more than one receptor type. For human breast cancer, a promising biological target is tumor angiogenesis through αvβ3 integrin expression. Another promising target is Neuropeptide Y receptors, considering Y1R is overexpressed in 90% of human breast tumors. This article details the development and preclinical evaluation, both in vitro and in vivo, of a novel heterodimer peptide dual-receptor-targeting probe, [99mTc]HYNIC-cRGDfk-NPY, designed for imaging breast tumors. Methods: Female BALB/c healthy mice were used to perform biodistrubution studies and female SCID mice were subcutaneously injected with MCF-7 and MDA-MB-231 tumor cells. [99mTc]HYNIC-cRGDfk-NPY was intravenously administered to the mice, followed by ex vivo biodistribution studies and small-animal SPECT/CT imaging. Nonspecific tracer uptake in both models was determined by coinjecting an excess of unlabeled HYNIC-cRGDfk-NPY (100 µg) along with the radiolabeled tracer. Results: Imaging and biodistribution data demonstrate good uptake to estrogen receptor-positive (MCF-7) and triple-negative (MDA-MB-231) tumor models. The in vivo tumor uptakes of radiolabeled conjugate were 9.30 ± 3.25% and 4.93 ± 1.01% for MCF-7 and MDA-MB231, respectively. The tumor/muscle ratios were 5.65 ± 0.94 for the MCF-7 model and 7.78 ± 3.20 for MDA-MB231. Conclusions: [99mTc]HYNIC-cRGDfk-NPY demonstrated rapid blood clearance, renal excretion, and in vivo tumor uptake, highlighting its potential as a tumor imaging agent.
Collapse
Affiliation(s)
- Aryel H. Ferreira
- MackGraphe-Mackenzie Institute for Research in Graphene and Nanotechnologies, Mackenzie Presbyterian University, São Paulo 01302-907, Brazil
- Mackenzie Evangelical College of Paraná, Mackenzie Presbyterian University, Curitiba 80730-000, Brazil
- Nuclear and Energy Research Institute, Instituto de Pesquisas Energéticas e Nucleares da Comissão Nacional de Energia Nuclear—São Paulo (IPEN-CNEN/SP), São Paulo 05508-000, Brazil
| | - Caroline C. Real
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Osvaldo Malafaia
- Mackenzie Evangelical College of Paraná, Mackenzie Presbyterian University, Curitiba 80730-000, Brazil
| |
Collapse
|
5
|
Rodrigues Toledo C, Tantawy AA, Lima Fuscaldi L, Malavolta L, de Aguiar Ferreira C. EGFR- and Integrin α Vβ 3-Targeting Peptides as Potential Radiometal-Labeled Radiopharmaceuticals for Cancer Theranostics. Int J Mol Sci 2024; 25:8553. [PMID: 39126121 PMCID: PMC11313252 DOI: 10.3390/ijms25158553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
The burgeoning field of cancer theranostics has witnessed advancements through the development of targeted molecular agents, particularly peptides. These agents exploit the overexpression or mutations of specific receptors, such as the Epidermal Growth Factor receptor (EGFR) and αVβ3 integrin, which are pivotal in tumor growth, angiogenesis, and metastasis. Despite the extensive research into and promising outcomes associated with antibody-based therapies, peptides offer a compelling alternative due to their smaller size, ease of modification, and rapid bioavailability, factors which potentially enhance tumor penetration and reduce systemic toxicity. However, the application of peptides in clinical settings has challenges. Their lower binding affinity and rapid clearance from the bloodstream compared to antibodies often limit their therapeutic efficacy and diagnostic accuracy. This overview sets the stage for a comprehensive review of the current research landscape as it relates to EGFR- and integrin αVβ3-targeting peptides. We aim to delve into their synthesis, radiolabeling techniques, and preclinical and clinical evaluations, highlighting their potential and limitations in cancer theranostics. This review not only synthesizes the extant literature to outline the advancements in peptide-based agents targeting EGFR and integrin αVβ3 but also identifies critical gaps that could inform future research directions. By addressing these gaps, we contribute to the broader discourse on enhancing the diagnostic precision and therapeutic outcomes of cancer treatments.
Collapse
Affiliation(s)
- Cibele Rodrigues Toledo
- The Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA; (C.R.T.); (A.A.T.)
| | - Ahmed A. Tantawy
- The Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA; (C.R.T.); (A.A.T.)
- Comparative Medicine and Integrative Biology, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Leonardo Lima Fuscaldi
- Department of Physiological Sciences, Santa Casa de Sao Paulo School of Medical Sciences, São Paulo 01221-020, Brazil; (L.L.F.); (L.M.)
| | - Luciana Malavolta
- Department of Physiological Sciences, Santa Casa de Sao Paulo School of Medical Sciences, São Paulo 01221-020, Brazil; (L.L.F.); (L.M.)
| | - Carolina de Aguiar Ferreira
- The Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA; (C.R.T.); (A.A.T.)
- Department of Radiology, Michigan State University, East Lansing, MI 48824, USA
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
6
|
Ahmadi M, Ahmadyousefi Y, Salimi Z, Mirzaei R, Najafi R, Amirheidari B, Rahbarizadeh F, Kheshti J, Safari A, Soleimani M. Innovative Diagnostic Peptide-Based Technologies for Cancer Diagnosis: Focus on EGFR-Targeting Peptides. ChemMedChem 2023; 18:e202200506. [PMID: 36357328 DOI: 10.1002/cmdc.202200506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/08/2022] [Indexed: 11/12/2022]
Abstract
Active targeting using biological ligands has emerged as a novel strategy for the targeted delivery of diagnostic agents to tumor cells. Conjugating functional targeting moieties with diagnostic probes can increase their accumulation in tumor cells and tissues, enhancing signal detection and, thus, the sensitivity of diagnosis. Due to their small size, ease of chemical synthesis and site-specific modification, high tissue penetration, low immunogenicity, rapid blood clearance, low cost, and biosafety, peptides offer several advantages over antibodies and proteins in diagnostic applications. Epidermal growth factor receptor (EGFR) is one of the most promising cancer biomarkers for actively targeting diagnostic and therapeutic agents to tumor cells due to its active involvement and overexpression in various cancers. Several peptides for EGFR-targeting have been identified in the last decades, which have been obtained by multiple means including derivation from natural proteins, phage display screening, positional scanning synthetic combinatorial library, and in silico screening. Many studies have used these peptides as a targeting moiety for diagnosing different cancers in vitro, in vivo, and in clinical trials. This review summarizes the progress of EGFR-targeting peptide-based assays in the molecular diagnosis of cancer.
Collapse
Affiliation(s)
- Mohammad Ahmadi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Yaghoub Ahmadyousefi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zahra Salimi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rezvan Najafi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Bagher Amirheidari
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Javad Kheshti
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Armin Safari
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Meysam Soleimani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
7
|
Braun D, Judmann B, Cheng X, Wängler B, Schirrmacher R, Fricker G, Wängler C. Synthesis, Radiolabeling, and In Vitro and In Vivo Characterization of Heterobivalent Peptidic Agents for Bispecific EGFR and Integrin α vβ 3 Targeting. ACS OMEGA 2023; 8:2793-2807. [PMID: 36687076 PMCID: PMC9850772 DOI: 10.1021/acsomega.2c07484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Radiolabeled heterobivalent peptidic ligands (HBPLs) are a highly promising compound class for the sensitive and specific visualization of tumors as they often exhibit superior properties compared to their monospecific counterparts and are able to concomitantly or complementarily address different receptor types. The combination of two receptor-specific agents targeting the epidermal growth factor receptor (EGFR) and the integrin αvβ3 in one HBPL would constitute a synergistic combination of binding motifs as these two receptor types are concurrently overexpressed on several human tumor types and are closely associated with disease progression and metastasis. Here, we designed and synthesized two heterobivalent radioligands consisting of the EGFR-specific peptide GE11 and αvβ3-specific cyclic RGD peptides, bearing a (1,4,7-triazacyclononane-4,7-diyl)diacetic acid-1-glutaric acid chelator for efficient radiolabeling and linkers of different lengths between both peptides. Both HBPLs were radiolabeled with 68Ga3+ in high radiochemical yields, purities of 96-99%, and molar activities of 36-88 GBq/μmol. [68Ga]Ga-1 and [68Ga]Ga-2 were evaluated for their log D(7.4) and stability toward degradation by human serum peptidases, showing a high hydrophilicity for both agents of -3.07 ± 0.01 and -3.44 ± 0.08 as well as a high stability toward peptidase degradation in human serum with half-lives of 272 and 237 min, respectively. Further on, the in vitro receptor binding profiles of both HBPLs to the target EGF and integrin αvβ3 receptors were assessed on EGFR-positive A431 and αvβ3-positive U87MG cells. Finally, we investigated the in vivo pharmacokinetics of HBPL [68Ga]Ga-1 by positron emission tomography/computed tomography imaging in A431 tumor-bearing xenograft mice to assess its potential for the receptor-specific visualization of EGFR- and/or αvβ3-expressing tumors. In these experiments, [68Ga]Ga-1 demonstrated a tumor uptake of 2.79 ± 1.66% ID/g, being higher than in all other organs and tissues apart from kidneys and blood at 2 h p.i. Receptor blocking studies revealed the observed tumor uptake to be solely mediated by integrin αvβ3, whereas no contribution of the GE11 peptide sequence to tumor uptake via the EGFR could be determined. Thus, the approach to develop radiolabeled EGFR- and integrin αvβ3-bispecific HBPLs is in general feasible although another peptide lead structure than GE11 should be used as the basis for the EGFR-specific part of the agents.
Collapse
Affiliation(s)
- Diana Braun
- Biomedical
Chemistry, Clinic of Radiology and Nuclear Medicine, Medical Faculty
Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Molecular
Imaging and Radiochemistry, Clinic of Radiology and Nuclear Medicine,
Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Benedikt Judmann
- Biomedical
Chemistry, Clinic of Radiology and Nuclear Medicine, Medical Faculty
Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Molecular
Imaging and Radiochemistry, Clinic of Radiology and Nuclear Medicine,
Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Xia Cheng
- Molecular
Imaging and Radiochemistry, Clinic of Radiology and Nuclear Medicine,
Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Björn Wängler
- Molecular
Imaging and Radiochemistry, Clinic of Radiology and Nuclear Medicine,
Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Ralf Schirrmacher
- Department
of Oncology, Division of Oncological Imaging, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada
| | - Gert Fricker
- Institute
of Pharmacy and Molecular Biotechnology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Carmen Wängler
- Biomedical
Chemistry, Clinic of Radiology and Nuclear Medicine, Medical Faculty
Mannheim, Heidelberg University, 68167 Mannheim, Germany
| |
Collapse
|
8
|
Judmann B, Braun D, Schirrmacher R, Wängler B, Fricker G, Wängler C. Toward the Development of GE11-Based Radioligands for Imaging of Epidermal Growth Factor Receptor-Positive Tumors. ACS OMEGA 2022; 7:27690-27702. [PMID: 35967067 PMCID: PMC9366781 DOI: 10.1021/acsomega.2c03407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
The epidermal growth factor receptor (EGFR) is closely associated with tumor development and progression and thus an important target structure for imaging and therapy of various tumors. As a result of its important role in malignancies of various origins and the fact that antibody-based compounds targeting the EGFR have significant drawbacks in terms of in vivo pharmacokinetics, several attempts have been made within the last five years to develop peptide-based EGFR-specific radioligands based on the GE11 scaffold. However, none of these approaches have shown convincing results so far, which has been proposed to be attributed to different potential challenges associated with the GE11 lead structure: first, an aggregation of radiolabeled peptides, which might prevent their interaction with their target receptor, or second, a relatively low affinity of monomeric GE11, necessitating its conversion into a multimeric or polymeric form to achieve adequate EGFR-targeting properties. In the present work, we investigated if these aforementioned points are indeed critical and if the EGFR-targeting ability of GE11 can be improved by choosing an appropriate hydrophilic molecular design or a peptide multimer system to obtain a promising radiopeptide for the visualization of EGFR-overexpressing malignancies by positron emission tomography (PET). For this purpose, we developed several monovalent 68Ga-labeled GE11-based agents, a peptide homodimer and a homotetramer to overcome the challenges associated with GE11. The developed ligands were successfully labeled with 68Ga3+ in high radiochemical yields of ≥97% and molar activities of 41-104 GBq/μmol. The resulting radiotracers presented log D(7.4) values between -2.17 ± 0.21 and -3.79 ± 0.04 as well as a good stability in human serum with serum half-lives of 112 to 217 min for the monovalent radiopeptides and 84 and 62 min for the GE11 homodimer and homotetramer, respectively. In the following in vitro studies, none of the 68Ga-labeled radiopeptides demonstrated a considerable EGF receptor-specific uptake in EGFR-positive A431 cells. Moreover, none of the agents was able to displace [125I]I-EGF from the EGFR in competitive displacement assays in the same cell line in concentrations of up to 1 mM, whereas the endogenous receptor ligand hEGF demonstrated a high affinity of 15.2 ± 3.3 nM. These results indicate that it is not the aggregation of the GE11 sequence that seems to be the factor limiting the usefulness of the peptide as basis for radiotracer design but the limited affinity of monovalent and small homomultivalent GE11-based radiotracers to the EGFR. This highlights that the development of small-molecule GE11-based radioligands is not promising.
Collapse
Affiliation(s)
- Benedikt Judmann
- Biomedical
Chemistry, Clinic of Radiology and Nuclear Medicine, Medical Faculty
Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
- Molecular
Imaging and Radiochemistry, Clinic of Radiology and Nuclear Medicine,
Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Diana Braun
- Biomedical
Chemistry, Clinic of Radiology and Nuclear Medicine, Medical Faculty
Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
- Molecular
Imaging and Radiochemistry, Clinic of Radiology and Nuclear Medicine,
Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Ralf Schirrmacher
- Department
of Oncology, Division of Oncological Imaging, University of Alberta, 11560 University Avenue, T6G 1Z2 Edmonton, AB, Canada
| | - Björn Wängler
- Molecular
Imaging and Radiochemistry, Clinic of Radiology and Nuclear Medicine,
Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Gert Fricker
- Institute
of Pharmacy and Molecular Biotechnology, University of Heidelberg, Im Neuenheimer Feld 329, 69120 Heidelberg, Germany
| | - Carmen Wängler
- Biomedical
Chemistry, Clinic of Radiology and Nuclear Medicine, Medical Faculty
Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| |
Collapse
|
9
|
Holik HA, Ibrahim FM, Elaine AA, Putra BD, Achmad A, Kartamihardja AHS. The Chemical Scaffold of Theranostic Radiopharmaceuticals: Radionuclide, Bifunctional Chelator, and Pharmacokinetics Modifying Linker. Molecules 2022; 27:3062. [PMID: 35630536 PMCID: PMC9143622 DOI: 10.3390/molecules27103062] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/27/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022] Open
Abstract
Therapeutic radiopharmaceuticals have been researched extensively in the last decade as a result of the growing research interest in personalized medicine to improve diagnostic accuracy and intensify intensive therapy while limiting side effects. Radiometal-based drugs are of substantial interest because of their greater versatility for clinical translation compared to non-metal radionuclides. This paper comprehensively discusses various components commonly used as chemical scaffolds to build radiopharmaceutical agents, i.e., radionuclides, pharmacokinetic-modifying linkers, and chelators, whose characteristics are explained and can be used as a guide for the researcher.
Collapse
Affiliation(s)
- Holis Abdul Holik
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (F.M.I.); (A.A.E.); (B.D.P.)
| | - Faisal Maulana Ibrahim
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (F.M.I.); (A.A.E.); (B.D.P.)
| | - Angela Alysia Elaine
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (F.M.I.); (A.A.E.); (B.D.P.)
| | - Bernap Dwi Putra
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (F.M.I.); (A.A.E.); (B.D.P.)
| | - Arifudin Achmad
- Department of Nuclear Medicine and Molecular Theranostics, Faculty of Medicine, Universitas Padjadjaran/Hasan Sadikin General Hospital, Bandung 40161, Indonesia; (A.A.); (A.H.S.K.)
- Oncology and Stem Cell Working Group, Faculty of Medicine, Universitas Padjadjaran, Bandung 40161, Indonesia
| | - Achmad Hussein Sundawa Kartamihardja
- Department of Nuclear Medicine and Molecular Theranostics, Faculty of Medicine, Universitas Padjadjaran/Hasan Sadikin General Hospital, Bandung 40161, Indonesia; (A.A.); (A.H.S.K.)
| |
Collapse
|
10
|
Mohtavinejad N, Hajiramezanali M, Akhlaghi M, Bitarafan-Rajabi A, Gholipour N. Synthesis and evaluation of 99mTc-DOTA-ARA-290 as potential SPECT tracer for targeting cardiac ischemic region. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:1488-1499. [PMID: 35317117 PMCID: PMC8917853 DOI: 10.22038/ijbms.2021.57565.12799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/21/2021] [Indexed: 11/06/2022]
Abstract
Objectives Myocardial infarction caused by ischemia of heart tissue is the main reason for death worldwide; therefore, early detection can reduce mortality and treatment costs. Erythropoietin (EPO) has protection effects on ischemic tissue due to nonhematopoietic peptide (pHBSP; ARA-290) which is derived from the B-subunit of EPO. Materials and Methods We designed and synthesized a modified DOTA-(Lys-Dabcyl6, Phe7)-ARA-290 using Fmoc solid-phase peptide synthesis strategies. To improve serum stability, Fmoc-Lys-(Dabcyl)-OH as lipophilic amino acid was synthesized along with Fmoc-Phe-OH which then were substituted with Arg6 and Ala7, respectively; they were then investigated for the ability to detect ischemic cardiac imaging. DOTA-(Lys-Dabcyl6,Phe7)-ARA-290 was labeled with technetium 99m, and its radiochemical purity (RCP), stability in the presence of human serum and, specific bind to hypoxic H9c2 cells were evaluated. In vivo studies for biodistribution and SPECT scintigraphy were checked in a normal and cardiac ischemia rat model. Results Radiolabeling purity was obtained more than 96% by ITLC, and in vitro stability of the radiopeptide up to 6 hr was 85%. The binding of 99mTc-ARA-290 to hypoxic cells was remarkably higher than normoxic cells (3 times higher than normoxic cells at 1 hr). Biodistribution and SPECT imaging on the cardiac ischemic model showed that radiopeptide considerably accumulated in the ischemic region (cardiac ischemic-to-lung rate = 3.65 ID/g % at 0.5 hr). Conclusion The results of studies, in vitro and in vivo, indicated that 99mTc-DOTA-(Lys-Dabcyl6,Phe7)-ARA-290 could be an appropriate candidate for early diagnosis of cardiac ischemia.
Collapse
Affiliation(s)
- Naser Mohtavinejad
- Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Maliheh Hajiramezanali
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Akhlaghi
- Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Bitarafan-Rajabi
- Echocardiography Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran;, Cardiovascular Interventional Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nazila Gholipour
- Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran, Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran,Corresponding author: Nazila Gholipour. Baqiyatallah University of Medical Sciences, Sheikh Bahai St., Tehran, Iran. Tel: +98-21-87555392; Fax: +98-21- 87555385;
| |
Collapse
|
11
|
Gaurav I, Wang X, Thakur A, Iyaswamy A, Thakur S, Chen X, Kumar G, Li M, Yang Z. Peptide-Conjugated Nano Delivery Systems for Therapy and Diagnosis of Cancer. Pharmaceutics 2021; 13:1433. [PMID: 34575511 PMCID: PMC8471603 DOI: 10.3390/pharmaceutics13091433] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/31/2021] [Accepted: 09/07/2021] [Indexed: 11/16/2022] Open
Abstract
Peptides are strings of approximately 2-50 amino acids, which have gained huge attention for theranostic applications in cancer research due to their various advantages including better biosafety, customizability, convenient process of synthesis, targeting ability via recognizing biological receptors on cancer cells, and better ability to penetrate cell membranes. The conjugation of peptides to the various nano delivery systems (NDS) has been found to provide an added benefit toward targeted delivery for cancer therapy. Moreover, the simultaneous delivery of peptide-conjugated NDS and nano probes has shown potential for the diagnosis of the malignant progression of cancer. In this review, various barriers hindering the targeting capacity of NDS are addressed, and various approaches for conjugating peptides and NDS have been discussed. Moreover, major peptide-based functionalized NDS targeting cancer-specific receptors have been considered, including the conjugation of peptides with extracellular vesicles, which are biological nanovesicles with promising ability for therapy and the diagnosis of cancer.
Collapse
Affiliation(s)
- Isha Gaurav
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (I.G.); (X.W.); (A.I.); (X.C.); (M.L.)
| | - Xuehan Wang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (I.G.); (X.W.); (A.I.); (X.C.); (M.L.)
| | - Abhimanyu Thakur
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation-CAS Limited, Hong Kong, China;
| | - Ashok Iyaswamy
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (I.G.); (X.W.); (A.I.); (X.C.); (M.L.)
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Sudha Thakur
- National Institute for Locomotor Disabilities (Divyangjan), Kolkata 700090, India;
| | - Xiaoyu Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (I.G.); (X.W.); (A.I.); (X.C.); (M.L.)
| | - Gaurav Kumar
- School of Basic and Applied Science, Galgotias University, Greater Noida 203201, India;
| | - Min Li
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (I.G.); (X.W.); (A.I.); (X.C.); (M.L.)
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Zhijun Yang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (I.G.); (X.W.); (A.I.); (X.C.); (M.L.)
- Changshu Research Institute, Hong Kong Baptist University, Changshu Economic and Technological Development (CETD) Zone, Changshu 215500, China
| |
Collapse
|
12
|
Abstract
Breast cancer continues to be the most lethal cancer type in women and one of the most diagnosed. Understanding Breast cancer receptor status is one of the most vital processes for determining treatment options. One type of breast cancer, human epidermal growth factor receptor 2 (HER2) positive, has approved receptor-based therapies including trastuzumab and pertuzumab that can significantly increase the likelihood of survival. Current methods to determine HER2 status include biopsies with immunohistochemical staining and/or fluorescence in situ hybridization. However, positron emission tomography (PET) imaging techniques using 89Zr-trastuzumab or 89Zr-pertuzumab are currently in clinical trials for a non-invasive, full body diagnostic approach. Although the antibodies have strong specificity to the HER2 positive lesions, challenges involving long post-injection time for imaging due to the blood circulation of the antibodies and matching of long-live isotopes leading to increased dose to the patient leave opportunities for alternative PET imaging probes. Peptides have been shown to allow for shorter injection-to-imaging time and can be used with shorter lived isotopes. HER2 specific peptides under development will help improve the diagnosis and potentially therapy options for HER2 positive breast cancer. Peptides showing specificity for HER2 could start widespread development of molecular imaging techniques for HER2 positive cancers.
Collapse
Affiliation(s)
- Maxwell Ducharme
- Department of Radiology, 9968University of Alabama at Birmingham, Birmingham, AL, USA
| | - Suzanne E Lapi
- Department of Radiology, 9968University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
13
|
Ayo A, Laakkonen P. Peptide-Based Strategies for Targeted Tumor Treatment and Imaging. Pharmaceutics 2021; 13:pharmaceutics13040481. [PMID: 33918106 PMCID: PMC8065807 DOI: 10.3390/pharmaceutics13040481] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 02/03/2023] Open
Abstract
Cancer is one of the leading causes of death worldwide. The development of cancer-specific diagnostic agents and anticancer toxins would improve patient survival. The current and standard types of medical care for cancer patients, including surgery, radiotherapy, and chemotherapy, are not able to treat all cancers. A new treatment strategy utilizing tumor targeting peptides to selectively deliver drugs or applicable active agents to solid tumors is becoming a promising approach. In this review, we discuss the different tumor-homing peptides discovered through combinatorial library screening, as well as native active peptides. The different structure–function relationship data that have been used to improve the peptide’s activity and conjugation strategies are highlighted.
Collapse
Affiliation(s)
- Abiodun Ayo
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland;
| | - Pirjo Laakkonen
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland;
- Laboratory Animal Center, HiLIFE—Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
- Correspondence: ; Tel.: +358-50-4489100
| |
Collapse
|
14
|
Rinne SS, Orlova A, Tolmachev V. PET and SPECT Imaging of the EGFR Family (RTK Class I) in Oncology. Int J Mol Sci 2021; 22:ijms22073663. [PMID: 33915894 PMCID: PMC8036874 DOI: 10.3390/ijms22073663] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
The human epidermal growth factor receptor family (EGFR-family, other designations: HER family, RTK Class I) is strongly linked to oncogenic transformation. Its members are frequently overexpressed in cancer and have become attractive targets for cancer therapy. To ensure effective patient care, potential responders to HER-targeted therapy need to be identified. Radionuclide molecular imaging can be a key asset for the detection of overexpression of EGFR-family members. It meets the need for repeatable whole-body assessment of the molecular disease profile, solving problems of heterogeneity and expression alterations over time. Tracer development is a multifactorial process. The optimal tracer design depends on the application and the particular challenges of the molecular target (target expression in tumors, endogenous expression in healthy tissue, accessibility). We have herein summarized the recent preclinical and clinical data on agents for Positron Emission Tomography (PET) and Single Photon Emission Tomography (SPECT) imaging of EGFR-family receptors in oncology. Antibody-based tracers are still extensively investigated. However, their dominance starts to be challenged by a number of tracers based on different classes of targeting proteins. Among these, engineered scaffold proteins (ESP) and single domain antibodies (sdAb) show highly encouraging results in clinical studies marking a noticeable trend towards the use of smaller sized agents for HER imaging.
Collapse
Affiliation(s)
- Sara S. Rinne
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden; (S.S.R.); (A.O.)
| | - Anna Orlova
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden; (S.S.R.); (A.O.)
- Science for Life Laboratory, Uppsala University, 752 37 Uppsala, Sweden
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Vladimir Tolmachev
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
- Department of Immunology, Genetics and Pathology, Uppsala University, 752 37 Uppsala, Sweden
- Correspondence: ; Tel.: +46-704-250-782
| |
Collapse
|
15
|
Cao R, Liu H, Cheng Z. Radiolabeled Peptide Probes for Liver Cancer Imaging. Curr Med Chem 2021; 27:6968-6986. [PMID: 32196443 DOI: 10.2174/0929867327666200320153837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/12/2022]
Abstract
Liver cancer/Hepatocellular Carcinoma (HCC) is a leading cause of cancer death and represents an important cause of mortality worldwide. Several biomarkers are overexpressed in liver cancer, such as Glypican 3 (GPC3) and Epidermal Growth Factor Receptor (EGFR). These biomarkers play important roles in the progression of tumors and could serve as imaging and therapeutic targets for this disease. Peptides with adequate stability, receptor binding properties, and biokinetic behavior have been intensively studied for liver cancer imaging. A great variety of them have been radiolabeled with clinically relevant radionuclides for liver cancer diagnosis, and many are promising imaging and therapeutic candidates for clinical translation. Herein, we summarize the advancement of radiolabeled peptides for the targeted imaging of liver cancer.
Collapse
Affiliation(s)
- Rui Cao
- Institute of Molecular Medicine, College of Life and Health Sciences, Northeastern University, Shenyang, 110000, China
| | - Hongguang Liu
- Institute of Molecular Medicine, College of Life and Health Sciences, Northeastern University, Shenyang, 110000, China
| | - Zhen Cheng
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Bio-X Program and Stanford Cancer Center, Stanford University School of Medicine, Stanford, CA, 94305, United States
| |
Collapse
|
16
|
Li X, Hu K, Liu W, Wei Y, Sha R, Long Y, Han Y, Sun P, Wu H, Li G, Tang G, Huang S. Synthesis and evaluation of [ 18F]FP-Lys-GE11 as a new radiolabeled peptide probe for epidermal growth factor receptor (EGFR) imaging. Nucl Med Biol 2020; 90-91:84-92. [PMID: 33189948 DOI: 10.1016/j.nucmedbio.2020.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/27/2020] [Accepted: 10/21/2020] [Indexed: 12/21/2022]
Abstract
INTRODUCTION The epidermal growth factor receptor (EGFR) has emerged as an attractive target in the treatment of various cancers. Radiolabeled small molecules, antibodies, and peptides that specifically target EGFR are promising probes for tumor imaging to guide personalized treatment with EGFR-targeted drugs. This study aimed to radiolabel GE11 (an EGFR-specific targeting peptide) with 18-fluorine to develop a new EGFR-targeting positron emission tomography (PET) probe, [18F]FP-Lys-GE11, for imaging tumors overexpressing EGFR. METHODS [18F]FP-Lys-GE11 was produced by radiolabeling a GE11 peptide with the prosthetic group 4-nitrophenyl-2-[18F]fluoropropionate ([18F]NFP). Stability in PBS and mice serum, affinity for A431 cell line, U87 and PC-3 cells uptake and blocking studies, and biodistribution of [18F]FP-Lys-GE11 were determined. 2 h dynamic and static PET scans of probe for tumor-bearing mice normal and inhibition uptake were performed. RESULTS [18F]FP-Lys-GE11 was stable in PBS and mice serum. The Kd and Bmax values of probe for A431 were 42.43 ± 3.75 nM and 3383 ± 81.73 CPM, respectively. In cell uptake and blocking experiments, a significant reduction in radioactivity accumulation (over 4-fold) was observed by blocking U87 and PC-3 cells with unlabeled peptide. PET imaging of U87 and PC-3 tumor-bearing mice revealed clear tumor imaging (tumor radioactivity accumulation was 3.48 ± 0.44 and 3.68 ± 0.76%ID/g respectively, tumor-to-muscle ratio was 3.45 ± 0.43 and 3.64 ± 0.76 respectively). Blocking imaging revealed that the U87 tumor uptake was significantly inhibited (2.21 ± 0.41%ID/g). The biodistribution and dynamic PET imaging showed that [18F]FP-Lys-GE11 was mainly excreted by the kidneys and the rest was excreted through the bile and intestines. CONCLUSION The current results showed that [18F]FP-Lys-GE11was a good radiolabeled peptide probe for EGFR overexpression tumor's imaging.
Collapse
Affiliation(s)
- Xueli Li
- Medical Imaging Profession, Nanfang Hospital, Southern Medical University, Guangdong 510515, China
| | - Kongzhen Hu
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, Guangdong 510515, China
| | - Wenfeng Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Yuanfeng Wei
- Medical Imaging Profession, Nanfang Hospital, Southern Medical University, Guangdong 510515, China
| | - Runhua Sha
- Medical Imaging Profession, Nanfang Hospital, Southern Medical University, Guangdong 510515, China
| | - Yongxuan Long
- Medical Imaging Profession, Nanfang Hospital, Southern Medical University, Guangdong 510515, China
| | - Yanjiang Han
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, Guangdong 510515, China
| | - Penhui Sun
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, Guangdong 510515, China
| | - Hubing Wu
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, Guangdong 510515, China
| | - Guiping Li
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, Guangdong 510515, China
| | - Ganghua Tang
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, Guangdong 510515, China
| | - Shun Huang
- Medical Imaging Profession, Nanfang Hospital, Southern Medical University, Guangdong 510515, China; Nanfang PET Center, Nanfang Hospital, Southern Medical University, Guangdong 510515, China.
| |
Collapse
|
17
|
Jiao H, Zhao X, Han J, Zhang J, Wang J. Synthesis of a novel 99mTc labeled GE11 peptide for EGFR SPECT imaging. Int J Radiat Biol 2020; 96:1443-1451. [PMID: 32809887 DOI: 10.1080/09553002.2020.1811419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE This study investigated a novel SPECT agent for the noninvasive imaging of EGFR-overexpressing tumors. METHODS The EGFR-targeting peptide GE11 was synthesized with the introduction of four amino acids (GGGC) to its C-terminal to act as a strong chelator and radiolabeled using 99mTc. The radiochemical yield of the 99mTc-peptide-GE11 were evaluated using RP-HPLC. Cellular assays of the probe were performed on two NSCLC cell lines: A549 (high expression) and H23 (low expression). Biodistribution and SPECT imaging were performed in BALB/c nude mice bearing A549 and H23 NSCLC xenografts. RESULTS The 99mTc-peptide-GE11 was prepared at high efficiency with radiochemical yield of 98.40 ± 1.00 % and it showed favorable stability. The cellular uptake was significantly higher in A549 than in H23 at all time points (especially at 1 h, which was 10.34 ± 0.72 and 2.04 ± 0.18, respectively). A nearly 56% reduction in probe uptake was observed after pretreatment with excess unlabeled peptides. The performance of SPECT imaging and biodistribution demonstrated higher uptake of the 99mTc-peptide-GE11 in A549 xenograft than in H23 xenografts. CONCLUSION The new SPECT tracer 99mTc-peptide-GE11 showed EGFR specificity, favorable pharmacokinetics and great potential for EGFR-targeted imaging.
Collapse
Affiliation(s)
- Honglei Jiao
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China.,Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xinming Zhao
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jingya Han
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jingmian Zhang
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jianfang Wang
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
18
|
Synthesis and labeling of p-NH2-Bn-DTPA-(Dabcyl-Lys6,Phe7)-pHBSP with 99mTc as a radiopeptide scintigraphic agent to detect cardiac ischemia. J Radioanal Nucl Chem 2020. [DOI: 10.1007/s10967-020-07123-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
19
|
Paiva I, Mattingly S, Wuest M, Leier S, Vakili MR, Weinfeld M, Lavasanifar A, Wuest F. Synthesis and Analysis of 64Cu-Labeled GE11-Modified Polymeric Micellar Nanoparticles for EGFR-Targeted Molecular Imaging in a Colorectal Cancer Model. Mol Pharm 2020; 17:1470-1481. [DOI: 10.1021/acs.molpharmaceut.9b01043] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Igor Paiva
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Stephanie Mattingly
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Melinda Wuest
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, Canada
| | - Samantha Leier
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Mohammad Reza Vakili
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Michael Weinfeld
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Afsaneh Lavasanifar
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Canada
| | - Frank Wuest
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, Canada
| |
Collapse
|
20
|
Ahmadpour S, Hosseinimehr SJ. Recent developments in peptide-based SPECT radiopharmaceuticals for breast tumor targeting. Life Sci 2019; 239:116870. [DOI: 10.1016/j.lfs.2019.116870] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 12/31/2022]
|
21
|
Farzipour S, Hosseinimehr SJ. Correlation between in vitro and in vivo Data of Radiolabeled Peptide for Tumor Targeting. Mini Rev Med Chem 2019; 19:950-960. [DOI: 10.2174/1389557519666190304120011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/28/2018] [Accepted: 02/22/2019] [Indexed: 12/12/2022]
Abstract
Tumor-targeting peptides have been generally developed for the overexpression of tumor specific receptors in cancer cells. The use of specific radiolabeled peptide allows tumor visualization by single photon emission computed tomography (SPECT) and positron emission tomography (PET) tools. The high affinity and specific binding of radiolabeled peptide are focusing on tumoral receptors. The character of the peptide itself, in particular, its complex molecular structure and behaviors influence on its specific interaction with receptors which are overexpressed in tumor. This review summarizes various strategies which are applied for the expansion of radiolabeled peptides for tumor targeting based on in vitro and in vivo specific tumor data and then their data were compared to find any correlation between these experiments. With a careful look at previous studies, it can be found that in vitro unblock-block ratio was unable to correlate the tumor to muscle ratio and the success of radiolabeled peptide for in vivo tumor targeting. The introduction of modifiers’ approaches, nature of peptides, and type of chelators and co-ligands have mixed effect on the in vitro and in vivo specificity of radiolabeled peptides.
Collapse
Affiliation(s)
- Soghra Farzipour
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
22
|
Hossein-Nejad-Ariani H, Althagafi E, Kaur K. Small Peptide Ligands for Targeting EGFR in Triple Negative Breast Cancer Cells. Sci Rep 2019; 9:2723. [PMID: 30804365 PMCID: PMC6389950 DOI: 10.1038/s41598-019-38574-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/28/2018] [Indexed: 11/09/2022] Open
Abstract
The efficacy of chemotherapy for cancer treatment can be increased by targeted drug delivery to the cancer cells. This is particularly important for triple negative breast cancer (TNBC) for which chemotherapy is a major form of treatment. Here we designed and screened a library of 30 peptides starting with a previously reported epidermal growth factor receptor (EGFR) targeting peptide GE11 (YHWYGYTPQNVI). A direct peptide array-whole cell binding assay, where the peptides are conjugated to a cellulose membrane, was used to identify four peptides with enhanced binding to TNBC cells. Next, the four peptides were synthesized as FITC-labelled soluble peptides to study their direct uptake by TNBC cells using flow cytometry. The results showed that peptide analogue 22 had several fold higher uptake by the TNBC cells compared to the lead peptide GE11. The specific uptake of the peptide analogue 22 was confirmed by competition experiment using pure EGF protein. Further, peptide 22 showed dose dependent uptake by the TNBC MDA-MB-231 cells (105) with uptake saturating at around 2 μM peptide concentration. Thus, peptide 22 is a promising EGFR specific TNBC cell binding peptide that can be conjugated directly to a chemotherapeutic drug or to nanoparticles for targeted drug delivery to enhance the efficacy of chemotherapy for TNBC treatment.
Collapse
Affiliation(s)
- Hanieh Hossein-Nejad-Ariani
- Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, California, 92618-1908, USA
| | - Emad Althagafi
- Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, California, 92618-1908, USA
| | - Kamaljit Kaur
- Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, California, 92618-1908, USA.
| |
Collapse
|
23
|
Boettcher AN, Kiupel M, Adur MK, Cocco E, Santin AD, Bellone S, Charley SE, Blanco-Fernandez B, Risinger JI, Ross JW, Tuggle CK, Shapiro EM. Human Ovarian Cancer Tumor Formation in Severe Combined Immunodeficient (SCID) Pigs. Front Oncol 2019; 9:9. [PMID: 30723704 PMCID: PMC6349777 DOI: 10.3389/fonc.2019.00009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 01/03/2019] [Indexed: 01/07/2023] Open
Abstract
Ovarian cancer (OvCa) is the most lethal gynecologic malignancy, with two-thirds of patients having late-stage disease (II-IV) at diagnosis. Improved diagnosis and therapies are needed, yet preclinical animal models for ovarian cancer research have primarily been restricted to rodents, for data on which can fail to translate to the clinic. Thus, there is currently a need for a large animal OvCa model. Therefore, we sought to determine if pigs, being more similar to humans in terms of anatomy and physiology, would be a viable preclinical animal model for OvCa. We injected human OSPC-ARK1 cells, a chemotherapy-resistant primary ovarian serous papillary carcinoma cell line, into the neck muscle and ear tissue of four severe combined immune deficient (SCID) and two non-SCID pigs housed in novel biocontainment facilities to study the ability of human OvCa cells to form tumors in a xenotransplantation model. Tumors developed in ear tissue of three SCID pigs, while two SCID pigs developed tumors in neck tissue; no tumors were detected in non-SCID control pigs. All tumor masses were confirmed microscopically as ovarian carcinomas. The carcinomas in SCID pigs were morphologically similar to the original ovarian carcinoma and had the same immunohistochemical phenotype based on expression of Claudin 3, Claudin 4, Cytokeratin 7, p16, and EMA. Confirmation that OSPC-ARK1 cells form carcinomas in SCID pigs substantiates further development of orthotopic models of OvCa in pigs.
Collapse
Affiliation(s)
- Adeline N Boettcher
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Matti Kiupel
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Malavika K Adur
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Emiliano Cocco
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, United States.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Alessandro D Santin
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, United States
| | - Stefania Bellone
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, United States
| | - Sara E Charley
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | | | - John I Risinger
- Department of Radiology, Michigan State University, East Lansing, MI, United States.,Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, MI, United States
| | - Jason W Ross
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | | | - Erik M Shapiro
- Department of Radiology, Michigan State University, East Lansing, MI, United States.,Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
24
|
Exploring pitfalls of 64Cu-labeled EGFR-targeting peptide GE11 as a potential PET tracer. Amino Acids 2018; 50:1415-1431. [PMID: 30039310 DOI: 10.1007/s00726-018-2616-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/09/2018] [Indexed: 12/29/2022]
Abstract
The epidermal growth factor receptor (EGFR) represents an important molecular target for both radiotracer-based diagnostic imaging and radionuclide therapy of various cancer entities. For the delivery of radionuclides to the tumor, peptides hold great potential as a transport vehicle. With respect to EGFR, the peptide YHWYGYTPQNVI (GE11) has been reported to bind the receptor with high specificity and affinity. In the present study, GE11 with β-alanine (β-Ala-GE11) was conjugated to the chelating agent p-SCN-Bn-NOTA and radiolabeled with 64Cu for the first radio pharmacological evaluation as a potential probe for positron emission tomography (PET)-based cancer imaging. For better water solubility, an ethylene glycol-based linker was introduced between the peptide's N terminus and the radionuclide chelator. The stability of the 64Cu-labeled peptide conjugate and its binding to EGFR-expressing tumor cells was investigated in vitro and in vivo, and then compared with the 64Cu-labeled EGFR-targeting antibody conjugate NOTA-cetuximab. The GE11 peptide conjugate [64Cu]Cu-NOTA-linker-β-Ala-GE11 ([64Cu]Cu-1) was stable in a buffer solution for at least 24 h but only 50% of the original compound was detected after 24 h of incubation in human serum. Stability could be improved by amidation of the peptide's C terminus (β-Ala-GE11-NH2 (2)). Binding assays with both conjugates, [64Cu]Cu-1 and [64Cu]Cu-2, using the EGFR-expressing tumor cell lines A431 and FaDu showed no specific binding. A pilot small animal PET investigation in FaDu tumor-bearing mice revealed only low tumor uptake (standard uptake value (SUV) < 0.2) for both conjugates. The best tumor-to-muscle ratio determined was 3.75 for [64Cu]Cu-1, at 1 h post injection. In conclusion, the GE11 conjugates in its present form are not suitable for further biological investigations, since they presumably form aggregates.
Collapse
|
25
|
Rahmanian N, Hosseinimehr SJ, Khalaj A, Noaparast Z, Abedi SM, Sabzevari O. 99mTc labeled HYNIC-EDDA/tricine-GE11 peptide as a successful tumor targeting agent. Med Chem Res 2017. [DOI: 10.1007/s00044-017-2111-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|