1
|
Dobson-Stone C, Guennewig B, Mundell H, Kwok JB. Detecting and Validating MAPT Mutations in Neurodegeneration Patients and Analysis of Exon Splicing Consequences. Methods Mol Biol 2024; 2754:411-433. [PMID: 38512679 DOI: 10.1007/978-1-0716-3629-9_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Mutation of MAPT has been observed in patients with parkinsonism, progressive supranuclear palsy, and corticobasal degeneration and is a significant cause of frontotemporal dementia. In this chapter, we discuss considerations for next-generation sequencing analysis to identify MAPT mutations in patient genomic DNA and describe the validation of these mutations by Sanger sequencing. One of the most common effects of MAPT mutations is differential splicing of exon 10, which leads to an imbalance in the proportion of 3-repeat and 4-repeat tau isoforms. We describe how to investigate the effect of novel DNA variants on the splicing efficiency of this exon in vitro using the exon-trapping technique, also known as the splicing reporter minigene assay.
Collapse
Affiliation(s)
- Carol Dobson-Stone
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia.
| | - Boris Guennewig
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia
| | - Hamish Mundell
- New South Wales Brain Tissue Resource Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia
| | - John B Kwok
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
2
|
Matmat K, Conart JB, Graindorge PH, El Kouche S, Hassan Z, Siblini Y, Umoret R, Safar R, Baspinar O, Robert A, Alberto JM, Oussalah A, Coelho D, Guéant JL, Guéant-Rodriguez RM. A transgenic mice model of retinopathy of cblG-type inherited disorder of one-carbon metabolism highlights epigenome-wide alterations related to cone photoreceptor cells development and retinal metabolism. Clin Epigenetics 2023; 15:158. [PMID: 37798757 PMCID: PMC10557304 DOI: 10.1186/s13148-023-01567-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/12/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND MTR gene encodes the cytoplasmic enzyme methionine synthase, which plays a pivotal role in the methionine cycle of one-carbon metabolism. This cycle holds a significant importance in generating S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH), the respective universal methyl donor and end-product of epigenetic transmethylation reactions. cblG type of inherited disorders of vitamin B12 metabolism due to mutations in MTR gene exhibits a wide spectrum of symptoms, including a retinopathy unresponsive to conventional therapies. METHODS To unveil the underlying epigenetic pathological mechanisms, we conducted a comprehensive study of epigenomic-wide alterations of DNA methylation by NGS of bisulfited retinal DNA in an original murine model with conditional Mtr deletion in retinal tissue. Our focus was on postnatal day 21, a critical developmental juncture for ocular structure refinement and functional maturation. RESULTS We observed delayed eye opening and impaired visual acuity and alterations in the one-carbon metabolomic profile, with a notable dramatic decline in SAM/SAH ratio predicted to impair DNA methylation. This metabolic disruption led to epigenome-wide changes in genes involved in eye development, synaptic plasticity, and retinoid metabolism, including promoter hypermethylation of Rarα, a regulator of Lrat expression. Consistently, we observed a decline in cone photoreceptor cells and reduced expression of Lrat, Rpe65, and Rdh5, three pivotal genes of eye retinoid metabolism. CONCLUSION We introduced an original in vivo model for studying cblG retinopathy, which highlighted the pivotal role of altered DNA methylation in eye development, cone differentiation, and retinoid metabolism. This model can be used for preclinical studies of novel therapeutic targets.
Collapse
Affiliation(s)
- Karim Matmat
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, 54500, Vandoeuvre-lès-Nancy, France
| | - Jean-Baptiste Conart
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, 54500, Vandoeuvre-lès-Nancy, France
- Department of Ophthalmology, University Regional Hospital Center of Nancy, 54000, Nancy, France
| | - Paul-Henri Graindorge
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, 54500, Vandoeuvre-lès-Nancy, France
| | - Sandra El Kouche
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, 54500, Vandoeuvre-lès-Nancy, France
| | - Ziad Hassan
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, 54500, Vandoeuvre-lès-Nancy, France
| | - Youssef Siblini
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, 54500, Vandoeuvre-lès-Nancy, France
| | - Rémy Umoret
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, 54500, Vandoeuvre-lès-Nancy, France
| | - Ramia Safar
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, 54500, Vandoeuvre-lès-Nancy, France
| | - Okan Baspinar
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, 54500, Vandoeuvre-lès-Nancy, France
| | - Aurélie Robert
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, 54500, Vandoeuvre-lès-Nancy, France
| | - Jean-Marc Alberto
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, 54500, Vandoeuvre-lès-Nancy, France
| | - Abderrahim Oussalah
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, 54500, Vandoeuvre-lès-Nancy, France
| | - David Coelho
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, 54500, Vandoeuvre-lès-Nancy, France
- National Center of Inborn Errors of Metabolism, University Regional Hospital Center of Nancy, 54000, Nancy, France
| | - Jean-Louis Guéant
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, 54500, Vandoeuvre-lès-Nancy, France.
- National Center of Inborn Errors of Metabolism, University Regional Hospital Center of Nancy, 54000, Nancy, France.
- Faculté de Médecine, Bâtiment C 2Ème Étage, 9 Avenue de La Forêt de Haye, 54505, Vandœuvre-lès-Nancy, France.
| | - Rosa-Maria Guéant-Rodriguez
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, 54500, Vandoeuvre-lès-Nancy, France.
- National Center of Inborn Errors of Metabolism, University Regional Hospital Center of Nancy, 54000, Nancy, France.
- Faculté de Médecine, Bâtiment C 2Ème Étage, 9 Avenue de La Forêt de Haye, 54505, Vandœuvre-lès-Nancy, France.
| |
Collapse
|
3
|
Zhang X, Zhi X, Wang X, Dong Y, Shu J, Wang W, Cai C. Identification of a Splicing Variant c.3813-3A>G in NPHP3 by Reanalysis of Whole Exome Sequencing in a Chinese Boy with Nephronophthisis. Nephron Clin Pract 2023; 147:572-582. [PMID: 36878198 DOI: 10.1159/000529472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 01/02/2023] [Indexed: 03/08/2023] Open
Abstract
Nephronophthisis is an autosomal recessive cystic kidney disease characterized by tubular injury and commonly results in kidney failure. We reported a case of 4-year-old Chinese boy presented with severe anemia, kidney, and liver dysfunction. Whole exome sequencing (WES) was performed to identify the candidate variant with a negative result initially. After complete collection of clinical information, reanalysis of WES identified a homozygous NPHP3 variant c.3813-3A>G (NM_153240.4). The effect on mRNA splicing of the intronic variant was predicted through software (three in silico splice tools). Furthermore, in vitro minigene assay was conducted to validate the predicted deleterious effects of the intronic variant. All of the splice prediction programs and minigene assay indicated that the variant had an impact on the normal splicing pattern of NPHP3. Our study confirmed the effect of the c.3813-3A>G variant on NPHP3 splicing in vitro, which gives additional evidence for the clinical significance of the variant and provides a basis for genetic diagnosis of nephronophthisis 3. In addition, we think that it is essential to reanalyze WES data after the complete clinical information collection to avoid missing some important candidate variants.
Collapse
Affiliation(s)
- Xinjie Zhang
- Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin, China
- Tianjin Pediatric Research Institute, Tianjin, China
- Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, China
| | - Xiufang Zhi
- Graduate College, Tianjin Medical University, Tianjin, China
| | - Xin Wang
- Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin, China
- Department of Nephrology, Tianjin Children's Hospital, Tianjin, China
| | - Yan Dong
- Graduate College, Tianjin Medical University, Tianjin, China
| | - Jianbo Shu
- Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin, China
- Tianjin Pediatric Research Institute, Tianjin, China
- Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, China
| | - Wenhong Wang
- Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin, China
- Department of Nephrology, Tianjin Children's Hospital, Tianjin, China
| | - Chunquan Cai
- Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin, China
- Tianjin Pediatric Research Institute, Tianjin, China
- Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, China
| |
Collapse
|
4
|
Huang L, Peng J, Xie Y, Zhou Y, Wang X, Wang H, Gui J, Li N. Diversity of clinical phenotypes in a cohort of Han Chinese patients with PAX6 variants. Front Genet 2023; 14:1011060. [PMID: 36816037 PMCID: PMC9934858 DOI: 10.3389/fgene.2023.1011060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
The PAX6 gene plays an important role in ocular development. Mutations of the PAX6 gene may result in a series of ocular abnormalities, including congenital aniridia, anterior segment dysgenesis (ASD), progressive corneal opacification, glaucoma, and hypoplasia of the fovea and optic nerve, leading to reduced visual acuity and even blindness. This study aimed to describe the diversity of clinical features caused by PAX6 pathogenic variants in 45 Han Chinese patients from 23 unrelated families. All patients underwent detailed clinical assessment. Genetic testing was performed to identify pathogenic variations in the PAX6 gene by next-generation sequencing, minigene splicing assay, RT-qPCR, and long-range PCR. Twenty pathogenic variations were detected in the PAX6 gene from 12 pedigrees and 11 sporadic patients, of which 12 were previously reported and 8 were novel. The clinical phenotypes obtained as a result of the PAX6 gene mutations were complicated and vary among patients, even among those who carried the same variants. Genetic testing is helpful for differential diagnosis. Our genetic findings will expand the spectrum of pathogenic variations in the PAX6 gene. PAX6 pathogenic variants not only cause defects in ocular tissues, such as the iris and retina, but also lead to maldevelopment of the whole eye, resulting in microphthalmia.
Collapse
Affiliation(s)
- Lijuan Huang
- Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China,Department of Ophthalmology, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Jiajia Peng
- Department of Ophthalmology, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Yan Xie
- Department of Ophthalmology, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Yunyu Zhou
- Department of Ophthalmology, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Xiaolin Wang
- Laboratory of Tumor Immunology, Beijing Children’s Hospital, National Center for Children’s Health, Beijing Pediatric Research Institute, Capital Medical University, Beijing, China
| | - Hui Wang
- Laboratory of Tumor Immunology, Beijing Children’s Hospital, National Center for Children’s Health, Beijing Pediatric Research Institute, Capital Medical University, Beijing, China
| | - Jingang Gui
- Laboratory of Tumor Immunology, Beijing Children’s Hospital, National Center for Children’s Health, Beijing Pediatric Research Institute, Capital Medical University, Beijing, China,*Correspondence: Jingang Gui, ; Ningdong Li,
| | - Ningdong Li
- Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China,Department of Ophthalmology, Beijing Children’s Hospital, Capital Medical University, Beijing, China,Department of Ophthalmology, Shanghai General Hospital, Shanghai, China,Department of Ophthalmology, Children’s Hospital, Capital Institute of Pediatrics, Beijing, China,*Correspondence: Jingang Gui, ; Ningdong Li,
| |
Collapse
|
5
|
Alimohamed MZ, Boven LG, van Dijk KK, Vos YJ, Hoedemaekers YM, van der Zwaag PA, Sijmons RH, Jongbloed JD, Sikkema-Raddatz B, Westers H. SEPT–GD: A decision tree to prioritise potential RNA splice variants in cardiomyopathy genes for functional splicing assays in diagnostics. Gene 2023; 851:146984. [DOI: 10.1016/j.gene.2022.146984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 08/09/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022]
|
6
|
Sajovic J, Meglič A, Glavač D, Markelj Š, Hawlina M, Fakin A. The Role of Vitamin A in Retinal Diseases. Int J Mol Sci 2022; 23:1014. [PMID: 35162940 PMCID: PMC8835581 DOI: 10.3390/ijms23031014] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/24/2022] Open
Abstract
Vitamin A is an essential fat-soluble vitamin that occurs in various chemical forms. It is essential for several physiological processes. Either hyper- or hypovitaminosis can be harmful. One of the most important vitamin A functions is its involvement in visual phototransduction, where it serves as the crucial part of photopigment, the first molecule in the process of transforming photons of light into electrical signals. In this process, large quantities of vitamin A in the form of 11-cis-retinal are being isomerized to all-trans-retinal and then quickly recycled back to 11-cis-retinal. Complex machinery of transporters and enzymes is involved in this process (i.e., the visual cycle). Any fault in the machinery may not only reduce the efficiency of visual detection but also cause the accumulation of toxic chemicals in the retina. This review provides a comprehensive overview of diseases that are directly or indirectly connected with vitamin A pathways in the retina. It includes the pathophysiological background and clinical presentation of each disease and summarizes the already existing therapeutic and prospective interventions.
Collapse
Affiliation(s)
- Jana Sajovic
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia
| | - Andrej Meglič
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia
| | - Damjan Glavač
- Department of Molecular Genetics, Institute of Pathology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Špela Markelj
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia
| | - Marko Hawlina
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia
| | - Ana Fakin
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia
| |
Collapse
|
7
|
Hu X, Li F, He J, Yang J, Jiang Y, Jiang M, Wei D, Chang L, Hejtmancik JF, Hou L, Ma X. LncRNA NEAT1 Recruits SFPQ to Regulate MITF Splicing and Control RPE Cell Proliferation. Invest Ophthalmol Vis Sci 2021; 62:18. [PMID: 34787639 PMCID: PMC8606808 DOI: 10.1167/iovs.62.14.18] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Purpose Retinal pigment epithelium (RPE) cell proliferation is precisely regulated to maintain retinal homoeostasis. Microphthalmia-associated transcription factor (MITF), a critical transcription factor in RPE cells, has two alternatively spliced isoforms: (+)MITF and (-)MITF. Previous work has shown that (-)MITF but not (+)MITF inhibits RPE cell proliferation. This study aims to investigate the role of long non-coding RNA (lncRNA) nuclear-enriched abundant transcript 1 (NEAT1) in regulating MITF splicing and hence proliferation of RPE cells. Methods Mouse RPE, primary cultured mouse RPE cells, and different proliferative human embryonic stem cell (hESC)-RPE cells were used to evaluate the expression of (+)MITF, (-)MITF, and NEAT1 by reverse-transcription PCR (RT-PCR) or quantitative RT-PCR. NEAT1 was knocked down using specific small interfering RNAs (siRNAs). Splicing factor proline- and glutamine-rich (SFPQ) was overexpressed with the use of lentivirus infection. Cell proliferation was analyzed by cell number counting and Ki67 immunostaining. RNA immunoprecipitation (RIP) was used to analyze the co-binding between the SFPQ and MITF or NEAT1. Results NEAT1 was highly expressed in proliferative RPE cells, which had low expression of (-)MITF. Knockdown of NEAT1 in RPE cells switched the MITF splicing pattern to produce higher levels of (-)MITF and inhibited cell proliferation. Mechanistically, NEAT1 recruited SFPQ to bind directly with MITF mRNA to regulate its alternative splicing. Overexpression of SFPQ in ARPE-19 cells enhanced the binding enrichment of SFPQ to MITF and increased the splicing efficiency of (+)MITF. The binding affinity between SFPQ and MITF was decreased after NEAT1 knockdown. Conclusions NEAT1 acts as a scaffold to recruit SFPQ to MITF mRNA and promote its binding affinity, which plays an important role in regulating the alternative splicing of MITF and RPE cell proliferation.
Collapse
Affiliation(s)
- Xiaojuan Hu
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
| | - Fang Li
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China.,Department of Ophthalmology, The First Hospital of Wuhan, Wuhan, China
| | - Junhao He
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Juan Yang
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
| | - Ye Jiang
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Mingyuan Jiang
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Dandan Wei
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Lifu Chang
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - J Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Ling Hou
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
| | - Xiaoyin Ma
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
8
|
Lin JH, Wu H, Zou WB, Masson E, Fichou Y, Le Gac G, Cooper DN, Férec C, Liao Z, Chen JM. Splicing Outcomes of 5' Splice Site GT>GC Variants That Generate Wild-Type Transcripts Differ Significantly Between Full-Length and Minigene Splicing Assays. Front Genet 2021; 12:701652. [PMID: 34422003 PMCID: PMC8375439 DOI: 10.3389/fgene.2021.701652] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/13/2021] [Indexed: 12/18/2022] Open
Abstract
Combining data derived from a meta-analysis of human disease-associated 5' splice site GT>GC (i.e., +2T>C) variants and a cell culture-based full-length gene splicing assay (FLGSA) of forward engineered +2T>C substitutions, we recently estimated that ∼15-18% of +2T>C variants can generate up to 84% wild-type transcripts relative to their wild-type counterparts. Herein, we analyzed the splicing outcomes of 20 +2T>C variants that generate some wild-type transcripts in two minigene assays. We found a high discordance rate in terms of the generation of wild-type transcripts, not only between FLGSA and the minigene assays but also between the different minigene assays. In the pET01 context, all 20 wild-type minigene constructs generated the expected wild-type transcripts; of the 20 corresponding variant minigene constructs, 14 (70%) generated wild-type transcripts. In the pSPL3 context, only 18 of the 20 wild-type minigene constructs generated the expected wild-type transcripts whereas 8 of the 18 (44%) corresponding variant minigene constructs generated wild-type transcripts. Thus, in the context of a particular type of variant, we raise awareness of the limitations of minigene splicing assays and emphasize the importance of sequence context in regulating splicing. Whether or not our findings apply to other types of splice-altering variant remains to be investigated.
Collapse
Affiliation(s)
- Jin-Huan Lin
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Hao Wu
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Wen-Bin Zou
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Emmanuelle Masson
- Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest, France.,Service de Génétique Médicale et de Biologie de la Reproduction, CHRU Brest, Brest, France
| | - Yann Fichou
- Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest, France.,Laboratory of Excellence GR-Ex, Paris, France
| | - Gerald Le Gac
- Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest, France.,Service de Génétique Médicale et de Biologie de la Reproduction, CHRU Brest, Brest, France.,Laboratory of Excellence GR-Ex, Paris, France
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Claude Férec
- Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest, France.,Service de Génétique Médicale et de Biologie de la Reproduction, CHRU Brest, Brest, France
| | - Zhuan Liao
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Jian-Min Chen
- Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest, France
| |
Collapse
|
9
|
Gao W, Xu Y, Liu H, Gao M, Cao Q, Wang Y, Cui L, Huang R, Shen Y, Li S, Yang H, Chen Y, Li C, Yu H, Li W, Shen G. Characterization of missense mutations in the signal peptide and propeptide of FIX in hemophilia B by a cell-based assay. Blood Adv 2020; 4:3659-3667. [PMID: 32766856 PMCID: PMC7422117 DOI: 10.1182/bloodadvances.2020002520] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/06/2020] [Indexed: 11/20/2022] Open
Abstract
Many mutations in the signal peptide and propeptide of factor IX (FIX) cause hemophilia B. A FIX variants database reports 28 unique missense mutations in these regions that lead to FIX deficiency, but the underlying mechanism is known only for the mutations on R43 that interfere with propeptide cleavage. It remains unclear how other mutations result in FIX deficiency and why patients carrying the same mutation have different bleeding tendencies. Here, we modify a cell-based reporter assay to characterize the missense mutations in the signal peptide and propeptide of FIX. The results show that the level of secreted conformation-specific reporter (SCSR), which has a functional γ-carboxyglutamate (Gla) domain of FIX, decreases significantly in most mutations. The decreased SCSR level is consistent with FIX deficiency in hemophilia B patients. Moreover, we find that the decrease in the SCSR level is caused by several distinct mechanisms, including interfering with cotranslational translocation into the endoplasmic reticulum, protein secretion, γ-carboxylation of the Gla domain, and cleavage of the signal peptide or propeptide. Importantly, our results also show that the SCSR levels of most signal peptide and propeptide mutations increase with vitamin K concentration, suggesting that the heterogeneity of bleeding tendencies may be related to vitamin K levels in the body. Thus, oral administration of vitamin K may alleviate the severity of bleeding tendencies in patients with missense mutations in the FIX signal peptide and propeptide regions.
Collapse
Affiliation(s)
- Wenwen Gao
- Department of Medical Genetics, Institute of Hemostasis and Thrombosis, School of Basic Medical Sciences, and
| | - Yaqi Xu
- Department of Medical Genetics, Institute of Hemostasis and Thrombosis, School of Basic Medical Sciences, and
| | - Hongli Liu
- Department of Medical Genetics, Institute of Hemostasis and Thrombosis, School of Basic Medical Sciences, and
| | - Meng Gao
- Department of Medical Genetics, Institute of Hemostasis and Thrombosis, School of Basic Medical Sciences, and
| | - Qing Cao
- Department of Medical Genetics, Institute of Hemostasis and Thrombosis, School of Basic Medical Sciences, and
| | - Yiyi Wang
- Department of Medical Genetics, Institute of Hemostasis and Thrombosis, School of Basic Medical Sciences, and
| | - Longteng Cui
- Department of Medical Genetics, Institute of Hemostasis and Thrombosis, School of Basic Medical Sciences, and
| | - Rong Huang
- Department of Medical Genetics, Institute of Hemostasis and Thrombosis, School of Basic Medical Sciences, and
| | - Yan Shen
- Department of Medical Genetics, Institute of Hemostasis and Thrombosis, School of Basic Medical Sciences, and
| | - Sanqiang Li
- Department of Medical Genetics, Institute of Hemostasis and Thrombosis, School of Basic Medical Sciences, and
| | - Haiping Yang
- Department of Medical Genetics, Institute of Hemostasis and Thrombosis, School of Basic Medical Sciences, and
- First Affiliated Hospital, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Yixiang Chen
- Department of Medical Genetics, Institute of Hemostasis and Thrombosis, School of Basic Medical Sciences, and
| | - Chaokun Li
- Sino-UK Joint Laboratory for Brain Function and Injury, School of Basic Medical Sciences, and
| | - Haichuan Yu
- Department of Biochemistry and Molecular Biology, School of Medical Laboratory, Xinxiang Medical University, Xinxiang, People's Republic of China; and
| | - Weikai Li
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
| | - Guomin Shen
- Department of Medical Genetics, Institute of Hemostasis and Thrombosis, School of Basic Medical Sciences, and
| |
Collapse
|
10
|
Tang XY, Lin JH, Zou WB, Masson E, Boulling A, Deng SJ, Cooper DN, Liao Z, Férec C, Li ZS, Chen JM. Toward a clinical diagnostic pipeline for SPINK1 intronic variants. Hum Genomics 2019; 13:8. [PMID: 30755276 PMCID: PMC6373104 DOI: 10.1186/s40246-019-0193-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/25/2019] [Indexed: 02/07/2023] Open
Abstract
Background The clinical significance of SPINK1 intronic variants in chronic pancreatitis has been previously assessed by various approaches including a cell culture-based full-length gene assay. A close correlation between the results of this assay and in silico splicing prediction was apparent. However, until now, a clinical diagnostic pipeline specifically designed to classify SPINK1 intronic variants accurately and efficiently has been lacking. Herein, we present just such a pipeline and explore its efficacy and potential utility in potentiating the classification of newly described SPINK1 intronic variants. Results We confirm a close correlation between in silico splicing prediction and results from the cell culture-based full-length gene assay in the context of three recently reported pathogenic SPINK1 intronic variants. We then integrated in silico splicing prediction and the full-length gene assay into a stepwise approach and tested its utility in the classification of two novel datasets of SPINK1 intronic variants. The first dataset comprised 16 deep intronic variants identified in 52 genetically unexplained Chinese chronic pancreatitis patients by sequencing the entire intronic sequence of the SPINK1 gene. The second dataset comprised five novel rare proximal intronic variants identified through the routine analysis of the SPINK1 gene in French pancreatitis patients. Employing a minor allele frequency of > 5% as a population frequency filter, 6 of the 16 deep intronic variants were immediately classified as benign. In silico prediction of the remaining ten deep intronic variants and the five rare proximal intronic variants with respect to their likely impact on splice site selection suggested that only one proximal intronic variant, c.194 + 5G > A, was likely to be of functional significance. Employing the cell culture-based full-length gene assay, we functionally analyzed c.194 + 5G > A, together with seven predicted non-functional variants, thereby validating their predicted effects on splicing in all cases. Conclusions We demonstrated the accuracy and efficiency of in silico prediction in combination with the cell culture-based full-length gene assay for the classification of SPINK1 intronic variants. Based upon these findings, we propose an operational pipeline for classifying SPINK1 intronic variants in the clinical diagnostic setting. Electronic supplementary material The online version of this article (10.1186/s40246-019-0193-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xin-Ying Tang
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Jin-Huan Lin
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China.,EFS, Univ Brest, Inserm, UMR 1078, GGB, 29200, Brest, France
| | - Wen-Bin Zou
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Emmanuelle Masson
- EFS, Univ Brest, Inserm, UMR 1078, GGB, 29200, Brest, France.,CHU Brest, Service de Génétique, Brest, France
| | - Arnaud Boulling
- EFS, Univ Brest, Inserm, UMR 1078, GGB, 29200, Brest, France
| | - Shun-Jiang Deng
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Zhuan Liao
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai, China. .,Shanghai Institute of Pancreatic Diseases, Shanghai, China.
| | - Claude Férec
- EFS, Univ Brest, Inserm, UMR 1078, GGB, 29200, Brest, France.,CHU Brest, Service de Génétique, Brest, France
| | - Zhao-Shen Li
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai, China. .,Shanghai Institute of Pancreatic Diseases, Shanghai, China.
| | - Jian-Min Chen
- EFS, Univ Brest, Inserm, UMR 1078, GGB, 29200, Brest, France.
| |
Collapse
|