1
|
Yavas Abali Z, Bas F, Houghton JAL, Abali S, Karakilic Ozturan E, Gulec C, Aslanger AD, Kandemir T, Durmaz D, Yucesoy MA, Flanagan SE, Poyrazoglu S, Bundak R, Darendeliler F. Comprehensive clinical and molecular characterization with long-term outcomes in 40 patients with congenital hyperinsulinism. Endocrine 2025:10.1007/s12020-025-04244-5. [PMID: 40382736 DOI: 10.1007/s12020-025-04244-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 04/16/2025] [Indexed: 05/20/2025]
Abstract
PURPOSE Congenital hyperinsulinism (CHI) represents the most frequent cause of recurrent hypoglycemia in neonates and infants, stemming from defects in the regulatory pathways of insulin secretion from pancreatic beta cells. This study aims to assess the clinical and genetic characteristics of a CHI cohort and to discuss the complexities involved in managing this heterogeneous disorder. METHODS Forty patients (23 girls) with CHI were included in the study. Data on the diagnosis and treatment of CHI were obtained from the medical records. RESULTS The median age at diagnosis was 1.4 months (range 0.1-30 months). The mean gestational age was 37.8 ± 2.4 weeks, and the birth weight was 1.1 ± 2.0 SDS. The consanguinity ratio was 35.0%. Median glucose, insulin, and C-peptide concentrations at diagnosis were 34.0 mg/dl (IQR 25.2-41.7), 12.4µU/ml (IQR 4.4-27.1), and 1.5 ng/ml (IQR 0.7-3.8), respectively. Molecular genetic diagnosis could be established in 62.5% (n = 25). Pathogenic variants were predominantly identified in the KATP channel genes (17/25, 68%), with the ABCC8 being the most frequent (n = 15; biallelic: 8, monoallelic: 7). KCNJ11 variants were identified in two (5.0%), GLUD1 variants in three (7.5%), and HADH variants in five patients (12.5%). Pancreatectomy was performed in 10 patients, with a mean age at the time of surgery of 3.9 ± 3.2 months. The genetic etiology was identified in all patients who underwent pancreatectomy, all of whom had defects in the KATP channel. ABCC8 variants were detected in nine (biallelic: 5, monoallelic: 4), while a biallelic variant in the KCNJ11 was identified in one case. CONCLUSION A molecular genetic diagnosis was identified in approximately two-thirds of our cohort, underscoring the significance of genetic testing in the management of CHI. Ongoing advances in genetic technologies are anticipated to enhance our understanding of the etiopathogenesis of CHI and support the development of more personalized therapeutic strategies. Although the genotype-phenotype correlation remains only partially elucidated, specific genetic variants may provide predictive insights into treatment resistance, thereby informing more targeted treatment approaches.
Collapse
Affiliation(s)
- Zehra Yavas Abali
- Istanbul University, Institute of Health Sciences, Department of Genetics, Istanbul, Türkiye.
- Istanbul University, Istanbul Faculty of Medicine, Pediatric Endocrinology Unit, Istanbul, Türkiye.
| | - Firdevs Bas
- Istanbul University, Istanbul Faculty of Medicine, Pediatric Endocrinology Unit, Istanbul, Türkiye
| | - Jayne A L Houghton
- Exeter Genomics Laboratory, Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
| | - Saygin Abali
- Istanbul University, Istanbul Faculty of Medicine, Pediatric Endocrinology Unit, Istanbul, Türkiye
- Acibadem Mehmet Ali Aydinlar University, School of Medicine, Department of Pediatrics, Division of Pediatric Endocrinology, Istanbul, Türkiye
| | - Esin Karakilic Ozturan
- Istanbul University, Istanbul Faculty of Medicine, Pediatric Endocrinology Unit, Istanbul, Türkiye
| | - Cagrı Gulec
- Istanbul University, Istanbul Faculty of Medicine, Department of Medical Genetics, Istanbul, Türkiye
| | - Ayca Dilruba Aslanger
- Istanbul University, Istanbul Faculty of Medicine, Department of Medical Genetics, Istanbul, Türkiye
| | - Tugce Kandemir
- Istanbul University, Istanbul Faculty of Medicine, Pediatric Endocrinology Unit, Istanbul, Türkiye
| | - Durmus Durmaz
- Istanbul University, Istanbul Faculty of Medicine, Department of Medical Genetics, Istanbul, Türkiye
| | - Mehmet Akif Yucesoy
- Istanbul University, Istanbul Faculty of Medicine, Department of Medical Genetics, Istanbul, Türkiye
| | - Sarah E Flanagan
- Department of Clinical and Biomedical Science, University of Exeter, Exeter, UK
| | - Sukran Poyrazoglu
- Istanbul University, Istanbul Faculty of Medicine, Pediatric Endocrinology Unit, Istanbul, Türkiye
| | - Ruveyde Bundak
- Istanbul University, Istanbul Faculty of Medicine, Pediatric Endocrinology Unit, Istanbul, Türkiye
- Department of Pediatrics, Faculty of Medicine, University of Kyrenia, Kyrenia, Cyprus
| | - Feyza Darendeliler
- Istanbul University, Istanbul Faculty of Medicine, Pediatric Endocrinology Unit, Istanbul, Türkiye
| |
Collapse
|
2
|
Vedelek V, Vedelek B, Lőrincz P, Juhász G, Sinka R. A comparative analysis of fruit fly and human glutamate dehydrogenases in Drosophila melanogaster sperm development. Front Cell Dev Biol 2023; 11:1281487. [PMID: 38020911 PMCID: PMC10652781 DOI: 10.3389/fcell.2023.1281487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Glutamate dehydrogenases are enzymes that take part in both amino acid and energy metabolism. Their role is clear in many biological processes, from neuronal function to cancer development. The putative testis-specific Drosophila glutamate dehydrogenase, Bb8, is required for male fertility and the development of mitochondrial derivatives in spermatids. Testis-specific genes are less conserved and could gain new functions, thus raising a question whether Bb8 has retained its original enzymatic activity. We show that while Bb8 displays glutamate dehydrogenase activity, there are significant functional differences between the housekeeping Gdh and the testis-specific Bb8. Both human GLUD1 and GLUD2 can rescue the bb8 ms mutant phenotype, with superior performance by GLUD2. We also tested the role of three conserved amino acids observed in both Bb8 and GLUD2 in Gdh mutants, which showed their importance in the glutamate dehydrogenase function. The findings of our study indicate that Drosophila Bb8 and human GLUD2 could be novel examples of convergent molecular evolution. Furthermore, we investigated the importance of glutamate levels in mitochondrial homeostasis during spermatogenesis by ectopic expression of the mitochondrial glutamate transporter Aralar1, which caused mitochondrial abnormalities in fly spermatids. The data presented in our study offer evidence supporting the significant involvement of glutamate metabolism in sperm development.
Collapse
Affiliation(s)
- Viktor Vedelek
- Department of Genetics, University of Szeged, Szeged, Hungary
| | - Balázs Vedelek
- Department of Genetics, University of Szeged, Szeged, Hungary
- Hungarian Research Network, Biological Research Centre, Developmental Genetics Unit, Szeged, Hungary
| | - Péter Lőrincz
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Gábor Juhász
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
- Hungarian Research Network, Biological Research Centre, Institute of Genetics, Szeged, Hungary
| | - Rita Sinka
- Department of Genetics, University of Szeged, Szeged, Hungary
| |
Collapse
|
3
|
Wang L, Lu X, Chopp M, Li C, Zhang Y, Szalad A, Liu XS, Zhang ZG. Comparative proteomic analysis of exosomes derived from endothelial cells and Schwann cells. PLoS One 2023; 18:e0290155. [PMID: 37594969 PMCID: PMC10437921 DOI: 10.1371/journal.pone.0290155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/02/2023] [Indexed: 08/20/2023] Open
Abstract
Exosomes derived from endothelial cells and Schwann cells have been employed as novel treatments of neurological diseases, including peripheral neuropathy. Exosomal cargo plays a critical role in mediating recipient cell function. In this study, we thus performed a comprehensive proteomic analysis of exosomes derived from healthy mouse dermal microvascular endothelial cells (EC-Exo) and healthy mouse Schwann cells (SC-Exo). We detected 1,817and 1,579 proteins in EC-Exo and SC-Exo, respectively. Among them, 1506 proteins were present in both EC-Exo and SC-Exo, while 311 and 73 proteins were detected only in EC-Exo and SC-Exo, respectively. Bioinformatic analysis revealed that EC-Exo enriched proteins were involved in neurovascular function, while SC-Exo enriched proteins were related to lipid metabolism. Western blot analysis of 14 enriched proteins revealed that EC-Exo contained proteins involved in mediating endothelial function such as delta-like 4 (DLL4) and endothelial NOS (NOS3), whereas SC-Exo had proteins involved in mediating glial function such as apolipoprotein A-I (APOA1) and phospholipid transfer protein (PLTP). Collectively, the present study identifies differences in the cargo protein profiles of EC-Exo and SC-Exo, thus providing new molecular insights into their biological functions for the treatment of peripheral neuropathy.
Collapse
Affiliation(s)
- Lei Wang
- Department of Neurology, Henry Ford Health, Detroit, Michigan, United States of America
| | - XueRong Lu
- Department of Neurology, Henry Ford Health, Detroit, Michigan, United States of America
| | - Michael Chopp
- Department of Neurology, Henry Ford Health, Detroit, Michigan, United States of America
- Department of Physics, Oakland University, Rochester, Michigan, United States of America
| | - Chao Li
- Department of Neurology, Henry Ford Health, Detroit, Michigan, United States of America
| | - Yi Zhang
- Department of Neurology, Henry Ford Health, Detroit, Michigan, United States of America
| | - Alexandra Szalad
- Department of Neurology, Henry Ford Health, Detroit, Michigan, United States of America
| | - Xian Shuang Liu
- Department of Neurology, Henry Ford Health, Detroit, Michigan, United States of America
| | - Zheng Gang Zhang
- Department of Neurology, Henry Ford Health, Detroit, Michigan, United States of America
| |
Collapse
|
4
|
De Los Santos-La Torre MA, Del Águila-Villar CM, Lu-de Lama LR, Nuñez-Almache O, Chávez-Tejada EM, Espinoza-Robles OA, Pinto-Ibárcena PM, Calagua-Quispe MR, Azabache-Tafur PM, Tucto-Manchego RM. Hyperinsulinism-hyperammonemia syndrome in two Peruvian children with refractory epilepsy. J Pediatr Endocrinol Metab 2023; 36:207-211. [PMID: 36476334 DOI: 10.1515/jpem-2022-0490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Congenital hyperinsulinism (HI) is a heterogeneous clinical disorder with great variability in its clinical phenotype, and to date, pathogenic variants in 23 genes have been recognized. Hyperinsulinism-hyperammonemia syndrome (HI/HA) is the second most frequent cause of this disease that shows an autosomal dominant pattern and is caused by an activating mutation of the GLUD1 gene, which responds favorably to the use of diazoxide. HI/HA syndrome presents with fasting hypoglycemia; postprandial hypoglycemia, especially in those with a high protein content (leucine); and persistent mild hyperammonemia. Neurological abnormalities, in the form of epilepsy or neurodevelopmental delay, are observed in a high percentage of patients; therefore, timely diagnosis is crucial for proper management. CASE PRESENTATION We report the clinical presentation of two Peruvian children that presented with epilepsy whose genetic analysis revealed a missense mutation in the GLUD1 gene, one within exon 11, at 22% mosaicism; and another within exon 7, as well as their response to diazoxide therapy. To the best of our knowledge, these are the first two cases of HI/HA syndrome reported in Peru. CONCLUSIONS HI/HA syndrome went unnoticed, because hypoglycemia was missed and were considered partially controlled epilepsies. A failure to recognize hypoglycemic seizures will delay diagnosis and adequate treatment, so a proper investigation could avoid irreversible neurological damage.
Collapse
Affiliation(s)
| | - Carlos Manuel Del Águila-Villar
- Department of Endocrinology and Metabolism of The Child's Health National Institute, Instituto Nacional de Salud del Niño, Lima, Peru.,Faculty Member of the Medical School, Universidad Nacional Federico Villareal, Lima, Peru
| | - Luis Rómulo Lu-de Lama
- Department of Endocrinology and Metabolism of The Child's Health National Institute, Instituto Nacional de Salud del Niño, Lima, Peru
| | - Oswaldo Nuñez-Almache
- Department of Endocrinology and Metabolism of The Child's Health National Institute, Instituto Nacional de Salud del Niño, Lima, Peru.,Faculty Member of the Medical School, Universidad Nacional Federico Villareal, Lima, Peru
| | - Eliana Manuela Chávez-Tejada
- Department of Endocrinology and Metabolism of The Child's Health National Institute, Instituto Nacional de Salud del Niño, Lima, Peru
| | - Oscar Antonio Espinoza-Robles
- Department of Endocrinology and Metabolism of The Child's Health National Institute, Instituto Nacional de Salud del Niño, Lima, Peru
| | - Paola Marianella Pinto-Ibárcena
- Department of Endocrinology and Metabolism of The Child's Health National Institute, Instituto Nacional de Salud del Niño, Lima, Peru
| | - Martha Rosario Calagua-Quispe
- Department of Endocrinology and Metabolism of The Child's Health National Institute, Instituto Nacional de Salud del Niño, Lima, Peru
| | - Pamela Miluska Azabache-Tafur
- Department of Endocrinology and Metabolism of The Child's Health National Institute, Instituto Nacional de Salud del Niño, Lima, Peru.,Pediatric endocrinology fellow, Universidad Nacional Federico Villareal, Lima, Peru
| | - Rosa María Tucto-Manchego
- Department of Endocrinology and Metabolism of The Child's Health National Institute, Instituto Nacional de Salud del Niño, Lima, Peru.,Pediatric endocrinology fellow, Universidad Nacional Federico Villareal, Lima, Peru
| |
Collapse
|
5
|
Zeng Q, Sang YM. Glutamate dehydrogenase hyperinsulinism: mechanisms, diagnosis, and treatment. Orphanet J Rare Dis 2023; 18:21. [PMID: 36721237 PMCID: PMC9887739 DOI: 10.1186/s13023-023-02624-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/23/2023] [Indexed: 02/01/2023] Open
Abstract
Congenital hyperinsulinism (CHI) is a genetically heterogeneous disease, in which intractable, persistent hypoglycemia is induced by excessive insulin secretion and increased serum insulin concentration. To date,15 genes have been found to be associated with the pathogenesis of CHI. Glutamate dehydrogenase hyperinsulinism (GDH-HI) is the second most common type of CHI and is caused by mutations in the glutamate dehydrogenase 1 gene. The objective of this review is to summarize the genetic mechanisms, diagnosis and treatment progress of GDH-HI. Early diagnosis and treatment are extremely important to prevent long-term neurological complications in children with GDH-HI.
Collapse
Affiliation(s)
- Qiao Zeng
- grid.411360.1Department of Anesthesiology, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310052 China
| | - Yan-Mei Sang
- Department of Endocrinology, Genetics and Metabolism Centre, Beijing Children's Hospital, Capital Medical University, National Centre for Children's Health, Beijing, 100045, China.
| |
Collapse
|
6
|
Yuan Q, Sun X, Lu R, Qu Z, Ding X, Dai T, Qiu J, Tan Y, Zhu R, Pan Z, Xu S, Sima Y. The LIM Domain Protein BmFHL2 Inhibits Egg Production in Female Silkworm, Bombyx mori. Cells 2023; 12:cells12030452. [PMID: 36766794 PMCID: PMC9913792 DOI: 10.3390/cells12030452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/11/2023] [Accepted: 01/29/2023] [Indexed: 02/01/2023] Open
Abstract
The female Bombyx mori accumulates a large amount of egg proteins, mainly Vg and 30K, during egg formation to provide nutrition for embryo development. The synthesis and transport of Vg have been extensively studied, particularly the regulation of Vg transcription induced by 20E; however, the mechanism of 30K protein synthesis is poorly studied. As a model organism of the order Lepidoptera, B. mori has high reproduction potential. In the present study, we found that the FHL2 homologous gene (BmFhl2) in B. mori is involved in inhibiting female egg formation by influencing the synthesis of 30K protein. Interference of BmFhl2 expression in silkworm females increased 30K protein synthesis, accelerated ovarian development, and significantly increased the number of eggs produced and laid; however, the 20E pathway was inhibited. The transcription levels of Vg and 30Kc19 were significantly downregulated following BmFhl2 overexpression in the silkworm ovarian cell line BmN. The Co-IP assay showed that the potential binding protein of BmFHL2 included three types of 30K proteins (30Kc12, 30Kc19, and 30Kc21). These results indicate that BmFHL2 participates in egg formation by affecting 30K protein in female B. mori.
Collapse
Affiliation(s)
- Qian Yuan
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Xiaoning Sun
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Riming Lu
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Zhigang Qu
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Xueyan Ding
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Taiming Dai
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Jianfeng Qiu
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Yumei Tan
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Ruihong Zhu
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Zhonghua Pan
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| | - Shiqing Xu
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| | - Yanghu Sima
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
- Correspondence: ; Tel.: +86-138-6201-8502
| |
Collapse
|
7
|
GDH promotes isoprenaline-induced cardiac hypertrophy by activating mTOR signaling via elevation of α-ketoglutarate level. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:1373-1385. [PMID: 35904584 DOI: 10.1007/s00210-022-02252-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/01/2022] [Indexed: 10/16/2022]
Abstract
Numerous studies reveal that metabolism dysfunction contributes to the development of pathological cardiac hypertrophy. While the abnormal lipid and glucose utilization in cardiomyocytes responding to hypertrophic stimuli have been extensively studied, the alteration and implication of glutaminolysis are rarely discussed. In the present work, we provide the first evidence that glutamate dehydrogenase (GDH), an enzyme that catalyzes conversion of glutamate into ɑ-ketoglutarate (AKG), participates in isoprenaline (ISO)-induced cardiac hypertrophy through activating mammalian target of rapamycin (mTOR) signaling. The expression and activity of GDH were enhanced in cultured cardiomyocytes and rat hearts following ISO treatment. Overexpression of GDH, but not its enzymatically inactive mutant, provoked cardiac hypertrophy. In contrast, GDH knockdown could relieve ISO-triggered hypertrophic responses. The intracellular AKG level was elevated by ISO or GDH overexpression, which led to increased phosphorylation of mTOR and downstream effector ribosomal protein S6 kinase (S6K). Exogenous supplement of AKG also resulted in mTOR activation and cardiomyocyte hypertrophy. However, incubation with rapamycin, an mTOR inhibitor, attenuated hypertrophic responses in cardiomyocytes. Furthermore, GDH silencing protected rats from ISO-induced cardiac hypertrophy. These findings give a further insight into the role of GDH in cardiac hypertrophy and suggest it as a potential target for hypertrophy-related cardiomyopathy.
Collapse
|
8
|
New Insight in Hyperinsulinism/Hyperammonemia Syndrome by Magnetic Resonance Imaging and Spectroscopy. Brain Sci 2022; 12:brainsci12030389. [PMID: 35326344 PMCID: PMC8946637 DOI: 10.3390/brainsci12030389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/21/2022] [Accepted: 03/07/2022] [Indexed: 11/16/2022] Open
Abstract
Hyperinsulinism/hyperammonemia syndrome (HI/HA) is an autosomal dominant disorder caused by monoallelic activating mutations in the glutamate dehydrogenase 1 (GLUD1) gene. While hyperinsulinism may be explained by a reduction in the allosteric inhibition of GLUD1, the pathogenesis of HA in HI/HA remains uncertain; interestingly, HA in the HI/HA syndrome is not associated with acute hyperammonemic intoxication events. We obtained a brain magnetic resonance (MR) in a woman with HI/HA syndrome with chronic asymptomatic HA. On MR spectroscopy, choline and myoinositol were decreased as in other HA disorders. In contrast, distinct from other HA disorders, combined glutamate and glutamine levels were normal (not increased). This observation suggests that brain biochemistry in HI/HA may differ from that of other HA disorders. In HI/HA, ammonia overproduction may come to the expense of glutamate levels, and this seems to prevent the condensation of ammonia with glutamate to produce glutamine that is typical of the other HA disorders. The absence of combined glutamate and glutamine elevation might be correlated to the absence of acute cerebral ammonia toxicity.
Collapse
|
9
|
Kalwat MA, Scheuner D, Rodrigues-dos-Santos K, Eizirik DL, Cobb MH. The Pancreatic ß-cell Response to Secretory Demands and Adaption to Stress. Endocrinology 2021; 162:bqab173. [PMID: 34407177 PMCID: PMC8459449 DOI: 10.1210/endocr/bqab173] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Indexed: 02/06/2023]
Abstract
Pancreatic β cells dedicate much of their protein translation capacity to producing insulin to maintain glucose homeostasis. In response to increased secretory demand, β cells can compensate by increasing insulin production capability even in the face of protracted peripheral insulin resistance. The ability to amplify insulin secretion in response to hyperglycemia is a critical facet of β-cell function, and the exact mechanisms by which this occurs have been studied for decades. To adapt to the constant and fast-changing demands for insulin production, β cells use the unfolded protein response of the endoplasmic reticulum. Failure of these compensatory mechanisms contributes to both type 1 and 2 diabetes. Additionally, studies in which β cells are "rested" by reducing endogenous insulin demand have shown promise as a therapeutic strategy that could be applied more broadly. Here, we review recent findings in β cells pertaining to the metabolic amplifying pathway, the unfolded protein response, and potential advances in therapeutics based on β-cell rest.
Collapse
Affiliation(s)
- Michael A Kalwat
- Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA
| | - Donalyn Scheuner
- Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA
| | | | - Decio L Eizirik
- Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Melanie H Cobb
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| |
Collapse
|
10
|
Metabolic enzymes function as epigenetic modulators: A Trojan Horse for chromatin regulation and gene expression. Pharmacol Res 2021; 173:105834. [PMID: 34450321 DOI: 10.1016/j.phrs.2021.105834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 02/08/2023]
Abstract
Epigenetic modification is a fundamental biological process in living organisms, which has significant impact on health and behavior. Metabolism refers to a set of life-sustaining chemical reactions, including the uptake of nutrients, the subsequent conversion of nutrients into energy or building blocks for organism growth, and finally the clearance of redundant or toxic substances. It is well established that epigenetic modifications govern the metabolic profile of a cell by modulating the expression of metabolic enzymes. Strikingly, almost all the epigenetic modifications require substrates produced by cellular metabolism, and a large proportion of metabolic enzymes can transfer into nucleus to locally produce substrates for epigenetic modification, thereby providing an alternative link between metabolism, epigenetic modification and gene expression. Here, we summarize the recent literature pertinent to metabolic enzymes functioning as epigenetic modulators in the regulation of chromatin architecture and gene expression.
Collapse
|
11
|
Bian Y, Hou W, Chen X, Fang J, Xu N, Ruan BH. Glutamate Dehydrogenase as a Promising Target for Hyperinsulinism Hyperammonemia Syndrome Therapy. Curr Med Chem 2021; 29:2652-2672. [PMID: 34525914 DOI: 10.2174/0929867328666210825105342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 11/22/2022]
Abstract
Hyperinsulinism-hyperammonemia syndrome (HHS) is a rare disease characterized by recurrent hypoglycemia and persistent elevation of plasma ammonia, and it can lead to severe epilepsy and permanent brain damage. It has been demonstrated that functional mutations of glutamate dehydrogenase (GDH), an enzyme in the mitochondrial matrix, are responsible for the HHS. Thus, GDH has become a promising target for the small molecule therapeutic intervention of HHS. Several medicinal chemistry studies are currently aimed at GDH, however, to date, none of the compounds reported has been entered clinical trials. This perspective summarizes the progress in the discovery and development of GDH inhibitors, including the pathogenesis of HHS, potential binding sites, screening methods, and research models. Future therapeutic perspectives are offered to provide a reference for discovering potent GDH modulators and encourage additional research that will provide more comprehensive guidance for drug development.
Collapse
Affiliation(s)
- Yunfei Bian
- College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hantgzhou 310014. China
| | - Wei Hou
- College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hantgzhou 310014. China
| | - Xinrou Chen
- College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hantgzhou 310014. China
| | - Jinzhang Fang
- College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hantgzhou 310014. China
| | - Ning Xu
- College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hantgzhou 310014. China
| | - Benfang Helen Ruan
- College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hantgzhou 310014. China
| |
Collapse
|
12
|
Luczkowska K, Stekelenburg C, Sloan-Béna F, Ranza E, Gastaldi G, Schwitzgebel V, Maechler P. Correction to: Hyperinsulinism associated with GLUD1 mutation: allosteric regulation and functional characterization of p.G446V glutamate dehydrogenase. Hum Genomics 2021; 15:4. [PMID: 33487178 PMCID: PMC7831190 DOI: 10.1186/s40246-021-00305-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Karolina Luczkowska
- Department of Cell Physiology and Metabolism, University of Geneva Medical Center, 1206, Geneva, Switzerland.,Faculty Diabetes Center, University of Geneva Medical Center, 1206, Geneva, Switzerland
| | - Caroline Stekelenburg
- Faculty Diabetes Center, University of Geneva Medical Center, 1206, Geneva, Switzerland.,Pediatric Endocrine and Diabetes Unit, Department of Pediatrics Gynecology and Obstetrics, University Hospitals of Geneva, Geneva, Switzerland
| | - Frédérique Sloan-Béna
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland.,Department of Genetic Medicine and Laboratory, University Hospitals of Geneva, 1211, Geneva, Switzerland
| | - Emmanuelle Ranza
- Department of Genetic Medicine and Laboratory, University Hospitals of Geneva, 1211, Geneva, Switzerland
| | - Giacomo Gastaldi
- Faculty Diabetes Center, University of Geneva Medical Center, 1206, Geneva, Switzerland.,Division of Endocrinology, Diabetology, Hypertension and Nutrition, Geneva University Hospitals, 1211, Geneva, Switzerland
| | - Valérie Schwitzgebel
- Faculty Diabetes Center, University of Geneva Medical Center, 1206, Geneva, Switzerland.,Pediatric Endocrine and Diabetes Unit, Department of Pediatrics Gynecology and Obstetrics, University Hospitals of Geneva, Geneva, Switzerland
| | - Pierre Maechler
- Department of Cell Physiology and Metabolism, University of Geneva Medical Center, 1206, Geneva, Switzerland. .,Faculty Diabetes Center, University of Geneva Medical Center, 1206, Geneva, Switzerland.
| |
Collapse
|