1
|
Win KM, Show KL, Sattabongkot J, Aung PL. Ownership and use of insecticide-treated nets in Myanmar: insights from a nationally representative demographic and health survey. Malar J 2024; 23:167. [PMID: 38807175 PMCID: PMC11135007 DOI: 10.1186/s12936-024-04994-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND Malaria poses a substantial public health threat in Myanmar, indicating the need for rigorous efforts to achieve elimination of the disease nationwide by 2030. The use of insecticide-treated nets (ITNs) forms part of a pivotal strategy for preventing transmission. This study explored the ownership and use of ITNs in Myanmar and identified factors associated with non-use of ITNs. METHODS Household datasets from the 2015-2016 Myanmar Demographic and Health Survey were utilised, which encompassed all household members except children under the age of five. Descriptive statistics and inferential tests, including simple and multiple logistics regression models and Pearson correlations, were employed for analysis. All analyses, taking the two-stage stratified cluster sampling design into account, used weighting factors and the "svyset" command in STATA. The ownership and use of bed nets were also visualised in QGIS maps. RESULTS Among the 46,507 participants, 22.3% (95% CI 20.0%, 24.5%) had access to ITNs, with only 15.3% (95% CI 13.7, 17.1%) sleeping under an ITN the night before the survey. Factors associated with the non-use of ITNs included age category (15-34 years-aOR: 1.17, 95% CI 1.01, 1.30; 50+ years-aOR: 1.19, 95% CI 1.06, 1.33), location (delta or lowland-aOR: 5.39, 95% CI 3.94, 7.38; hills-aOR: 1.80, 95% CI 1.20, 2.71; plains-aOR: 3.89, 95% CI 2.51, 6.03), urban residency (aOR: 1.63, 95% CI 1.22, 2.17), and wealth quintile (third-aOR: 1.38, 95% CI 1.08, 1.75; fourth-aOR: 1.65, 95% CI 1.23, 2.23; fifth-aOR: 1.47, 95% CI 1.02, 2.13). A coherent distribution of the ownership and use of ITNs was seen across all states/regions, and a strong correlation existed between the ownership and use of ITNs (r: 0.9795, 95% CI 0.9377, 0.9933, alpha < 0.001). CONCLUSIONS This study identified relatively low percentages of ITN ownership and use, indicating the need to increase the distribution of ITNs to achieve the target of at least one ITN per every two people. Strengthening the use of ITNs requires targeted health promotion interventions, especially among relatively affluent individuals residing in delta or lowland areas, hills, and plains.
Collapse
Affiliation(s)
- Kyawt Mon Win
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Pyae Linn Aung
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
2
|
Aung JM, Moon Z, VanBik D, Dinzouna-Boutamba SD, Lee S, Ring Z, Chung DI, Hong Y, Goo YK. Prevalence and molecular analysis of glucose-6-phosphate dehydrogenase deficiency in Chin State, Myanmar. PARASITES, HOSTS AND DISEASES 2023; 61:154-162. [PMID: 37258262 DOI: 10.3347/phd.23004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/05/2023] [Indexed: 06/02/2023]
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is caused by X-linked recessive disorderliness. It induces severe anemia when a patient with G6PD deficiency is exposed to oxidative stress that occurs with administration of an antimalarial drug, primaquine. The distribution of G6PD deficiency remains unknown while primaquine has been used for malaria treatment in Myanmar. This study aimed to investigate the prevalence of G6PD deficiency and its variants in Chin State, Myanmar. Among 322 participants, 18 (11 males and 7 females) demonstrated a G6PD deficiency. Orissa variant was dominant in the molecular analysis. This would be related to neighboring Indian and Bangladeshi population, in which Orissa variant was also reported as the main mutation type. The screening test for G6PD deficiency before primaquine treatment appears to be important in Myanmar.
Collapse
Affiliation(s)
- Ja Moon Aung
- Department of Parasitology and Tropical Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Zin Moon
- Department of Parasitology and Tropical Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Dorene VanBik
- Department of Parasitology and Tropical Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | | | - Sanghyun Lee
- Division of Healthcare and Artificial Intelligence, Department of Precision Medicine, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju 28159, Korea
| | - Zau Ring
- Vector Borne Diseases Control Unit, Kachin State Public Health Department, Myanmar
| | - Dong-Il Chung
- Department of Parasitology and Tropical Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Yeonchul Hong
- Department of Parasitology and Tropical Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Youn-Kyoung Goo
- Department of Parasitology and Tropical Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|
3
|
Zhao Y, Aung PL, Ruan S, Win KM, Wu Z, Soe TN, Soe MT, Cao Y, Sattabongkot J, Kyaw MP, Cui L, Menezes L, Parker DM. Spatio-temporal trends of malaria incidence from 2011 to 2017 and environmental predictors of malaria transmission in Myanmar. Infect Dis Poverty 2023; 12:2. [PMID: 36709318 PMCID: PMC9883610 DOI: 10.1186/s40249-023-01055-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/13/2023] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Myanmar bears the heaviest malaria burden in the Greater Mekong Subregion (GMS). This study assessed the spatio-temporal dynamics and environmental predictors of Plasmodium falciparum and Plasmodium vivax malaria in Myanmar. METHODS Monthly reports of malaria cases at primary health centers during 2011-2017 were analyzed to describe malaria distribution across Myanmar at the township and state/region levels by spatial autocorrelation (Moran index) and spatio-temporal clustering. Negative binomial generalized additive models identified environmental predictors for falciparum and vivax malaria, respectively. RESULTS From 2011 to 2017, there was an apparent reduction in malaria incidence in Myanmar. Malaria incidence peaked in June each year. There were significant spatial autocorrelation and clustering with extreme spatial heterogeneity in malaria cases and test positivity across the nation (P < 0.05). Areas with higher malaria incidence were concentrated along international borders. Primary clusters of P. falciparum persisted in western townships, while clusters of P. vivax shifted geographically over the study period. The primary cluster was detected from January 2011 to December 2013 and covered two states (Sagaing and Kachin). Annual malaria incidence was highest in townships with a mean elevation of 500‒600 m and a high variance in elevation (states with both high and low elevation). There was an apparent linear relationship between the mean normalized difference vegetative index and annual P. falciparum incidence (P < 0.05). CONCLUSION The decreasing trends reflect the significant achievement of malaria control efforts in Myanmar. Prioritizing the allocation of resources to high-risk areas identified in this study can achieve effective disease control.
Collapse
Affiliation(s)
- Yan Zhao
- grid.412449.e0000 0000 9678 1884Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122 Liaoning China
| | - Pyae Linn Aung
- Myanmar Health Network Organization, Yangon, Myanmar ,grid.10223.320000 0004 1937 0490Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Shishao Ruan
- grid.412449.e0000 0000 9678 1884Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122 Liaoning China
| | - Kyawt Mon Win
- grid.415741.2Department of Public Health, Ministry of Health, NayPyiTaw, Myanmar
| | - Zifang Wu
- grid.412449.e0000 0000 9678 1884Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122 Liaoning China
| | - Than Naing Soe
- grid.415741.2Department of Public Health, Ministry of Health, NayPyiTaw, Myanmar
| | - Myat Thu Soe
- Myanmar Health Network Organization, Yangon, Myanmar
| | - Yaming Cao
- grid.412449.e0000 0000 9678 1884Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122 Liaoning China
| | - Jetsumon Sattabongkot
- grid.10223.320000 0004 1937 0490Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Liwang Cui
- grid.170693.a0000 0001 2353 285XDivision of Infectious Diseases and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Suite 304, Tampa, FL 33612 USA
| | - Lynette Menezes
- grid.170693.a0000 0001 2353 285XDivision of Infectious Diseases and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Suite 304, Tampa, FL 33612 USA
| | - Daniel M. Parker
- grid.266093.80000 0001 0668 7243Department of Population Health and Disease Prevention, Department of Epidemiology, University of California, Irvine, USA
| |
Collapse
|
4
|
Cui L, Sattabongkot J, Aung PL, Brashear A, Cao Y, Kaewkungwal J, Khamsiriwatchara A, Kyaw MP, Lawpoolsri S, Menezes L, Miao J, Nguitragool W, Parker D, Phuanukoonnon S, Roobsoong W, Siddiqui F, Soe MT, Sriwichai P, Yang Z, Zhao Y, Zhong D. Multidisciplinary Investigations of Sustained Malaria Transmission in the Greater Mekong Subregion. Am J Trop Med Hyg 2022; 107:138-151. [PMID: 36228909 DOI: 10.4269/ajtmh.21-1267] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/28/2022] [Indexed: 11/07/2022] Open
Abstract
In the course of malaria elimination in the Greater Mekong Subregion (GMS), malaria epidemiology has experienced drastic spatiotemporal changes with residual transmission concentrated along international borders and the rising predominance of Plasmodium vivax. The emergence of Plasmodium falciparum parasites resistant to artemisinin and partner drugs renders artemisinin-based combination therapies less effective while the potential spread of multidrug-resistant parasites elicits concern. Vector behavioral changes and insecticide resistance have reduced the effectiveness of core vector control measures. In recognition of these problems, the Southeast Asian International Center of Excellence for Malaria Research (ICEMR) has been conducting multidisciplinary research to determine how human migration, antimalarial drug resistance, vector behavior, and insecticide resistance sustain malaria transmission at international borders. These efforts allow us to comprehensively understand the ecology of border malaria transmission and develop population genomics tools to identify and track parasite introduction. In addition to employing in vivo, in vitro, and molecular approaches to monitor the emergence and spread of drug-resistant parasites, we also use genomic and genetic methods to reveal novel mechanisms of antimalarial drug resistance of parasites. We also use omics and population genetics approaches to study insecticide resistance in malaria vectors and identify changes in mosquito community structure, vectorial potential, and seasonal dynamics. Collectively, the scientific findings from the ICEMR research activities offer a systematic view of the factors sustaining residual malaria transmission and identify potential solutions to these problems to accelerate malaria elimination in the GMS.
Collapse
Affiliation(s)
- Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | | | | | - Awtum Brashear
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Yaming Cao
- Department of Immunology, China Medical University, Shenyang, China
| | | | | | | | | | - Lynette Menezes
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Jun Miao
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Wang Nguitragool
- Mahidol Vivax Research Unit, Mahidol University, Bangkok, Thailand
| | - Daniel Parker
- Department of Epidemiology, University of California at Irvine, Irvine, California
| | | | | | - Faiza Siddiqui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Myat Thu Soe
- Myanmar Health Network Organization, Yangon, Myanmar
| | - Patchara Sriwichai
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Zhaoqing Yang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| | - Yan Zhao
- Department of Immunology, China Medical University, Shenyang, China
| | - Daibin Zhong
- Program in Public Health, University of California at Irvine, Irvine, California
| |
Collapse
|