1
|
Lee JH, Seo SH, Shim J, Kim YN, Yoon K. Narciclasine enhances cisplatin-induced apoptotic cell death by inducing unfolded protein response-mediated regulation of NOXA and MCL1. Cell Mol Biol Lett 2025; 30:59. [PMID: 40369444 PMCID: PMC12076939 DOI: 10.1186/s11658-025-00735-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 04/22/2025] [Indexed: 05/16/2025] Open
Abstract
BACKGROUND Platinum-based chemotherapy is commonly used to treat non-small cell lung cancer (NSCLC); however, innate and acquired resistance is clinically seen in many patients. Hence, a combinatorial approach with novel therapeutic agents to overcome chemoresistance is a promising option for improving patient outcomes. We investigated the combinational anticancer efficacy of cisplatin and narciclasine in three-dimensional NSCLC tumor spheroids. METHODS To assess the efficacy of cisplatin and narciclasine, cell viability assays, live/dead cell staining, cell death enzyme-linked immunosorbent assay (ELISA), western blot analysis for proteins related to apoptosis, and in vivo xenograft experiments were performed. The synergistic effects of cisplatin and narciclasine were elucidated through transcriptomic analysis and subsequent validation of candidate molecules by regulating their expression. To clarify the underlying molecular mechanisms, the activation of unfolded protein responses and kinetics of a candidate protein were assessed. RESULTS Narciclasine inhibited viability of NSCLC tumor spheroids and augmented the sensitivity of cisplatin-resistant tumor spheroids to cisplatin by inducing apoptosis. After conducting bioinformatic analysis using RNA sequencing data and functional validation experiments, we identified NOXA as a key gene responsible for the enhanced apoptosis observed with the combination of cisplatin and narciclasine. This treatment dramatically increased NOXA while downregulating anti-apoptotic MCL1 levels. Silencing NOXA reversed the enhanced apoptosis and restored MCL1 levels, while MCL1 overexpression protected tumor spheroids from combination treatment-induced apoptosis. Interestingly, narciclasine alone and in combination with cisplatin induced unfolded protein response and inhibited general protein synthesis. Furthermore, the combination treatment increased NOXA expression through the IRE1α-JNK/p38 axis and the activation of p53. Cisplatin alone and in combination with narciclasine destabilized MCL1 via NOXA-mediated proteasomal degradation. CONCLUSIONS We identified a natural product, narciclasine, that synergizes with cisplatin. The combination of cisplatin and narciclasine induced NOXA expression, downregulated MCL1, and ultimately induced apoptosis in NSCLC tumor spheroids. Our findings suggest that narciclasine is a potential natural product for combination with cisplatin for treatment of NSCLC.
Collapse
Affiliation(s)
- Ji Hae Lee
- Cancer Metastasis Branch, Research Institute, National Cancer Center, Goyang, 10408, South Korea
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, South Korea
| | - Seung Hee Seo
- Cancer Metastasis Branch, Research Institute, National Cancer Center, Goyang, 10408, South Korea
| | - Jaegal Shim
- Cancer Metastasis Branch, Research Institute, National Cancer Center, Goyang, 10408, South Korea
| | - Yong-Nyun Kim
- Cancer Metastasis Branch, Research Institute, National Cancer Center, Goyang, 10408, South Korea
| | - Kyungsil Yoon
- Cancer Metastasis Branch, Research Institute, National Cancer Center, Goyang, 10408, South Korea.
| |
Collapse
|
2
|
Gomes KS, Costa-Silva TA, Borges WS, Andrade BA, Ferreira DA, Tempone AG, Ryffel D, Sarlah D, Lago JHG. Antiparasitic Activity of Narciclasine and Evaluation of Its Effects on Plasma Membrane and Mitochondria of Trypanosoma cruzi. ACS OMEGA 2025; 10:3025-3032. [PMID: 39895773 PMCID: PMC11780464 DOI: 10.1021/acsomega.4c09867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/23/2024] [Accepted: 01/08/2025] [Indexed: 02/04/2025]
Abstract
The EtOAc extract from bulbs of Hymenocallis littoralis (Amaryllidaceae) exhibited antiprotozoal activity against Trypanosoma cruzi and afforded the alkaloids narciclasine (1), 7-deoxynarciclasine (2), and narciclasine-4-O-β-D-xylopyranoside (3). In silico studies showed adequate predictions for drug-likeness for alkaloids 1 and 2, with adherence to Lipinski's rules of five and no alerts for PAINS. When tested against clinical forms of T. cruzi, alkaloid 1 displayed in vitro effectiveness with IC50 values of 17.1 μM (trypomastigotes) and 8.2 μM (amastigotes), with no mammalian cytotoxicity for NCTC cells (CC50 > 200 μM), similar to the standard drug benznidazole. Alkaloid 3 exhibited moderate activity against intracellular amastigotes (IC50 = 64.6 μM) and no activity to trypomastigotes, whereas 2 was inactive against both forms of the parasite. These results suggested that free hydroxyl groups at the C-7 and C-4 positions are involved in the potency of the alkaloids. Considering the most potent and selective compound, the lethal action of alkaloid 1 was investigated against extracellular forms (trypomastigotes). Using the fluorescent probe Sytox Green, it was observed that alkaloid 1 presented a dual effect in the plasma membrane at different concentrations from a noninterfering action (at the IC50) to a significant alteration in the membrane permeability (IC90). At all tested concentrations, alkaloid 1 induced a dose-dependent depolarization of the mitochondrial membrane potential, leading to the lethal effect on T. cruzi. These results suggest alkaloid 1 as a new hit compound, eliminating both clinical forms of the parasite and successful in silico drug-like parameters for an oral candidate for Chagas disease.
Collapse
Affiliation(s)
- Kaio S. Gomes
- Center
for Natural and Human Sciences, Federal
University of ABC, 09210-180 São Paulo, SP, Brazil
| | - Thais A. Costa-Silva
- Center
for Natural and Human Sciences, Federal
University of ABC, 09210-180 São Paulo, SP, Brazil
| | - Warley S. Borges
- Department
of Chemistry, Federal University of Espírito
Santo, 29075-910 Vitoria, ES, Brazil
| | - Beatriz A. Andrade
- Physiopathology
Laboratory, Butantan Institute, 05503-900 São
Paulo, SP, Brazil
| | - Dayana A. Ferreira
- Physiopathology
Laboratory, Butantan Institute, 05503-900 São
Paulo, SP, Brazil
| | - Andre G. Tempone
- Physiopathology
Laboratory, Butantan Institute, 05503-900 São
Paulo, SP, Brazil
| | - David Ryffel
- Roger
Adams Laboratory, University of Illinois
at Urbana−Champaign, 61801 Urbana, Illinois, United States
| | - David Sarlah
- Department
of Chemistry, Wiess School of Natural Sciences, Rice University, 77005 Houston, Texas, United States
| | - João Henrique G. Lago
- Center
for Natural and Human Sciences, Federal
University of ABC, 09210-180 São Paulo, SP, Brazil
| |
Collapse
|
3
|
Panthong W, Pientong C, Nukpook T, Heawchaiyaphum C, Aromseree S, Ekalaksananan T. OSI-027 as a Potential Drug Candidate Targeting Upregulated Hub Protein TAF1 in Potential Mechanism of Sinonasal Squamous Cell Carcinoma: Insights from Proteomics and Molecular Docking. BIOLOGY 2024; 13:1089. [PMID: 39765756 PMCID: PMC11673211 DOI: 10.3390/biology13121089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/18/2024] [Accepted: 12/21/2024] [Indexed: 01/11/2025]
Abstract
Sinonasal squamous cell carcinoma (SNSCC) is a rare tumor with high mortality and recurrence rates. However, SNSCC carcinogenesis mechanisms and potential therapeutic drugs have not been fully elucidated. This study investigated the key molecular mechanisms and hub proteins involved in SNSCC carcinogenesis using proteomics and bioinformatic analysis. Dysregulated proteins were validated by RT-qPCR in SNSCC and nasal polyp (NP) tissues. Proteomic analysis revealed that differentially expressed proteins were clustered using MCODE scores ≥ 4 into three modules. The specific hub proteins in each module were analyzed in carcinogenesis pathways using STRING, highlighting potential mechanisms of histone modification and spliceosome dysregulation. Spliceosome components SNRNP200 and SF3A3 were significantly downregulated in SNSCC by RT-qPCR. Web-based applications L1000CDS2 and iLINCS were applied to identify 10 potential repurposable drugs that could reverse the gene expression pattern associated with SNSCC. Docking studies of TAF1, a protein in histone modification, with these 10 small molecule inhibitors indicated OSI-027 to be the most promising due to its strong binding interactions with key residues. These findings suggest that hub proteins involved in the underlying mechanism of SNSCC carcinogenesis may serve as valuable targets for drug development, with OSI-027 emerging as a novel candidate against TAF1 in SNSCC.
Collapse
Affiliation(s)
- Watcharapong Panthong
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (W.P.); (T.N.); (C.H.); (S.A.)
- HPV&EBV and Carcinogenesis (HEC) Research Group, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chamsai Pientong
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (W.P.); (T.N.); (C.H.); (S.A.)
- HPV&EBV and Carcinogenesis (HEC) Research Group, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Thawaree Nukpook
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (W.P.); (T.N.); (C.H.); (S.A.)
- HPV&EBV and Carcinogenesis (HEC) Research Group, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chukkris Heawchaiyaphum
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (W.P.); (T.N.); (C.H.); (S.A.)
- HPV&EBV and Carcinogenesis (HEC) Research Group, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sirinart Aromseree
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (W.P.); (T.N.); (C.H.); (S.A.)
- HPV&EBV and Carcinogenesis (HEC) Research Group, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Tipaya Ekalaksananan
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (W.P.); (T.N.); (C.H.); (S.A.)
- HPV&EBV and Carcinogenesis (HEC) Research Group, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
4
|
Bardaweel SK, Al-salamat H, Hajjo R, Sabbah D, Almutairi S. Unveiling the Intricacies of Monoamine Oxidase-A (MAO-A) Inhibition in Colorectal Cancer: Computational Systems Biology, Expression Patterns, and the Anticancer Therapeutic Potential. ACS OMEGA 2024; 9:35703-35717. [PMID: 39184489 PMCID: PMC11339988 DOI: 10.1021/acsomega.4c04100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024]
Abstract
Colorectal cancer (CRC) remains a significant health burden globally, necessitating a deeper understanding of its molecular intricacies for effective therapeutic interventions. Elevated monoamine oxidase-A (MAO-A) expression has been consistently observed in CRC tissues, correlating with advanced disease stages and a poorer prognosis. This research explores the systems biology effects of MAO-A inhibition with small molecule inhibitor clorgyline regarding CRC. The applied systems biology approach starts with a chemocentric informatics approach to derive high-confidence hypotheses regarding the antiproliferative effects of MAO-A inhibitors and ends with experimental validation. Our computational results emphasized the anticancer effects of MAO-A inhibition and the chemogenomics similarities between clorgyline and structurally diverse groups of apoptosis inducers in addition to highlighting apoptotic, DNA-damage, and microRNAs in cancer pathways. Experimental validation results revealed that MAO inhibition results in antiproliferative antimigratory activities in addition to synergistic effects with doxorubicin. Moreover, the results demonstrated a putative role of MAO-A inhibition in commencing CRC cellular death by potentially mediating the induction of apoptosis.
Collapse
Affiliation(s)
- Sanaa K. Bardaweel
- Department
of Pharmaceutical Sciences, School of Pharmacy, The University of Jordan, Amman - 11942, Jordan
| | - Husam Al-salamat
- Department
of Pharmaceutical Sciences, School of Pharmacy, The University of Jordan, Amman - 11942, Jordan
| | - Rima Hajjo
- Department
of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah
University of Jordan, P.O. Box 130, Amman - 11733, Jordan
- Laboratory
for Molecular Modeling, Division of Chemical Biology and Medicinal
Chemistry, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Board
Member, Jordan CDC, Amman - 11183, Jordan
| | - Dima Sabbah
- Department
of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah
University of Jordan, P.O. Box 130, Amman - 11733, Jordan
| | - Shriefa Almutairi
- Department
of Pharmaceutical Sciences, School of Pharmacy, The University of Jordan, Amman - 11942, Jordan
| |
Collapse
|
5
|
Wen W, Ertas YN, Erdem A, Zhang Y. Dysregulation of autophagy in gastric carcinoma: Pathways to tumor progression and resistance to therapy. Cancer Lett 2024; 591:216857. [PMID: 38583648 DOI: 10.1016/j.canlet.2024.216857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
The considerable death rates and lack of symptoms in early stages of gastric cancer (GC) make it a major health problem worldwide. One of the most prominent risk factors is infection with Helicobacter pylori. Many biological processes, including those linked with cell death, are disrupted in GC. The cellular "self-digestion" mechanism necessary for regular balance maintenance, autophagy, is at the center of this disturbance. Misregulation of autophagy, however, plays a role in the development of GC. In this review, we will examine how autophagy interacts with other cell death processes, such as apoptosis and ferroptosis, and how it affects the progression of GC. In addition to wonderful its role in the epithelial-mesenchymal transition, it is engaged in GC metastasis. The role of autophagy in GC in promoting drug resistance stands out. There is growing interest in modulating autophagy for GC treatment, with research focusing on natural compounds, small-molecule inhibitors, and nanoparticles. These approaches could lead to breakthroughs in GC therapy, offering new hope in the fight against this challenging disease.
Collapse
Affiliation(s)
- Wen Wen
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Turkey.
| | - Ahmet Erdem
- Institute for Quantitative Health Science and Engineering (IQ), Department of Biomedical Engineering, College of Engineering and Human Medicine, Michigan State University, East Lansing, MI, 48824, USA; Department of Biomedical Engineering, Kocaeli University, Umuttepe Campus, Kocaeli, 41001 Turkey.
| | - Yao Zhang
- Department of Gynaecology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
6
|
Shu X, Su J, Zhao Y, Liu C, Chen Y, Ma X, Wang Z, Bai J, Zhang H, Ma Z. Regulation of HeLa cell proliferation and apoptosis by bovine lactoferrin. Cell Biochem Funct 2023; 41:1395-1402. [PMID: 37842864 DOI: 10.1002/cbf.3873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/04/2023] [Accepted: 10/07/2023] [Indexed: 10/17/2023]
Abstract
Cervical cancer is one of the foremost common cancers in women. Lactoferrin (LF) has many biological functions, such as antitumor. This study aimed to explore the regulatory effect of bovine lactoferrin (bLF) on the proliferation and apoptosis of cervical cancer HeLa cells and to clarify the potential mechanism of action of bLF against HeLa cells. This study used CCK-8, Trypan blue staining, and colony formation assays to verify the effect of bLF on HeLa cell proliferation. Hoechst 33258 fluorescence staining, AO/EB staining, and western blotting were used to determine the effects of bLF on apoptosis and autophagy in HeLa cells. We discovered that bLF significantly reduced the proliferation of HeLa cells in a dose- and time-dependent manner compared to the control group. Furthermore, bLF primarily induced apoptosis in HeLa cells by increasing the expression of the proapoptotic proteins p53, Bax, and Cleaved-caspase-3 and downregulating the expression of the antiapoptotic protein Bcl-2. In addition, the present study also showed that bLF treatment significantly activated autophagy-related proteins LC3B-II and Beclin I and down regulated the autophagosome transporter protein p62, indicating that bLF treatment can induce autophagy in HeLa cells. After pretreatment with the autophagy inhibitor, 3-MA, which markedly found that autophagy inhibition by 3-MA reversed bLF-induced apoptosis, indicating that bLF can induce apoptosis by activating intracellular autophagy in HeLa cells. In the present study, our results support the theory of bLF significantly inhibited the proliferation of Hela cells by promoting apoptosis and reinforcing autophagy. The study will play an important role in therapying cervical cancer.
Collapse
Affiliation(s)
- Xingfu Shu
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Life Science and Engineering College of Northwest Minzu University, Lanzhou, China
| | - Jinxian Su
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Life Science and Engineering College of Northwest Minzu University, Lanzhou, China
| | - Yu Zhao
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Life Science and Engineering College of Northwest Minzu University, Lanzhou, China
| | - Chun Liu
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Yao Chen
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Life Science and Engineering College of Northwest Minzu University, Lanzhou, China
| | - Xiaomei Ma
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Life Science and Engineering College of Northwest Minzu University, Lanzhou, China
| | - Zifan Wang
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Jialin Bai
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Haixia Zhang
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Zhongren Ma
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| |
Collapse
|
7
|
Ding Y, Wang P, Li C, Zhang Y, Yang C, Zhou X, Wang X, Su Z, Ming W, Zeng L, Shi Y, Li CJ, Kang X. Sodium Butyrate Induces Mitophagy and Apoptosis of Bovine Skeletal Muscle Satellite Cells through the Mammalian Target of Rapamycin Signaling Pathway. Int J Mol Sci 2023; 24:13474. [PMID: 37686278 PMCID: PMC10487490 DOI: 10.3390/ijms241713474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Sodium butyrate (NaB) is one of the short-chain fatty acids and is notably produced in large amounts from dietary fiber in the gut. Recent evidence suggests that NaB induces cell proliferation and apoptosis. Skeletal muscle is rich in plenty of mitochondrial. However, it is unclear how NaB acts on host muscle cells and whether it is involved in mitochondria-related functions in myocytes. The present study aimed to investigate the role of NaB treatment on the proliferation, apoptosis, and mitophagy of bovine skeletal muscle satellite cells (BSCs). The results showed that NaB inhibited proliferation, promoted apoptosis of BSCs, and promoted mitophagy in a time- and dose-dependent manner in BSCs. In addition, 1 mM NaB increased the mitochondrial ROS level, decreased the mitochondrial membrane potential (MMP), increased the number of autophagic vesicles in mitochondria, and increased the mitochondrial DNA (mtDNA) and ATP level. The effects of the mTOR pathway on BSCs were investigated. The results showed that 1 mM NaB inhibited the mRNA and protein expression of mTOR and genes AKT1, FOXO1, and EIF4EBP1 in the mTOR signaling pathway. In contrast, the addition of PP242, an inhibitor of the mTOR signaling pathway also inhibited mRNA and protein expression levels of mTOR, AKT1, FOXO1, and EIF4EBP1 and promoted mitophagy and apoptosis, which were consistent with the effect of NaB treatment. NaB might promote mitophagy and apoptosis in BSCs by inhibiting the mTOR signaling pathway. Our results would expand the knowledge of sodium butyrate on bovine skeletal muscle cell state and mitochondrial function.
Collapse
Affiliation(s)
- Yanling Ding
- Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; (Y.D.); (P.W.); (C.Y.)
| | - Pengfei Wang
- Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; (Y.D.); (P.W.); (C.Y.)
| | - Chenglong Li
- Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; (Y.D.); (P.W.); (C.Y.)
| | - Yanfeng Zhang
- Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; (Y.D.); (P.W.); (C.Y.)
| | - Chaoyun Yang
- Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; (Y.D.); (P.W.); (C.Y.)
| | - Xiaonan Zhou
- Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; (Y.D.); (P.W.); (C.Y.)
| | - Xiaowei Wang
- Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; (Y.D.); (P.W.); (C.Y.)
| | - Zonghua Su
- Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; (Y.D.); (P.W.); (C.Y.)
| | - Wenxuan Ming
- Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; (Y.D.); (P.W.); (C.Y.)
| | - Ling Zeng
- Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; (Y.D.); (P.W.); (C.Y.)
| | - Yuangang Shi
- Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; (Y.D.); (P.W.); (C.Y.)
| | - Cong-Jun Li
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture USDA, Beltsville, MD 20705, USA
| | - Xiaolong Kang
- Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; (Y.D.); (P.W.); (C.Y.)
| |
Collapse
|
8
|
Hu Q, Li Z, Li Y, Deng X, Chen Y, Ma X, Zeng J, Zhao Y. Natural products targeting signaling pathways associated with regulated cell death in gastric cancer: Recent advances and perspectives. Phytother Res 2023. [PMID: 37157181 DOI: 10.1002/ptr.7866] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/17/2023] [Accepted: 04/25/2023] [Indexed: 05/10/2023]
Abstract
Gastric cancer (GC) is one of the most serious gastrointestinal malignancies with high morbidity and mortality. The complexity of GC process lies in the multi-phenotypic linkage regulation, in which regulatory cell death (RCD) is the core link, which largely dominates the fate of GC cells and becomes a key determinant of GC development and prognosis. In recent years, increasing evidence has been reported that natural products can prevent and inhibit the development of GC by regulating RCDs, showing great therapeutic potential. In order to further clarify its key regulatory characteristics, this review focused on specific expressions of RCDs, combined with a variety of signaling pathways and their crosstalk characteristics, sorted out the key targets and action rules of natural products targeting RCD. It is highlighted that a variety of core biological pathways and core targets are involved in the decision of GC cell fate, including the PI3K/Akt signaling pathway, MAPK-related signaling pathways, p53 signaling pathway, ER stress, Caspase-8, gasdermin D (GSDMD), and so on. Moreover, natural products target the crosstalk of different RCDs by modulating above signaling pathways. Taken together, these findings suggest that targeting various RCDs in GC with natural products is a promising strategy, providing a reference for further clarifying the molecular mechanism of natural products treating GC, which warrants further investigations in this area.
Collapse
Affiliation(s)
- Qichao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | - Zhibei Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yubing Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyu Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanling Zhao
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
9
|
Ouyang L, Li J, Chen X, Huang H, Tian Y, Li X, Pang D, Wei X, Xie J, Wang L, Liu D, Tu P, Li J, Hu Z. Chinese dragon's blood ethyl acetate extract suppresses gastric cancer progression through induction of apoptosis and autophagy mediated by activation of MAPK and downregulation of the mTOR-Beclin1 signalling cascade. Phytother Res 2023; 37:689-701. [PMID: 36245270 DOI: 10.1002/ptr.7652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/24/2022] [Accepted: 08/02/2022] [Indexed: 11/11/2022]
Abstract
Gastric cancer (GC) is a malignancy with high morbidity and mortality. Chinese dragon's blood is a traditional Chinese medicine derived from the red resin of Dracaena cochinchinensis (Lour.) S. C. Chen. However, the antigastric cancer effect of Chinese dragon's blood has not yet been reported. Herein, we demonstrated that Chinese dragon's blood ethyl acetate extract (CDBEE) suppressed the proliferative and metastatic potential of human gastric cancer MGC-803 and HGC-27 cells. CDBEE suppressed epithelial-mesenchymal transition in MGC-803 and HGC-27 cells. Moreover, CDBEE induced apoptotic and autophagic cell death in MGC-803 and HGC-27 cells. The cytotoxicity of CDBEE in human gastric epithelial GES-1 cells was dramatically weaker than that in human gastric cancer cells. Mechanistically, the activation of the mitogen-activated protein kinase (MAPK) signalling pathway was involved in the growth inhibition of MGC-803 and HGC-27 cells by CDBEE. Additionally, CDBEE-induced autophagic cell death was mediated by downregulation of the mammalian target of rapamycin (mTOR)-Beclin1 signalling cascade and upregulation of the ATG3/ATG7-LC3 signalling cascade. Importantly, CDBEE exhibited potent anti-GC efficacy in vivo without obvious toxicity or side effects. Therefore, CDBEE may be a promising candidate drug for the treatment of gastric cancer, especially for GC patients with aberrant MAPK signalling or mTOR signalling.
Collapse
Affiliation(s)
- Lishan Ouyang
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jiaqi Li
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaonan Chen
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Huiming Huang
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yingying Tian
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xingxing Li
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Daoran Pang
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,Innovation Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xuejiao Wei
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jinxin Xie
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Longyan Wang
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Dongxiao Liu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Pengfei Tu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jun Li
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhongdong Hu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
10
|
Shieu MK, Ho HY, Lin CC, Lo YS, Chuang YC, Hsieh MJ, Chen MK. Narciclasine suppresses oral cancer metastasis by modulating cathepsin B and extracellular signal-related kinase pathways. Biomed Pharmacother 2023; 158:114159. [PMID: 36577331 DOI: 10.1016/j.biopha.2022.114159] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Oral cancer is a malignancy with unfavorable prognosis due to its high rates of recurrence and lymph node metastasis. Narciclasine is extracted from Narcissus species (Amaryllidaceae), which have antitumor and anti-inflammatory properties. However, the antitumor properties of narciclasine toward oral cancer remain unclear. The present study explored the antimetastatic effects of narciclasine in oral cancer as well as the underlying molecular mechanisms. We treated three oral cancer cell lines with noncytotoxic concentrations of narciclasine and discovered a dose-dependent antimetastatic effect. Mitogen-activated protein kinase (MAPK) pathways, including extracellular signal-related kinase (ERK), p38, and c-Jun N-terminal kinase (JNK), were regulated by narciclasine. We further discovered the ERK pathway to directly affect narciclasine-induced metastasis inhibition by combining treatment with narciclasine and ERK inhibitor. Furthermore, downregulation of cathepsin B (CTSB) in the SAS and SCC-47 cell lines revealed the critical role of CTSB in the antimetastatic effect of narciclasine. Our findings indicate that narciclasine inhibits oral cancer metastasis by regulating the ERK pathway and CTSB. This study provides evidence of the mechanism of narciclasine-induced inhibition oral cancer metastasis and suggests potential targets for use in oral cancer treatment.
Collapse
Affiliation(s)
- Mu-Kuei Shieu
- Division of General Practice, Department of Medical Education, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Hsin-Yu Ho
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Chia-Chieh Lin
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Yu-Sheng Lo
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Yi-Ching Chuang
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Ming-Ju Hsieh
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan; Ph.D. Program in Tissue Engineering and Regenerative Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan.
| | - Mu-Kuan Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua 500, Taiwan.
| |
Collapse
|
11
|
Plazas E, Avila M MC, Muñoz DR, Cuca S LE. Natural isoquinoline alkaloids: Pharmacological features and multi-target potential for complex diseases. Pharmacol Res 2022; 177:106126. [DOI: 10.1016/j.phrs.2022.106126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 12/13/2022]
|