1
|
Qian M, Guan M, Wang L, Hu N. Tacrolimus and diabetic rodent models. Pharmacol Rep 2025; 77:333-354. [PMID: 39836342 DOI: 10.1007/s43440-024-00693-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 12/19/2024] [Accepted: 12/29/2024] [Indexed: 01/22/2025]
Abstract
Tacrolimus (TAC) is an immunosuppressant widely utilized in organ transplantation. One of its primary adverse effects is glucose metabolism disorder, which significantly increases the risk of diabetes. Investigating the molecular mechanisms underlying TAC-induced diabetes is essential for developing effective prevention and treatment strategies for these adverse effects. In addition, TAC can induce cost-effective, non-obese animal models of diabetes, where the metabolic parameter changes closely resemble those observed during the onset and progression of type 2 diabetes (T2DM), post-transplantation diabetes mellitus (PTDM), and associated complications. This review, based on articles indexed in PubMed up to August 19, 2024, identified 48 studies focusing on TAC-induced diabetic rodent models and 22 studies exploring the effects of TAC on diabetic or obese rodent models. These studies were systematically summarized based on TAC dosage, route of administration, duration of administration, and glucose metabolism indices used for evaluation. Additionally, the impact of TAC dose reduction or discontinuation on glucose metabolism was assessed, along with pharmacological agents that modulate TAC-induced diabetes, including anti-diabetic medications, anti-inflammatory and antioxidant compounds, biologics, and antibiotics. Key signaling pathways implicated in TAC-induced diabetes include CaN/NFAT, PI3K/AKT/mTOR, and TGF-β/Smad, all of which impair islet β-cell function, thereby contributing to diabetes development. This review provides a concise summary of the characteristics of relevant murine models, offering valuable guidance for selecting appropriate and economical animal models for future research.
Collapse
Affiliation(s)
- Minyan Qian
- Department of Pharmacy, The First People's Hospital of Changzhou/The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215127, Jiangsu, China
| | - Mengmeng Guan
- Department of Pharmacy, The First People's Hospital of Changzhou/The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215127, Jiangsu, China
| | - Liying Wang
- Department of Pharmacy, The First People's Hospital of Changzhou/The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Nan Hu
- Department of Pharmacy, The First People's Hospital of Changzhou/The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China.
| |
Collapse
|
2
|
Verma A, Anwer T, Iqbal M, Gahlot V, Khan R, Sharma M, Akhtar MS. Investigating the cardioprotective potential of quercetin against tacrolimus-induced cardiotoxicity in Wistar rats: A mechanistic insights. Open Med (Wars) 2025; 20:20241130. [PMID: 40028266 PMCID: PMC11868710 DOI: 10.1515/med-2024-1130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 03/05/2025] Open
Abstract
Purpose The aim of this research study is to assess the ability of quercetin to protect the heart from the negative consequences of tacrolimus-induced cardiotoxicity. Methods A total of 30 rats were divided into 5 groups. Tacrolimus was used to induce cardiotoxicity, whereas quercetin was employed as a protective agent. Results Tacrolimus administration significantly raised the levels of serum cardiac biomarkers (Lactate dehydrogenase, creatine kinase-myocardial band, and troponin-I) as well as inflammatory biomarkers (tumor necrosis alpha and interleukin 6). The administration of quercetin reduced raised levels of cardiac and inflammatory biomarkers significantly. In addition, treatment with tacrolimus resulted in higher malondialdehyde (MDA) (lipid peroxidation marker) levels and falling in the levels of reduced glutathione (GSH) as well as antioxidant enzymes such as superoxide dismutase (SOD), glutathione reductase (GR), and catalase (CAT). Quercetin treatment significantly reduced MDA levels and increased GSH and antioxidant enzyme (SOD, GR, and CAT) levels. Moreover, the tacrolimus-administered group exhibited histological changes in cardiac tissue cited as vacuole formation, large and uncondensed nucleus, and cardiomyocyte hypertrophy. The quercetin treatment reduced the inflammatory cell infiltration in cardiac tissue and thus reduced vacuole formation and hypertrophy. Conclusions The outcome showed quercetin's cardioprotective potential against tacrolimus-administered cardiotoxicity. Consequently, it is concluded that quercetin may be used as add-on therapy with tacrolimus to reduce cardiac adverse effects.
Collapse
Affiliation(s)
- Ankit Verma
- HIMT College of Pharmacy, Dr. A.P.J Abdul Kalam Technical University (AKTU), Knowledge Park 1, Greater Noida, Gautam Budh Nagar, 201310, U.P, India
| | - Tarique Anwer
- HIMT College of Pharmacy, Dr. A.P.J Abdul Kalam Technical University (AKTU), Knowledge Park 1, Greater Noida, Gautam Budh Nagar, 201310, U.P, India
| | - Muzaffar Iqbal
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Vinod Gahlot
- HIMT College of Pharmacy, Dr. A.P.J Abdul Kalam Technical University (AKTU), Knowledge Park 1, Greater Noida, Gautam Budh Nagar, 201310, U.P, India
| | - Roshi Khan
- HIMT College of Pharmacy, Dr. A.P.J Abdul Kalam Technical University (AKTU), Knowledge Park 1, Greater Noida, Gautam Budh Nagar, 201310, U.P, India
| | - Manju Sharma
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | | |
Collapse
|
3
|
Nakakita SI, Hirabayashi J. Transforming monosaccharides: Recent advances in rare sugar production and future exploration. BBA ADVANCES 2025; 7:100143. [PMID: 39926187 PMCID: PMC11803239 DOI: 10.1016/j.bbadva.2025.100143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/07/2025] [Accepted: 01/16/2025] [Indexed: 02/11/2025] Open
Abstract
Rare sugars are defined as monosaccharides and their derivatives that do not exist in nature at all or that exist in extremely limited amounts despite being theoretically possible. At present, no comprehensive dogma has been presented regarding how and why these rare sugars have deviated from the naturally selected monosaccharides. In this minireview, we adopt a hypothesis on the origin and evolution of elementary hexoses, previously presented by one of the authors (Hirabayashi, Q Rev Biol, 1996, 71:365-380). In this scenario, monosaccharides, which constitute various kinds of glycans in nature, are assumed to have been generated by formose reactions on the prebiotic Earth (chemical evolution era). Among them, the most stable hexoses, i.e., fructose, glucose, and mannose remained accumulated. After the birth of life, the "chemical origin" saccharides thus survived were transformed into a variety of "bricolage products", which include galactose and other recognition saccharides like fucose and sialic acid through the invention of diverse metabolic pathways (biological evolution era). The remaining monosaccharides that have deviated from this scenario are considered rare sugars. If we can produce rare sugars as we wish, it is expected that various more useful biomaterials will be created by using them as raw materials. Thanks to the pioneering research of the Izumori group in the 1990's, and to a few other investigations by other groups, almost all monosaccharides including l-sugars can now be produced by combining both chemical and enzymatic approaches. After briefly giving an overview of the origin of elementary hexoses and the current state of the rare sugar production, we will look ahead to the next generation of monosaccharide research which also targets glycosides including disaccharides.
Collapse
Affiliation(s)
- Shin-ichi Nakakita
- Department of Basic Life Science, Faculty of Medicine, Kagawa University, 1750-1, Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
- International Institute of Rare Sugar Research and Education, Kagawa University, Saiwai, Takamatsu, Kagawa 760-8521 Japan
| | - Jun Hirabayashi
- Department of Basic Life Science, Faculty of Medicine, Kagawa University, 1750-1, Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
- Institute for Glyco-core Research, Nagoya University, Furu-cho, Chikusa-ku, Nagoya 464-0814, Japan
| |
Collapse
|
4
|
Gong P, Wang X, Han Y, Long H, Yang W, Chen F, Cui M, Zhai W, Zheng B, Chen X. Hypoglycemic activity of enzymatically extracted Eucommia ulmoides polysaccharide (EUL-w1) on IR-HepG2 cell via the AMPK/PI3K/Akt signaling pathway. Int J Biol Macromol 2024; 283:137596. [PMID: 39542294 DOI: 10.1016/j.ijbiomac.2024.137596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
This study devised optimal conditions to extract Eucommia ulmoides leaf (EUL) polysaccharides using a cellulase and pectinase composite enzyme system based on one-way experiments and response surface methodology. Crude EUL polysaccharides (EULPs) were extracted and purified using a DEAE chromatography column. The polysaccharides EUL-w, EUL1, EUL2, and EUL3 were obtained by elution with water, 0.1 mol/L NaCl, 0.2 mol/L NaCl, and 0.3 mol/L NaCl, respectively. The EUL-w fraction had the highest hypoglycemic activity based on its α-amylase and α-glucosidase activities. The preliminary structure of purified EUL-w1 was elucidated. In vitro hypoglycemic activity studies and metabolomics analyses suggested that EUL-w1 modulated glucose metabolism by mediating the AMPK/PI3K/Akt signaling pathway. Our findings provide novel insights and data support for the utilization of EULPs as an emerging food resource in functional foods.
Collapse
Affiliation(s)
- Pin Gong
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Xufeng Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yewen Han
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Hui Long
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Wenjuan Yang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Fuxin Chen
- School of Chemistry and Chemical Engineering, Xi 'an University of Science and Technology, Xi'an 710054, China
| | - Mengjiao Cui
- Natural Will Biology Company, Xi'an 710000, China
| | - Wenjun Zhai
- College of Life Science and Food Engineering, Shaanxi Xueqian Normal University, Xi'an 710061, China
| | | | - Xuefeng Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
5
|
Maruyama T, Kasai H, Fukaya Y, Shiokawa M, Kimura T, Hamada Y. Drug-drug interactions between letermovir and tacrolimus in Japanese renal transplant recipients simulated using a physiologically based pharmacokinetic model. Front Microbiol 2024; 15:1480874. [PMID: 39444685 PMCID: PMC11496754 DOI: 10.3389/fmicb.2024.1480874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024] Open
Abstract
Letermovir (LET) is a novel antiviral agent recently approved for cytomegalovirus (CMV) prophylaxis of renal transplant patients in Japan. However, its interactions with tacrolimus (TAC), an important immunosuppressant, remain ambiguous, warranting careful evaluation considering the unique genetic and physiological characteristics of Japanese patients. Therefore, in this study, we aimed to investigate the drug-drug interactions between LET and extended-release TAC (ER-TAC) in Japanese renal transplant patients via physiologically based pharmacokinetic (PBPK) modeling. We developed PBPK models for LET and TAC, including a new model for ER-TAC, using the Simcyp simulator. We also created a virtual Japanese post-transplant population by incorporating physiological parameters specific to Japanese patients, including CYP3A5 genotypes. Our model accurately predicted the pharmacokinetics of both immediate-release and ER-TAC co-administered with LET. In the Japanese population, LET significantly increased ER-TAC exposure, with the effect varying by CYP3A5 genotype. For CYP3A5*1 carrier, the area under the curve ratio ranged from 2.33 to 2.53, while for CYP3A5*3/*3 carriers, it ranged from 2.82 to 2.86. The maximum concentration ratio was approximately 1.50 across all groups. Our findings suggest reducing the ER-TAC dose by approximately 57-60% for CYP3A5*1 carrier and 65% for CYP3A5*3/*3 carriers when co-administered with LET for Japanese renal transplant patients. Moreover, the developed model incorporating population-specific factors, such as hematocrit values and CYP3A5 genotype frequencies, is a valuable tool to evaluate complex drug interactions and guide the dosing strategies for LET and TAC in Japanese patients. Overall, this study expands the application of PBPK modeling in transplant pharmacology, contributing to the development of effective immunosuppressive strategies for Japanese renal transplant patients.
Collapse
Affiliation(s)
- Takumi Maruyama
- Department of Pharmacy, Tokyo Women's Medical University Hospital, Tokyo, Japan
- Department of Pharmacy, Kochi Medical School Hospital, Kochi, Japan
| | - Hidefumi Kasai
- Keio Frontier Research and Education Collaboration Square (K-FRECS) at Tonomachi, Keio University, Kanagawa, Japan
| | - Yutaka Fukaya
- Department of Pharmacy, Juntendo University Hospital, Tokyo, Japan
| | - Mitsuru Shiokawa
- Department of Pharmacy, Tokyo Women's Medical University Hospital, Tokyo, Japan
| | - Toshimi Kimura
- Department of Pharmacy, Juntendo University Hospital, Tokyo, Japan
| | - Yukihiro Hamada
- Department of Pharmacy, Kochi Medical School Hospital, Kochi, Japan
| |
Collapse
|
6
|
Li P, Zhang R, Zhou J, Guo P, Liu Y, Shi S. Vancomycin relieves tacrolimus-induced hyperglycemia by eliminating gut bacterial beta-glucuronidase enzyme activity. Gut Microbes 2024; 16:2310277. [PMID: 38332701 PMCID: PMC10860355 DOI: 10.1080/19490976.2024.2310277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
Up to 40% of transplant recipients treated long-term with tacrolimus (TAC) develop post-transplant diabetes mellitus (PTDM). TAC is an important risk factor for PTDM, but is also essential for immunosuppression after transplantation. Long-term TAC treatment alters the gut microbiome, but the mechanisms of TAC-induced gut microbiota in the pathogenesis of PTDM are poorly characterized. Here, we showed that vancomycin, an inhibitor of bacterial beta-glucuronidase (GUS), prevents TAC-induced glucose disorder and insulin resistance in mice. Metagenomics shows that GUS-producing bacteria are predominant and flourish in the TAC-induced hyperglycemia mouse model, with upregulation of intestinal GUS activity. Targeted metabolomics analysis revealed that in the presence of high GUS activity, the hydrolysis of bile acid (BAs)-glucuronic conjugates is increased and most BAs are overproduced in the serum and liver, which, in turn, activates the ileal farnesoid X receptor (FXR) and suppresses GLP-1 secretion by L-cells. The GUS inhibitor vancomycin significantly eliminated GUS-producing bacteria and inhibited bacterial GUS activity and BAs levels, thereby enhancing L-cell GLP-1 secretion and preventing hyperglycemia. Our results propose a novel clinical strategy for inhibiting the bacterial GUS enzyme to prevent hyperglycemia without requiring withdrawal of TAC treatment. This strategy exerted its effect through the ileal bile acid-FXR-GLP-1 pathway.
Collapse
Affiliation(s)
- Peixia Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinping Zhou
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengpeng Guo
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yani Liu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaojun Shi
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Song C, Chang L, Wang B, Zhang Z, Wei Y, Dou Y, Qi K, Yang F, Li X, Li X, Wang K, Qiao R, Han X. Seminal plasma metabolomics analysis of differences in liquid preservation ability of boar sperm. J Anim Sci 2023; 101:skad392. [PMID: 38006391 PMCID: PMC10718801 DOI: 10.1093/jas/skad392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/23/2023] [Indexed: 11/27/2023] Open
Abstract
The preservation of semen is pivotal in animal reproduction to ensure successful fertilization and genetic improvement of livestock and poultry. However, investigating the underlying causes of differences in sperm liquid preservation ability and identifying relevant biomarkers remains a challenge. This study utilized liquid chromatography-mass spectrometry (LC-MS) to analyze the metabolite composition of seminal plasma (SP) from two groups with extreme differences in sperm liquid preservation ability. The two groups namely the good liquid preservation ability (GPA) and the poor preservation ability (PPA). The aim was to explore the relationship between metabolite composition in SP and sperm liquid preservation ability, and to identify candidate biomarkers associated with this ability of sperm. The results revealed the identification of 756 metabolites and 70 differentially expressed metabolites (DEM) in the SP from two groups of boar semen with differing liquid preservation abilities at 17 °C. The majority of identified metabolites in the SP belonged to organic acids and derivatives as well as lipids and lipid-like molecules. The DEM in the SP primarily consisted of amino acids, peptides, and analogs. The Kyoto Encyclopedia of Genes and Genomes analysis also demonstrated that the DEM are mainly concentrated in amino acid synthesis and metabolism-related pathways (P < 0.05). Furthermore, eleven key metabolites were identified and six target amino acids were verified, and the results were consistent with the non-targeted metabolic analysis. These findings indicated that amino acids and their associated pathways play a potential role in determining boar sperm quality and liquid preservation ability. D-proline, arginine, L-citrulline, phenylalanine, leucine, DL-proline, DL-serine, and indole may serve as potential biomarkers for early assessment of boar sperm liquid preservation ability. The findings of this study are helpful in understanding the causes and mechanisms of differences in the liquid preservation ability of boar sperm, and provide valuable insights for improving semen quality assessment methods and developing novel extenders or protocols.
Collapse
Affiliation(s)
- Chenglei Song
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Lebin Chang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Bingjie Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhe Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yilin Wei
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yaqing Dou
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Kunlong Qi
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Feng Yang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiuling Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Xinjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Kejun Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Ruimin Qiao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Xuelei Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|