1
|
Fryar-Williams S, Tucker G, Clements P, Strobel J. Gene Variant Related Neurological and Molecular Biomarkers Predict Psychosis Progression, with Potential for Monitoring and Prevention. Int J Mol Sci 2024; 25:13348. [PMID: 39769114 PMCID: PMC11677369 DOI: 10.3390/ijms252413348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/14/2024] [Accepted: 11/17/2024] [Indexed: 01/11/2025] Open
Abstract
The (MTHFR) C677T gene polymorphism is associated with neurological disorders and schizophrenia. Patients diagnosed with schizophrenia and schizoaffective disorder and controls (n 134) had data collected for risk factors, molecular and neuro-sensory variables, symptoms, and functional outcomes. Promising gene variant-related predictive biomarkers were identified for diagnosis by Receiver Operating Characteristics and for illness duration by linear regression. These were then analyzed using Spearman's correlation in relation to the duration of illness. Significant correlations were ranked by strength and plotted on graphs for each MTHFR C677T variant. Homozygous MTHFR 677 TT carriers displayed a mid-illness switch to depression, with suicidality and a late-phase shift from lower to higher methylation, with activated psychosis symptoms. MTHFR 677 CC variant carriers displayed significant premorbid correlates for family history, developmental disorder, learning disorder, and head injury. These findings align with those of low methylation, oxidative stress, multiple neuro-sensory processing deficits, and disability outcomes. Heterozygous MTHFR 677 CT carriers displayed multiple shifts in mood and methylation with multiple adverse outcomes. The graphically presented ranked biomarker correlates for illness duration allow a perspective of psychosis development across gene variants, with the potential for phase of illness monitoring and new therapeutic insights to prevent or delay psychosis and its adverse outcomes.
Collapse
Affiliation(s)
- Stephanie Fryar-Williams
- Youth in Mind Research Institute, Unley, SA 5061, Australia
- Department of Medical Specialities, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Graeme Tucker
- Department of Public Health, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Peter Clements
- Department of Paediatrics, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Jörg Strobel
- Department of Psychiatry, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|
2
|
Beer C, Rae F, Semmler A, Voisey J. Biomarkers in the Diagnosis and Prediction of Medication Response in Depression and the Role of Nutraceuticals. Int J Mol Sci 2024; 25:7992. [PMID: 39063234 PMCID: PMC11277518 DOI: 10.3390/ijms25147992] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/28/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Depression continues to be a significant and growing public health concern. In clinical practice, it involves a clinical diagnosis. There is currently no defined or agreed upon biomarker/s for depression that can be readily tested. A biomarker is defined as a biological indicator of normal physiological processes, pathogenic processes, or pharmacological responses to a therapeutic intervention that can be objectively measured and evaluated. Thus, as there is no such marker for depression, there is no objective measure of depression in clinical practice. The discovery of such a biomarker/s would greatly assist clinical practice and potentially lead to an earlier diagnosis of depression and therefore treatment. A biomarker for depression may also assist in determining response to medication. This is of particular importance as not all patients prescribed with medication will respond, which is referred to as medication resistance. The advent of pharmacogenomics in recent years holds promise to target treatment in depression, particularly in cases of medication resistance. The role of pharmacogenomics in routine depression management within clinical practice remains to be fully established. Equally so, the use of pharmaceutical grade nutrients known as nutraceuticals in the treatment of depression in the clinical practice setting is largely unknown, albeit frequently self-prescribed by patients. Whether nutraceuticals have a role in not only depression treatment but also in potentially modifying the biomarkers of depression has yet to be proven. The aim of this review is to highlight the potential biomarkers for the diagnosis, prediction, and medication response of depression.
Collapse
Affiliation(s)
- Cristina Beer
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia; (C.B.); (F.R.)
| | - Fiona Rae
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia; (C.B.); (F.R.)
| | - Annalese Semmler
- School of Clinical Sciences, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia;
| | - Joanne Voisey
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia; (C.B.); (F.R.)
| |
Collapse
|
3
|
Manchia M, Paribello P, Pinna M, Faa G. The Role of Copper Overload in Modulating Neuropsychiatric Symptoms. Int J Mol Sci 2024; 25:6487. [PMID: 38928192 PMCID: PMC11204094 DOI: 10.3390/ijms25126487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/01/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Copper is a transition metal essential for growth and development and indispensable for eukaryotic life. This metal is essential to neuronal function: its deficiency, as well as its overload have been associated with multiple neurodegenerative disorders such as Alzheimer's disease and Wilson's disease and psychiatric conditions such as schizophrenia, bipolar disorder, and major depressive disorders. Copper plays a fundamental role in the development and function of the human Central Nervous System (CNS), being a cofactor of multiple enzymes that play a key role in physiology during development. In this context, we thought it would be timely to summarize data on alterations in the metabolism of copper at the CNS level that might influence the development of neuropsychiatric symptoms. We present a non-systematic review with the study selection based on the authors' judgement to offer the reader a perspective on the most significant elements of neuropsychiatric symptoms in Wilson's disease. We highlight that Wilson's disease is characterized by marked heterogeneity in clinical presentation among patients with the same mutation. This should motivate more research efforts to disentangle the role of environmental factors in modulating the expression of genetic predisposition to this disorder.
Collapse
Affiliation(s)
- Mirko Manchia
- Unit of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy;
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, 09124 Cagliari, Italy
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Pasquale Paribello
- Unit of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy;
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, 09124 Cagliari, Italy
| | - Martina Pinna
- Forensic Psychiatry Unit, Sardinia Health Agency, 09123 Cagliari, Italy;
| | - Gavino Faa
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy;
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
4
|
Hong Y, Weng Y, Wu Q, Qi LY, Fan LJ. Conjugated Polyelectrolyte Containing a High Density of Pendant Phenylboronic Acid Groups for Dopamine Detection. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37931325 DOI: 10.1021/acsami.3c10513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
A fluorescent sensing system based on a conjugated polyelectrolyte was constructed to detect dopamine (DA) in complex samples. The conjugated polymer PFPE-PBA with poly[fluorenyl-alt-p-phenyleneethynylene] (PFPE) as the backbone and carrying four pendant phenylboronic acid (PBA) groups in each repeat unit was synthesized. PFPE-PBA was found to have good solubility in polar solvents. After optimization, glycine-NaOH at pH 10 was selected as the buffer, and the solvent composition of the system was set to methanol/water (9/1 by volume). Titration experiments showed that DA could effectively quench the fluorescence of the polymer solution with a response time within 60 s and a limit of detection of 23 nM. Polyols, cations, and other possible interfering substances do not significantly affect the fluorescence of the polymer, thereby allowing for the highly selective detection of DA. Furthermore, quantitative determination of DA in spiked serum and artificial urine samples was successfully demonstrated, with recoveries ranging from 96.7 to 104%. Preliminary mechanism studies suggest that the pedant PBAs capture DA via reaction with the catechol group, and the fluorescence quenching is most likely due to the photoinduced electron transfer between the aromatic part of DA and the conjugated backbone. This study provides a general strategy for the future design of conjugated polyelectrolyte-based sensing systems.
Collapse
Affiliation(s)
- Ying Hong
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China
| | - Yuchen Weng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China
| | - Qin Wu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China
| | - Lu-Yue Qi
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Soochow University, Suzhou 215004, P.R. China
| | - Li-Juan Fan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China
| |
Collapse
|
5
|
Costa ALL, Costa DL, Pessoa VF, Caixeta FV, Maior RS. Systematic review of visual illusions in schizophrenia. Schizophr Res 2023; 252:13-22. [PMID: 36610221 DOI: 10.1016/j.schres.2022.12.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/06/2022] [Accepted: 12/26/2022] [Indexed: 01/07/2023]
Abstract
Visual illusions have long been used as tools to investigate sensory-perceptual deficits in schizophrenia. Recent conflicting accounts have called into question the assumption of abnormal illusion perception in patients and, therefore, the validity of this approach. Here, we present a systematic review of the current evidence regarding visual illusion perception abnormalities in patients with schizophrenia. Relevant publications were identified by a systematic search of PubMed, Literatura LILACS, PsycINFO, Embase, Scopus, Cochrane Central Register of Controlled Trials (CENTRAL), IBECS, BIOSIS, and Web of Science. Forty-five studies were selected which included illusions classified as 'Motion illusions', 'Geometric-optical illusions', 'Illusory contours', 'Depth inversion illusion', and 'Non-specific'. There is concordant evidence of abnormal processing of illusions in patients for most categories, especially in facial Depth Inversion and Müller-Lyer illusions. There were significant methodological disparities and shortcomings, but risk of bias was overall low for individual studies. The usefulness of visual illusions as tools in clinical settings as well as in basic research may be contingent on significant methodological refinements.
Collapse
Affiliation(s)
- Ana Luísa Lamounier Costa
- Department of Physiological Sciences, Institute of Biology, University of Brasilia, 70910-900 Brasilia, DF, Brazil
| | - Dorcas Lamounier Costa
- Maternal and Childhood Department, Federal University of Piauí, 64049-550 Teresina, PI, Brazil; Intelligence Center for Emerging and Neglected Tropical Diseases (CIATEN), 64.001-450 Teresina, PI, Brazil
| | - Valdir Filgueiras Pessoa
- Department of Physiological Sciences, Institute of Biology, University of Brasilia, 70910-900 Brasilia, DF, Brazil
| | - Fábio Viegas Caixeta
- Department of Physiological Sciences, Institute of Biology, University of Brasilia, 70910-900 Brasilia, DF, Brazil
| | - Rafael S Maior
- Department of Physiological Sciences, Institute of Biology, University of Brasilia, 70910-900 Brasilia, DF, Brazil.
| |
Collapse
|
6
|
Omeiza NA, Bakre A, Ben-Azu B, Sowunmi AA, Abdulrahim HA, Chimezie J, Lawal SO, Adebayo OG, Alagbonsi AI, Akinola O, Abolaji AO, Aderibigbe AO. Mechanisms underpinning Carpolobia lutea G. Don ethanol extract's neurorestorative and antipsychotic-like activities in an NMDA receptor antagonist model of schizophrenia. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115767. [PMID: 36206872 DOI: 10.1016/j.jep.2022.115767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/11/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Persistent ketamine insults to the central nervous system block NMDA receptors and disrupt putative neurotransmission, oxido-nitrosative, and inflammatory pathways, resulting in schizophrenia-like symptoms in animals. Previously, the ethnomedicinal benefits of Carpolobia lutea against insomnia, migraine headache, and insanity has been documented, but the mechanisms of action remain incomplete. AIM OF THE STUDY Presently, we explored the neuro-therapeutic role of Carpolobia lutea ethanol extract (C. lutea) in ketamine-induced schizophrenia-like symptoms in mice. MATERIALS AND METHODS Sixty-four male Swiss (22 ± 2 g) mice were randomly assigned into eight groups (n = 8/group) and exposed to a reversal ketamine model of schizophrenia. For 14 days, either distilled water (10 mL/kg; p.o.) or ketamine (20 mg/kg; i.p.) was administered, following possible reversal treatments with C. lutea (100, 200, 400, and 800 mg/kg; p.o.), haloperidol (1 mg/kg, p.o.), or clozapine (5 mg/kg; p.o.) beginning on days 8-14. During the experiment, a battery of behavioral characterizations defining schizophrenia-like symptoms were obtained using ANY-maze software, followed by neurochemical, oxido-inflammatory and histological assessments in the mice brains. RESULTS A 7-day reversal treatment with C. lutea reversed predictors of positive, negative and cognitive symptoms of schizophrenia. C. lutea also mitigated ketamine-induced neurochemical derangements as evidenced by modulations of dopamine, glutamate, norepinephrine and serotonin neurotransmission. Also, the increased acetylcholinesterase activity, malondialdehyde nitrite, interleukin-6 and tumor necrosis-factor-α concentrations were reversed by C. lutea accompanied with elevated levels of catalase, superoxide dismutase and reduced glutathione. Furthermore, C. lutea reversed ketamine-induced neuronal alterations in the prefrontal cortex, hippocampus and cerebellum sections of the brain. CONCLUSION These findings suggest that C. lutea reverses the cardinal symptoms of ketamine-induced schizophrenia in a dose-dependent fashion by modulating the oxido-inflammatory and neurotransmitter-related mechanisms.
Collapse
Affiliation(s)
- Noah A Omeiza
- Department of Pharmacology and Therapeutics, Neuropharmacology Unit, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Adewale Bakre
- Department of Pharmacology and Therapeutics, Neuropharmacology Unit, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Benneth Ben-Azu
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Nigeria
| | - Abimbola A Sowunmi
- Department of Pharmacology and Therapeutics, Neuropharmacology Unit, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Halimat A Abdulrahim
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Joseph Chimezie
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Sodiq O Lawal
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olusegun G Adebayo
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria; Department of Physiology, Neurophysiology Unit, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port-Harcourt, Nigeria
| | - Abdullateef I Alagbonsi
- Department of Clinical Biology (Physiology), School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye, Southern Province, Rwanda
| | - Olugbenga Akinola
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, College of Medicine, University of Ibadan, Nigeria
| | - Amos O Abolaji
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adegbuyi O Aderibigbe
- Department of Pharmacology and Therapeutics, Neuropharmacology Unit, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
7
|
Lin P, Sun J, Lou X, Li D, Shi Y, Li Z, Ma P, Li P, Chen S, Jin W, Liu S, Chen Q, Gao Q, Zhu L, Xu J, Zhu M, Wang M, Liang K, Zhao L, Xu H, Dong K, Li Q, Cheng X, Chen J, Guo X. Consensus on potential biomarkers developed for use in clinical tests for schizophrenia. Gen Psychiatr 2022; 35:e100685. [PMID: 35309241 PMCID: PMC8867318 DOI: 10.1136/gpsych-2021-100685] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/07/2022] [Indexed: 12/12/2022] Open
Abstract
BackgroundSchizophrenia is a serious mental illness affecting approximately 20 million individuals globally. Both genetic and environmental factors contribute to the illness. If left undiagnosed and untreated, schizophrenia results in impaired social function, repeated hospital admissions, reduced quality of life and decreased life expectancy. Clinical diagnosis largely relies on subjective evidence, including self-reported experiences, and reported behavioural abnormalities followed by psychiatric evaluation. In addition, psychoses may occur along with other conditions, and the symptoms are often episodic and transient, posing a significant challenge to the precision of diagnosis. Therefore, objective, specific tests using biomarkers are urgently needed for differential diagnosis of schizophrenia in clinical practice.AimsWe aimed to provide evidence-based and consensus-based recommendations, with a summary of laboratory measurements that could potentially be used as biomarkers for schizophrenia, and to discuss directions for future research.MethodsWe searched publications within the last 10 years with the following keywords: ‘schizophrenia’, ‘gene’, ‘inflammation’, ‘neurotransmitter’, ‘protein marker’, ‘gut microbiota’, ‘pharmacogenomics’ and ‘biomarker’. A draft of the consensus was discussed and agreed on by all authors at a round table session.ResultsWe summarised the characteristics of candidate diagnostic markers for schizophrenia, including genetic, inflammatory, neurotransmitter, peripheral protein, pharmacogenomic and gut microbiota markers. We also proposed a novel laboratory process for diagnosing schizophrenia in clinical practice based on the evidence summarised in this paper.ConclusionsFurther efforts are needed to identify schizophrenia-specific genetic and epigenetic markers for precise diagnosis, differential diagnosis and ethnicity-specific markers for the Chinese population. The development of novel laboratory techniques is making it possible to use these biomarkers clinically to diagnose disease.
Collapse
Affiliation(s)
- Ping Lin
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Medical Microbiology and Parasitology, Fudan University School of Basic Medical Sciences, Shanghai, China
| | - Junyu Sun
- Department of Psychosis, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Xiaoyan Lou
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Li
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun Shi
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenhua Li
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peijun Ma
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Li
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuzi Chen
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weifeng Jin
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuai Liu
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Chen
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiong Gao
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lili Zhu
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Xu
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengyuan Zhu
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengxia Wang
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kangyi Liang
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Zhao
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huabin Xu
- Clinical Laboratory, Affiliated Hospital of West Anhui Health Vocational College, Lu’an, Anhui, China
| | - Ke Dong
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingtian Li
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xunjia Cheng
- Department of Medical Microbiology and Parasitology, Fudan University School of Basic Medical Sciences, Shanghai, China
| | - Jinghong Chen
- Editorial Office of General Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaokui Guo
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Rainforest J, Schloss J, Foley H, Steel A. Clinical significance and importance of elevated urinary kryptopyrroles (UKP): Self-reported observations and experience of Australian clinicians using UKP testing. ADVANCES IN INTEGRATIVE MEDICINE 2021. [DOI: 10.1016/j.aimed.2021.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Warren B, Sarris J, Mulder RT, Rucklidge JJ. Pyroluria: Fact or Fiction? J Altern Complement Med 2021; 27:407-415. [PMID: 33902305 DOI: 10.1089/acm.2020.0151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Objective: The term "Mauve factor" (pyrroluria) dates back to 1958 when Dr. Abram Hoffer defined the condition as elevated levels of pyrroles in the urine, currently called hydroxyhemepyrrolin-2-one (HPL). It was suggested that the raised pyrrole levels lead to depletions in zinc and vitamin B6, which, in turn, were hypothesized to result in a range of psychiatric disorders, such as schizophrenia, anxiety, and depression. Treatment implications are supplementation with zinc and B6. This article aimed to review the scientific literature associating pyrroluria with psychiatric symptoms, explore the validity of HPL testing, explore the role of nutrients as treatment options for pyrroluria, and discuss future research directions. Methods: A PRISMA review was conducted using search results from electronic databases PubMed, MEDLINE, PsycINFO, EMBASE from inception to February 2020 using the following keywords: hydroxyhemepyryrrolin (HPL), kryptopyrrole (KP), mauve factor, pyroluria, pyrroluria, monopyrroles. Article reference lists were also scanned and included where relevant. Results: Seventy-three articles were identified of which only three studies identified significantly higher HPL levels in a psychiatric population compared with controls, and there were no placebo-controlled treatment trials directed at pyrroluria. The other 13 clinical studies either showed no association or did not provide adequate data to show group differences in HPL levels. Despite an extensive history of practitioners diagnosing and treating a wide variety of mental health conditions associated with pyrroluria as well as clinical observations of elevated HPL being associated with psychiatric disorders, there was no clear research that showed the following: (1) elevated HPL is robustly associated with increased mental health symptoms, (2) elevated HPL in urine is associated with increased urine excretion of zinc and B6, and (3) high-dose zinc and B6 are an efficacious treatment for mental health problems associated with elevated HPL. Conclusions: Elevated HPL is a clinically observed, but poorly researched biomarker with unclear associations with mental disorders. Based on current evidence, HPL testing is not recommended as a screening or treatment tool. Further research is required in the following areas: establishment of which specific clinical populations exhibit elevated HPL, validation of the chemistry and validity of testing, and controlled trials to establish efficacy of high-dose zinc and B6 as treatment of elevated pyrroles.
Collapse
Affiliation(s)
- Benjamin Warren
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand
| | - Jerome Sarris
- NICM Health Research Institute, Western Sydney University, Westmead, New South Wales, Australia.,Department of Psychiatry, The Melbourne Clinic, Professorial Unit, University of Melbourne, Melbourne, Victoria, Australia
| | - Roger T Mulder
- Department of Psychological Medicine, University of Otago, Christchurch, New Zealand
| | - Julia J Rucklidge
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
10
|
Mazhari S, Arjmand S, Eslami Shahrbabaki M, Karimi Ghoughari E. Comparing Copper Serum Level and Cognitive Functioning in Patients With Schizophrenia and Healthy Controls. Basic Clin Neurosci 2020; 11:649-657. [PMID: 33643558 PMCID: PMC7878054 DOI: 10.32598/bcn.9.10.11.5.2116.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/20/2019] [Accepted: 04/13/2020] [Indexed: 12/17/2022] Open
Abstract
Introduction: The altered serum profiles of several trace elements have been reported in Schizophrenia (SCZ). This study was designed to elucidate whether the serum levels of Copper (Cu) and Magnesium (Mg), the two essential trace elements which contribute to neurotransmitter transmission, are altered in patients with SCZ. We also investigated whether there is an interrelation between cognitive functioning and the serum levels of Cu and Mg. Methods: Sixty patients with SCZ and 30 healthy controls participated in this study. The patient group was divided into the following: i) early patients (n=35, ≤5 years of illness initiation), and ii) chronic patients (n=25, ≥5 years of illness duration). The serum levels of Cu and Mg were measured by atomic absorption spectroscopy and ion-selective electrode potentiometry, respectively. To assess cognitive abilities, a Persian adaptation of the Brief Assessment of Cognition in Schizophrenia (BACS) was administered. Results: The present research results revealed significantly higher Cu serum levels in both patient groups [early patients (M=94.6), chronic patients (M=97.5)], compared to the controls (M=71.0) (P<0.001); however, no significant difference was observed among the study groups for Mg [patients with the recent onset (M=2.0), chronic patients (M=2.0), and controls (M=1.9)] P=0.1. While the serum Cu profile of healthy individuals revealed a negative correlation with working memory (r=−0.42, P=0.02), and executive functioning (r=−0.40, P=0.03), no significant correlation was observed between Cu serum levels of patients and BACS cognitive domains. Conclusion: findings suggested that the high Cu serum concentration might impact the cognitive decline in healthy individuals; however, no significant correlation was observed in the Patients; i.e. most likely because cognition is severely impaired in SCZ. Additional studies examining trace elements in drug-naïve patients with SCZ are required.
Collapse
Affiliation(s)
- Shahrzad Mazhari
- Neuroscience Research Centre, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Shokouh Arjmand
- Neuroscience Research Centre, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahin Eslami Shahrbabaki
- Department of Psychiatry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Elham Karimi Ghoughari
- Neuroscience Research Centre, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
11
|
Mäki-Marttunen V, Andreassen OA, Espeseth T. The role of norepinephrine in the pathophysiology of schizophrenia. Neurosci Biobehav Rev 2020; 118:298-314. [PMID: 32768486 DOI: 10.1016/j.neubiorev.2020.07.038] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 07/01/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022]
Abstract
Several lines of evidence have suggested for decades a role for norepinephrine (NE) in the pathophysiology and treatment of schizophrenia. Recent experimental findings reveal anatomical and physiological properties of the locus coeruleus-norepinephrine (LC-NE) system and its involvement in brain function and cognition. Here, we integrate these two lines of evidence. First, we review the functional and structural properties of the LC-NE system and its impact on functional brain networks, cognition, and stress, with special emphasis on recent experimental and theoretical advances. Subsequently, we present an update about the role of LC-associated functions for the pathophysiology of schizophrenia, focusing on the cognitive and motivational deficits. We propose that schizophrenia phenomenology, in particular cognitive symptoms, may be explained by an abnormal interaction between genetic susceptibility and stress-initiated LC-NE dysfunction. This in turn, leads to imbalance between LC activity modes, dysfunctional regulation of brain network integration and neural gain, and deficits in cognitive functions. Finally, we suggest how recent development of experimental approaches can be used to characterize LC function in schizophrenia.
Collapse
Affiliation(s)
| | - Ole A Andreassen
- CoE NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, Building 49, P.O. Box 4956 Nydalen, N-0424 Oslo, Norway
| | - Thomas Espeseth
- Department of Psychology, University of Oslo, Postboks 1094, Blindern, 0317 Oslo, Norway; Bjørknes College, Lovisenberggata 13, 0456 Oslo, Norway
| |
Collapse
|
12
|
Lu Q, Chen X, Liu D, Wu C, Liu M, Li H, Zhang Y, Yao S. Synergistic electron transfer effect-based signal amplification strategy for the ultrasensitive detection of dopamine. Talanta 2018; 182:428-432. [PMID: 29501174 DOI: 10.1016/j.talanta.2018.01.068] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/17/2018] [Accepted: 01/29/2018] [Indexed: 12/22/2022]
Abstract
The selective and sensitive detection of dopamine (DA) is of great significance for the identification of schizophrenia, Huntington's disease, and Parkinson's disease from the perspective of molecular diagnostics. So far, most of DA fluorescence sensors are based on the electron transfer from the fluorescence nanomaterials to DA-quinone. However, the limited electron transfer ability of the DA-quinone affects the level of detection sensitivity of these sensors. In this work, based on the DA can reduce Ag+ into AgNPs followed by oxidized to DA-quinone, we developed a novel silicon nanoparticles-based electron transfer fluorescent sensor for the detection of DA. As electron transfer acceptor, the AgNPs and DA-quinone can quench the fluorescence of silicon nanoparticles effectively through the synergistic electron transfer effect. Compared with traditional fluorescence DA sensors, the proposed synergistic electron transfer-based sensor improves the detection sensitivity to a great extent (at least 10-fold improvement). The proposed sensor shows a low detection limit of DA, which is as low as 0.1 nM under the optimal conditions. This sensor has potential applicability for the detection of DA in practical sample. This work has been demonstrated to contribute to a substantial improvement in the sensitivity of the sensors. It also gives new insight into design electron transfer-based sensors.
Collapse
Affiliation(s)
- Qiujun Lu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China; State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, PR China
| | - Xiaogen Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Dan Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Cuiyan Wu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Meiling Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Haitao Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Youyu Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China.
| | - Shouzhuo Yao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| |
Collapse
|
13
|
Hambly JL, Francis K, Khan S, Gibbons KS, Walsh WJ, Lambert B, Testa C, Haywood A. Micronutrient Therapy for Violent and Aggressive Male Youth: An Open-Label Trial. J Child Adolesc Psychopharmacol 2017; 27:823-832. [PMID: 28481642 DOI: 10.1089/cap.2016.0199] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVES Pharmacotherapy for problematic aggressive and violent behavior disorders in male children and adolescents is associated with significant adverse events. Treatments with more acceptable risk-benefit ratios are critically needed. Micronutrient intervention will be investigated as an alternative to bridge the therapeutic gap in the management of these behaviors. METHODS Males aged 4-14 who displayed ongoing violent and aggressive behaviors received micronutrient intervention containing alpha-tocopherol (vitamin E), ascorbic acid (vitamin C), biotin, chromium, pyridoxal-5-phosphate (P5P), pyridoxine (vitamins B6), selenium, and zinc, in a 16-week open-label trial. Plasma zinc, plasma copper, copper/zinc ratio, and urinary hydroxyhemopyrroline-2-one (HPL) tests were conducted at baseline and endpoint. Participants were examined for changes in aggressive and violent behaviors measured using the Children's Aggression Scale (CAS) and the Modified Overt Aggression Scale (MOAS), improvements in family functioning measured using the Family Functioning Style Scale, improvements in health-related quality of life (HRQoL) measured using the Pediatric Quality of Life Inventory (PedsQL) at baseline, 8 weeks, endpoint, and at 4-6-month follow-up. RESULTS Thirty-two male children and adolescents met inclusion criteria. Thirty-one (mean 8.35 ± standard deviation 2.93 years) completed the study, with one participant lost to follow-up. Micronutrient therapy significantly improved parent-reported aggressive and violent behaviors measured using the CAS for all domains except the use of weapons (p < 0.001 to p = 0.02) with medium to large effect size (Cohen's d = 0.72-1.43) and the MOAS (p < 0.001) with large effect size (Cohen's d = 1.26). Parent-reported HRQoL (p < 0.001; Cohen's d = -1.69) and family functioning (p = 0.03; Cohen's d = -0.41) also significantly improved. CONCLUSION Micronutrient therapy appeared well tolerated, with a favorable side effect profile. It appeared effective in the reduction of parent-reported aggressive and violent behaviors, and showed improvement in family functioning and HRQoL in male youth after 16 weeks. Further research in the form of a double-blinded, randomized controlled trial is required to verify these initial positive observations.
Collapse
Affiliation(s)
- Jessica L Hambly
- 1 School of Pharmacy, Menzies Health Institute Queensland, Griffith University , Southport, Australia
| | - Kelly Francis
- 2 Happiness in Health , West Burleigh, Queensland, Australia
| | - Sohil Khan
- 1 School of Pharmacy, Menzies Health Institute Queensland, Griffith University , Southport, Australia .,3 Mater Research Institute-The University of Queensland , Brisbane, Queensland, Australia
| | - Kristen S Gibbons
- 3 Mater Research Institute-The University of Queensland , Brisbane, Queensland, Australia
| | | | - Brett Lambert
- 5 Applied Analytical Laboratories , Meadowbrook, Queensland, Australia
| | - Chris Testa
- 6 Chris Testa's Tugun Compounding Pharmacy , Tugun, Queensland, Australia
| | - Alison Haywood
- 1 School of Pharmacy, Menzies Health Institute Queensland, Griffith University , Southport, Australia .,3 Mater Research Institute-The University of Queensland , Brisbane, Queensland, Australia
| |
Collapse
|
14
|
Mitra S, Natarajan R, Ziedonis D, Fan X. Antioxidant and anti-inflammatory nutrient status, supplementation, and mechanisms in patients with schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2017; 78:1-11. [PMID: 28499901 DOI: 10.1016/j.pnpbp.2017.05.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 05/06/2017] [Accepted: 05/08/2017] [Indexed: 10/19/2022]
Abstract
Over 50 million people around the world suffer from schizophrenia, a severe mental illness characterized by misinterpretation of reality. Although the exact causes of schizophrenia are still unknown, studies have indicated that inflammation and oxidative stress may play an important role in the etiology of the disease. Pro-inflammatory cytokines are crucial for normal central nervous development and proper functioning of neural networks and neurotransmitters. Patients with schizophrenia tend to have abnormal immune activation resulting in elevated pro-inflammatory cytokine levels, ultimately leading to functional brain impairments. Patients with schizophrenia have also been found to suffer from oxidative stress, a result of an imbalance between the production of free radicals and the ability to detoxify their harmful effects. Furthermore, inflammation and oxidative stress are implicated to be related to the severity of psychotic symptoms. Several nutrients are known to have anti-inflammatory and antioxidant functions through various mechanisms in our body. The present review evaluates studies and literature that address the status and supplementation of omega-3 polyunsaturated fatty acids, vitamin D, B vitamins (B6, folate, B12), vitamin E, and carotenoids in different stages of schizophrenia. The possible anti-inflammatory and antioxidant mechanisms of action of each nutrient are discussed.
Collapse
Affiliation(s)
- Sumedha Mitra
- Department of Psychiatry, UMass Memorial Medical Center/University of Massachusetts Medical School, One Biotech, 365 Plantation Street, Worcester, MA 01605, USA
| | - Radhika Natarajan
- Department of Psychiatry, UMass Memorial Medical Center/University of Massachusetts Medical School, One Biotech, 365 Plantation Street, Worcester, MA 01605, USA
| | - Douglas Ziedonis
- Department of Psychiatry, UMass Memorial Medical Center/University of Massachusetts Medical School, One Biotech, 365 Plantation Street, Worcester, MA 01605, USA
| | - Xiaoduo Fan
- Department of Psychiatry, UMass Memorial Medical Center/University of Massachusetts Medical School, One Biotech, 365 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
15
|
Maletic V, Eramo A, Gwin K, Offord SJ, Duffy RA. The Role of Norepinephrine and Its α-Adrenergic Receptors in the Pathophysiology and Treatment of Major Depressive Disorder and Schizophrenia: A Systematic Review. Front Psychiatry 2017; 8:42. [PMID: 28367128 PMCID: PMC5355451 DOI: 10.3389/fpsyt.2017.00042] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/01/2017] [Indexed: 12/11/2022] Open
Abstract
Norepinephrine (NE) is recognized as having a key role in the pathophysiology of major depressive disorder (MDD) and schizophrenia, although its distinct actions via α-adrenergic receptors (α-ARs) are not well defined. We performed a systematic review examining the roles of NE and α-ARs in MDD and schizophrenia. PubMed and ProQuest database searches were performed to identify English language papers published between 2008 and 2015. In total, 2,427 publications (PubMed, n = 669; ProQuest, n = 1,758) were identified. Duplicates, articles deemed not relevant, case studies, reviews, meta-analyses, preclinical reports, or articles on non-target indications were excluded. To limit the review to the most recent data representative of the literature, the review further focused on publications from 2010 to 2015, which were screened independently by all authors. A total of 16 research reports were identified: six clinical trial reports, six genetic studies, two biomarker studies, and two receptor studies. Overall, the studies provided indirect evidence that α-AR activity may play an important role in aberrant regulation of cognition, arousal, and valence systems associated with MDD and schizophrenia. Characterization of the NE pathway in patients may provide clinicians with information for more personalized therapy of these heterogeneous diseases. Current clinical studies do not provide direct evidence to support the role of NE α-ARs in the pathophysiology of MDD and schizophrenia and in the treatment response of patients with these diseases, in particular with relation to specific valence systems. Clinical studies that attempt to define associations between specific receptor binding profiles of psychotropics and particular clinical outcomes are needed.
Collapse
Affiliation(s)
- Vladimir Maletic
- Department of Neuropsychiatry and Behavioral Science, University of South Carolina , Columbia, SC , USA
| | - Anna Eramo
- Medical Affairs - Psychiatry, Lundbeck LLC , Deerfield, IL , USA
| | - Keva Gwin
- Medical Affairs - Psychiatry, Lundbeck LLC , Deerfield, IL , USA
| | - Steve J Offord
- Medical Affairs, Otsuka Pharmaceutical Development and Commercialization, Inc. , Princeton, NJ , USA
| | - Ruth A Duffy
- Medical Affairs, Otsuka Pharmaceutical Development and Commercialization, Inc. , Princeton, NJ , USA
| |
Collapse
|
16
|
Fryar-Williams S. Fundamental Role of Methylenetetrahydrofolate Reductase 677 C → T Genotype and Flavin Compounds in Biochemical Phenotypes for Schizophrenia and Schizoaffective Psychosis. Front Psychiatry 2016; 7:172. [PMID: 27881965 PMCID: PMC5102045 DOI: 10.3389/fpsyt.2016.00172] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/27/2016] [Indexed: 12/19/2022] Open
Abstract
The Mental Health Biomarker Project (2010-2016) explored variables for psychosis in schizophrenia and schizoaffective disorder. Blood samples from 67, highly characterized symptomatic cases and 67 gender and age matched control participants were analyzed for methyl tetrahydrofolate reductase (MTHFR) 677C → T gene variants and for vitamin B6, B12 and D, folate, unbound copper, zinc cofactors for enzymes in the methylation cycle, and related catecholamine pathways. Urine samples were analyzed for indole-catecholamines, their metabolites, and oxidative-stress marker, hydroxylpyrolline-2-one (HPL). Rating scales were Brief Psychiatric Rating Scale, Positive and Negative Syndrome Scale, Global Assessment of Function scale, Clinical Global Impression (CGI) score, and Social and Occupational Functioning Assessment Scale (SOFAS). Analysis used Spearman's correlates, receiver operating characteristics and structural equation modeling (SEM). The correlative pattern of variables in the overall participant sample strongly implicated monoamine oxidase (MAO) enzyme inactivity so the significant role of MAO's cofactor flavin adenine nucleotide and its precursor flavin adenine mononucleotide (FMN) within the biochemical pathways was investigated and confirmed as 71% on SEM of the total sample. Splitting the data sets for MTHFR 677C → T polymorphism variants coding for the MTHFR enzyme, discovered that biochemistry variables relating to the wild-type enzyme differed markedly in pattern from those coded by the homozygous variant and that the hereozygous-variant pattern resembled the wild-type-coded pattern. The MTHFR 677C → T-wild and -heterozygous gene variants have a pattern of depleted vitamin cofactors characteristic of flavin insufficiency with under-methylation and severe oxidative stress. The second homozygous MTHFR 677TT pattern related to elevated copper:zinc ratio and a vitamin pattern related to flavin sufficiency and risk of over-methylation. The two gene variants and their different biochemical phenotypes govern findings in relationship to case-identification, illness severity, duration of illness, and functional disability in schizophrenia and schizoaffective psychosis, and establish a basis for trials of gene-guided precision treatment for the management of psychosis.
Collapse
Affiliation(s)
- Stephanie Fryar-Williams
- Youth in Mind Research Institute, Norwood, SA, Australia
- The Queen Elizabeth Hospital, Woodville, SA, Australia
- Basil Hetzel Institute for Translational Health Research, Woodville, SA, Australia
| |
Collapse
|
17
|
Fryar-Williams S, Strobel JE. Biomarker Case-Detection and Prediction with Potential for Functional Psychosis Screening: Development and Validation of a Model Related to Biochemistry, Sensory Neural Timing and End Organ Performance. Front Psychiatry 2016; 7:48. [PMID: 27148083 PMCID: PMC4830821 DOI: 10.3389/fpsyt.2016.00048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 03/14/2016] [Indexed: 01/17/2023] Open
Abstract
The Mental Health Biomarker Project aimed to discover case-predictive biomarkers for functional psychosis. In a retrospective, cross-sectional study, candidate marker results from 67 highly characterized symptomatic participants were compared with results from 67 gender- and age-matched controls. Urine samples were analyzed for catecholamines, their metabolites, and hydroxylpyrolline-2-one, an oxidative stress marker. Blood samples were analyzed for vitamin and trace element cofactors of enzymes in catecholamine synthesis and metabolism pathways. Cognitive, auditory, and visual processing measures were assessed using a simple 45-min, office-based procedure. Receiver operating curve (ROC) and odds ratio analysis discovered biomarkers for deficits in folate, vitamin D and B6 and elevations in free copper to zinc ratio, catecholamines and the oxidative stress marker. Deficits were discovered in peripheral visual and auditory end-organ function, intracerebral auditory and visual processing speed and dichotic listening performance. Fifteen ROC biomarker variables were divided into five functional domains. Through a repeated ROC process, individual ROC variables, followed by domains and finally the overall 15 set model, were dichotomously scored and tallied for abnormal results upon which it was found that ≥3 out of 5 abnormal domains achieved an area under the ROC curve of 0.952 with a sensitivity of 84% and a specificity of 90%. Six additional middle ear biomarkers in a 21 biomarker set increased sensitivity to 94%. Fivefold cross-validation yielded a mean sensitivity of 85% for the 15 biomarker set. Non-parametric regression analysis confirmed that ≥3 out of 5 abnormally scored domains predicted >50% risk of caseness while 4 abnormally scored domains predicted 88% risk of caseness; 100% diagnostic certainty was reached when all 5 domains were abnormally scored. These findings require validation in prospective cohorts and other mental illness states. They have potential for case-detection, -screening, -monitoring, and -targeted personalized management. The findings unmask unmet needs within the functional psychosis condition and suggest new biological understandings of psychosis phenomenology.
Collapse
Affiliation(s)
- Stephanie Fryar-Williams
- The University of Adelaide, Adelaide, SA, Australia
- Youth in Mind Research Institute, Norwood, SA, Australia
- The Queen Elizabeth Hospital, Woodville, SA, Australia
- Basil Hetzel Institute for Translational Health Research, Woodville, SA, Australia
| | | |
Collapse
|