1
|
Abyadeh M, Kaya A. Multiomics from Alzheimer's Brains and Mesenchymal Stem Cell-Derived Extracellular Vesicles Identifies Therapeutic Potential of Specific Subpopulations to Target Mitochondrial Proteostasis. J Cent Nerv Syst Dis 2025; 17:11795735251336302. [PMID: 40297324 PMCID: PMC12035200 DOI: 10.1177/11795735251336302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 04/02/2025] [Indexed: 04/30/2025] Open
Abstract
Background Alzheimer's disease (AD) is characterized by complex molecular alterations that complicate its pathogenesis and contribute to the lack of effective treatments. Mesenchymal stem cell-derived extracellular vesicles (EVs) have shown promise in AD models, but results across different EV subpopulations remain inconsistent. Objectives This study investigates proteomic and transcriptomic data from publicly available postmortem AD brain datasets to identify molecular changes at both the gene and protein levels. These findings are then compared with the proteomes of various EV subpopulations, differing in size and distribution, to determine the most promising subtype for compensating molecular degeneration in AD. Design We conducted a comprehensive analysis of 788 brain samples, including 481 AD cases and 307 healthy controls, examining protein and mRNA levels to uncover AD-associated molecular changes. These findings were then compared with the proteomes of different EV subpopulations to identify potential therapeutic candidates. Methods A multi-omics approach was employed, integrating proteomic and transcriptomic data analysis, miRNA and transcription factor profiling, protein-protein network construction, hub gene identification, and enrichment analyses. This approach aimed to explore molecular changes in AD brains and pinpoint the most relevant EV subpopulations for therapeutic intervention. Results We identified common alterations in the cAMP signaling pathway and coagulation cascade at both the protein and mRNA levels. Distinct changes in energy metabolism were observed at the protein level but not at the mRNA level. A specific EV subtype, characterized by a broader size distribution obtained through high-speed centrifugation, was identified as capable of compensating for dysregulated mitochondrial proteostasis in AD brains. Network biology analyses further highlighted potential regulators of key therapeutic proteins within this EV subtype. Conclusion This study underscores the critical role of proteomic alterations in AD and identifies a promising EV subpopulation, enriched with proteins targeting mitochondrial proteostasis, as a potential therapeutic strategy for AD.
Collapse
Affiliation(s)
- Morteza Abyadeh
- Department of Biology, Virginia Commonwealth University, Richmond, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Alaattin Kaya
- Department of Biology, Virginia Commonwealth University, Richmond, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
2
|
Vargas-Rondón N, González-Giraldo Y, García Fonseca ÁY, Gonzalez J, Aristizabal-Pachon AF. MicroRNAs signatures as potential molecular markers in mild cognitive impairment: a meta-analysis. Front Aging Neurosci 2025; 16:1524622. [PMID: 39881680 PMCID: PMC11774935 DOI: 10.3389/fnagi.2024.1524622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/31/2024] [Indexed: 01/31/2025] Open
Abstract
Mild cognitive impairment (MCI) is characterized by a decline in cognitive functioning without significant interference in daily activities. Its high heterogeneity and elevated conversion rate to dementia pose challenges for accurate diagnosis and monitoring, highlighting the urgent need to identify methodologies focused on the early detection and intervention of MCI. Due to their biological characteristics, microRNAs (miRNAs) are potential candidates as non-invasive molecular markers for the identification and assessment of MCI progression. Therefore, in this study, we conducted a meta-analysis to identify the miRNAs commonly deregulated in MCI, focusing on expression profiles in plasma, serum, and extracellular vesicle samples. Our analysis identified eight upregulated miRNAs, including hsa-miR-149-3p, and four downregulated miRNAs, such as Let-7f-5p. Notably, hsa-miR-149-3p emerged as a central node in interaction networks, suggesting its crucial role in regulating cellular processes relevant to MCI. Additionally, pathway analysis revealed significant enrichment in biological processes associated with transcriptional regulation and neurodegeneration. Our results underscore the potential of circulating miRNAs as non-invasive molecular markers for MCI and open the possibility for new methodologies that enable more accurate diagnosis and monitoring of disease progression. Validating the expression of miRNAs such as hsa-miR-149-3p and Let-7f-5p, along with identifying their functional role in the specific context of MCI, is essential to establish their biological relevance. This work contributes to the understanding of the miRNA profile in mild cognitive impairment using easily accessible samples, which could be useful for the development of various strategies aimed at preventing or delaying MCI in individuals at risk of developing dementia, including Alzheimer's disease.
Collapse
Affiliation(s)
| | | | | | | | - Andrés Felipe Aristizabal-Pachon
- Experimental and Computational Biochemistry, Department of Nutrition and Biochemistry, Faculty of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
3
|
An C, Cai H, Ren Z, Fu X, Quan S, Jia L. Biofluid biomarkers for Alzheimer's disease: past, present, and future. MEDICAL REVIEW (2021) 2024; 4:467-491. [PMID: 39664082 PMCID: PMC11629312 DOI: 10.1515/mr-2023-0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 09/04/2024] [Indexed: 12/13/2024]
Abstract
Alzheimer's disease (AD) is a gradually progressive neurodegenerative disease with tremendous social and economic burden. Therefore, early and accurate diagnosis is imperative for effective treatment or prevention of the disease. Cerebrospinal fluid and blood biomarkers emerge as favorable diagnostic tools due to their relative accessibility and potential for widespread clinical use. This review focuses on the AT(N) biomarker system, which includes biomarkers reflecting AD core pathologies, amyloid deposition, and pathological tau, as well as neurodegeneration. Novel biomarkers associated with inflammation/immunity, synaptic dysfunction, vascular pathology, and α-synucleinopathy, which might contribute to either the pathogenesis or the clinical progression of AD, have also been discussed. Other emerging candidates including non-coding RNAs, metabolites, and extracellular vesicle-based markers have also enriched the biofluid biomarker landscape for AD. Moreover, the review discusses the current challenges of biofluid biomarkers in AD diagnosis and offers insights into the prospective future development.
Collapse
Affiliation(s)
- Chengyu An
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Huimin Cai
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Ziye Ren
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Xiaofeng Fu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Shuiyue Quan
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Longfei Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| |
Collapse
|
4
|
Ha YH, Sung JH, Ryu CS, Ko EJ, Park HW, Park HS, Kim OJ, Kim IJ, Kim NK. Genetic Associations of Plasminogen Activator Inhibitor-1-Related miRNA Variants with Coronary Artery Disease. Int J Mol Sci 2024; 25:11528. [PMID: 39519081 PMCID: PMC11546797 DOI: 10.3390/ijms252111528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/23/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Coronary artery disease (CAD) is one of the most common types of cardiovascular disease and can lead to a heart attack as plaque gradually builds up inside the coronary arteries, blocking blood flow. Previous studies have shown that polymorphisms in the PAI-1 gene are associated with CAD; however, studies of the PAI-1 3'-untranslated region, containing a miRNA binding site, and the miRNAs that interact with it, are insufficient. To investigate the association between miRNA polymorphisms and CAD in the Korean population based on post-transcriptional regulation, we genotyped five polymorphisms in four miRNAs targeting the 3'-untranslated region of PAI-1 using real-time PCR and TaqMan assays. We found that the mutant genotype of miR-30c rs928508 A > G was strongly associated with increased CAD susceptibility. In a genotype combination analysis, the combination of the homozygous mutant genotype (GG) of miR-30c rs928508 with the wild-type genotype (GG) of miR-143 rs41291957 resulted in increased risk for CAD. Also, in an allele combination analysis, the combination of the mutant allele (G) of miR-30c rs928508 and the wild-type allele (G) of miR-143 rs41291957 resulted in increased risk for CAD. Furthermore, metabolic syndrome and diabetes mellitus showed synergistic effects on CAD risk when combined with miR-30c rs928508. These results can be applied to identify CAD prognostic biomarkers among miRNA polymorphisms and various clinical factors.
Collapse
Affiliation(s)
- Yong Hyun Ha
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea; (Y.H.H.); (C.S.R.); (E.J.K.); (H.W.P.); (H.S.P.)
| | - Jung Hoon Sung
- CHA Bundang Medical Center, Department of Cardiology, CHA University, Seongnam 13496, Republic of Korea;
| | - Chang Soo Ryu
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea; (Y.H.H.); (C.S.R.); (E.J.K.); (H.W.P.); (H.S.P.)
| | - Eun Ju Ko
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea; (Y.H.H.); (C.S.R.); (E.J.K.); (H.W.P.); (H.S.P.)
| | - Hyeon Woo Park
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea; (Y.H.H.); (C.S.R.); (E.J.K.); (H.W.P.); (H.S.P.)
| | - Han Sung Park
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea; (Y.H.H.); (C.S.R.); (E.J.K.); (H.W.P.); (H.S.P.)
| | - Ok Joon Kim
- CHA Bundang Medical Center, Department of Neurology, CHA University, Seongnam 13496, Republic of Korea;
| | - In Jai Kim
- CHA Bundang Medical Center, Department of Cardiology, CHA University, Seongnam 13496, Republic of Korea;
| | - Nam Keun Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea; (Y.H.H.); (C.S.R.); (E.J.K.); (H.W.P.); (H.S.P.)
| |
Collapse
|
5
|
Abyadeh M, Kaya A. Application of Multiomics Approach to Investigate the Therapeutic Potentials of Stem Cell-derived Extracellular Vesicle Subpopulations for Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593647. [PMID: 38798317 PMCID: PMC11118424 DOI: 10.1101/2024.05.10.593647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Alzheimer's disease (AD) presents a complex interplay of molecular alterations, yet understanding its pathogenesis remains a challenge. In this study, we delved into the intricate landscape of proteome and transcriptome changes in AD brains compared to healthy controls, examining 788 brain samples revealing common alterations at both protein and mRNA levels. Moreover, our analysis revealed distinct protein-level changes in aberrant energy metabolism pathways in AD brains that were not evident at the mRNA level. This suggests that the changes in protein expression could provide a deeper molecular representation of AD pathogenesis. Subsequently, using a comparative proteomic approach, we explored the therapeutic potential of mesenchymal stem cell-derived extracellular vehicles (EVs), isolated through various methods, in mitigating AD-associated changes at the protein level. Our analysis revealed a particular EV-subtype that can be utilized for compensating dysregulated mitochondrial proteostasis in the AD brain. By using network biology approaches, we further revealed the potential regulators of key therapeutic proteins. Overall, our study illuminates the significance of proteome alterations in AD pathogenesis and identifies the therapeutic promise of a specific EV subpopulation with reduced pro-inflammatory protein cargo and enriched proteins to target mitochondrial proteostasis.
Collapse
Affiliation(s)
- Morteza Abyadeh
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284 USA
| | - Alaattin Kaya
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284 USA
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, 23284, USA
| |
Collapse
|
6
|
Wen Q, Wittens MMJ, Engelborghs S, van Herwijnen MHM, Tsamou M, Roggen E, Smeets B, Krauskopf J, Briedé JJ. Beyond CSF and Neuroimaging Assessment: Evaluating Plasma miR-145-5p as a Potential Biomarker for Mild Cognitive Impairment and Alzheimer's Disease. ACS Chem Neurosci 2024; 15:1042-1054. [PMID: 38407050 PMCID: PMC10921410 DOI: 10.1021/acschemneuro.3c00740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/27/2024] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. New strategies for the early detection of MCI and sporadic AD are crucial for developing effective treatment options. Current techniques used for diagnosis of AD are invasive and/or expensive, so they are not suitable for population screening. Cerebrospinal fluid (CSF) biomarkers such as amyloid β1-42 (Aβ1-42), total tau (T-tau), and phosphorylated tau181 (P-tau181) levels are core biomarkers for early diagnosis of AD. Several studies have proposed the use of blood-circulating microRNAs (miRNAs) as potential novel early biomarkers for AD. We therefore applied a novel approach to identify blood-circulating miRNAs associated with CSF biomarkers and explored the potential of these miRNAs as biomarkers of AD. In total, 112 subjects consisting of 28 dementia due to AD cases, 63 MCI due to AD cases, and 21 cognitively healthy controls were included. We identified seven Aβ1-42-associated plasma miRNAs, six P-tau181-associated plasma miRNAs, and nine Aβ1-42-associated serum miRNAs. These miRNAs were involved in AD-relevant biological processes, such as PI3K/AKT signaling. Based on this signaling pathway, we constructed an miRNA-gene target network, wherein miR-145-5p has been identified as a hub. Furthermore, we showed that miR-145-5p performs best in the prediction of both AD and MCI. Moreover, miR-145-5p also improved the prediction performance of the mini-mental state examination (MMSE) score. The performance of this miRNA was validated using different datasets including an RT-qPCR dataset from plasma samples of 23 MCI cases and 30 age-matched controls. These findings indicate that blood-circulating miRNAs that are associated with CSF biomarkers levels and specifically plasma miR-145-5p alone or combined with the MMSE score can potentially be used as noninvasive biomarkers for AD or MCI screening in the general population, although studies in other AD cohorts are necessary for further validation.
Collapse
Affiliation(s)
- Qingfeng Wen
- Department
of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
- MHeNS,
School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Mandy Melissa Jane Wittens
- Department
of Biomedical Sciences, Institute Born-Bunge, University of Antwerp, Universiteitsplein 1, BE-2610 Antwerpen, Belgium
- Neuroprotection
and Neuromodulation (NEUR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussel, Belgium
- Department
of Neurology, Universitair Ziekenhuis Brussel
(UZ Brussel), Laarbeeklaan
101, 1090 Brussel, Belgium
| | - Sebastiaan Engelborghs
- Department
of Biomedical Sciences, Institute Born-Bunge, University of Antwerp, Universiteitsplein 1, BE-2610 Antwerpen, Belgium
- Neuroprotection
and Neuromodulation (NEUR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussel, Belgium
- Department
of Neurology, Universitair Ziekenhuis Brussel
(UZ Brussel), Laarbeeklaan
101, 1090 Brussel, Belgium
| | - Marcel H. M. van Herwijnen
- Department
of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Maria Tsamou
- ToxGenSolutions
(TGS), 6229EV Maastricht, The Netherlands
| | - Erwin Roggen
- ToxGenSolutions
(TGS), 6229EV Maastricht, The Netherlands
| | - Bert Smeets
- Department
of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
- MHeNS,
School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Julian Krauskopf
- Department
of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Jacco Jan Briedé
- Department
of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
- MHeNS,
School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
7
|
Huang B, Ou G, Zhang N. Identification of key regulatory molecules in the early development stage of Alzheimer's disease. J Cell Mol Med 2024; 28:e18151. [PMID: 38429903 PMCID: PMC10907834 DOI: 10.1111/jcmm.18151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 12/19/2023] [Accepted: 01/05/2024] [Indexed: 03/03/2024] Open
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases, the incidence of which increases with age, and the pathological changes in the brain are irreversible. Recent studies have highlighted the essential role of long noncoding RNAs (lncRNAs) in AD by acting as competing endogenous RNAs (ceRNAs). Our aim was to construct lncRNA-associated ceRNA regulatory networks composed of potential biomarkers for the early stage of AD. AD related datasets come from AlzData and GEO databases. The R package 'Limma' identifies differentially expressed genes (DEGs), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) databases for functional enrichment analysis. Protein-protein interactions (PPIs) in DEGs were constructed in the STRING database, and Cytoscape software identified DEGs. Convergent functional genomics (CFG) analysis of differentially expressed hub genes (referred to as early-DEGs) in the brain before the development of AD pathology. The AlzData database analyses the expression levels of early-DEGs in different nerve cells. The lncRNA-miRNA-mRNA regulatory network was established according to the ceRNA hypothesis. We identified four lncRNAs (XIST, NEAT1, KCNQ1OT1 and HCG18) and four miRNAs (hsa-let-7c-5p, hsa-miR-107, hsa-miR-129-2-3p and hsa-miR-214-3p) were preliminarily identified as potential biomarkers for early AD, competitively regulating Atp6v0b, Atp6v1e1 Atp6v1f and Syt1. This study indicates that NEAT1, XIST, HCG18 and KCNQ1OT1 act as ceRNAs in competitive binding with miRNAs to regulate the expression of Atp6v0b, Atp6v1e1, Atp6v1f and Syt1 before the occurrence of pathological changes in AD.
Collapse
Affiliation(s)
- Bin Huang
- Clinical LaboratoryFifth Affiliated Hospital of Southern Medical UniversityGuangzhouChina
| | - Guan‐yong Ou
- School of MedicineSouthern University of Science and TechnologyShenzhenChina
| | - Ni Zhang
- Department of PhysiologyShantou University Medical CollegeShantouChina
| |
Collapse
|
8
|
Tavares-Júnior JWL, Ciurleo GCV, Feitosa EDAAF, Oriá RB, Braga-Neto P. The Clinical Aspects of COVID and Alzheimer's Disease: A Round-Up of Where Things Stand and Are Headed. J Alzheimers Dis 2024; 99:1159-1171. [PMID: 38848177 DOI: 10.3233/jad-231368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
The link between long COVID-19 and brain/cognitive impairments is concerning and may foster a worrisome worldwide emergence of novel cases of neurodegenerative diseases with aging. This review aims to update the knowledge, crosstalk, and possible intersections between the Post-COVID Syndrome (PCS) and Alzheimer's disease (AD). References included in this review were obtained from PubMed searches conducted between October 2023 and November 2023. PCS is a very heterogenous and poorly understood disease with recent evidence of a possible association with chronic diseases such as AD. However, more scientific data is required to establish the link between PCS and AD.
Collapse
Affiliation(s)
| | - Gabriella Cunha Vieira Ciurleo
- Department of Clinical Medicine, Neurology Section, Faculty of Medicine, Federal University of Ceará (UFC), Fortaleza, CE, Brazil
- Department of Morphology and Institute of Biomedicine, Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, School of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | | | - Reinaldo B Oriá
- Department of Clinical Medicine, Neurology Section, Faculty of Medicine, Federal University of Ceará (UFC), Fortaleza, CE, Brazil
- Department of Morphology and Institute of Biomedicine, Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, School of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Pedro Braga-Neto
- Department of Clinical Medicine, Neurology Section, Faculty of Medicine, Federal University of Ceará (UFC), Fortaleza, CE, Brazil
- Center of Health Sciences, State University of Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
9
|
Ju HY, Tang SS, Li BJ, Luo X, Li Q. The expression levels of circulating miR-140-3p, miR-130a-3p, and miR-320b as diagnostic biomarkers in acute ischemic stroke. Kaohsiung J Med Sci 2023; 39:927-935. [PMID: 37338050 DOI: 10.1002/kjm2.12721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/24/2023] [Accepted: 05/24/2023] [Indexed: 06/21/2023] Open
Abstract
Plasma miRNAs can characterize several diseases, including acute ischemic stroke (AIS), which is noninvasive and currently affordable in most laboratories worldwide. We aimed to demonstrate plasma miR-140-3p, miR-130a-3p, and miR-320b as diagnostic biomarkers in AIS.GSE110993 and GSE86291 datasets were analyzed to obtain plasma differentially expressed miRNAs between AIS and healthy control subjects (HCs). We further applied RT-qPCR for the validation in 85 AIS patients and 85 HCs. Receiver operating characteristic (ROC) curve were conducted to evaluate their diagnostic utility in AIS. Correlation was analyzed between DEmiRNAs and clinical and laboratory parameters, as well as inflammatory markers. The plasma levels of miR-140-3p, miR-130a-3p, and miR-320b were found to be consistently altered in both GSE110993 and GSE86291 datasets. In comparison to HCs, AIS patients at admission exhibited lower levels of miR-140-3p and miR-320b and higher level of miR-130a-3p in their plasma. The ROC analysis revealed that plasma miR-140-3p, miR-130a-3p, and miR-320b had area under the curve values of 0.790, 0.831, and 0.907, respectively. When combined, these miRNAs showed superior discriminatory power with a sensitivity of 91.76% and specificity of 95.29%. Plasma miR-140-3p and miR-320b negatively correlated glucose levels and inflammatory markers (IL-6, MMP-2, MMP-9, and VEGF) in AIS patients. Conversely, plasma miR-130a-3p levels were positively associated with glucose levels and these markers. Plasma miR-140-3p, miR-130a-3p, and miR-320b levels varied significantly among AIS patients with different NIHSS scores. Plasma miR-140-3p, miR-130a-3p, and miR-320b had high diagnostic value in AIS patients, which were correlated with inflammation and severity in stroke.
Collapse
Affiliation(s)
- Hong-Yan Ju
- Department of Neurology, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Shan-Shan Tang
- Department of Neurology, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Bang-Jing Li
- Department of Neurology, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Xi Luo
- Department of Neurology, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Qi Li
- Health Management Center, Sichuan Provincial People' s Hospital, Chengdu, Sichuan, China
| |
Collapse
|
10
|
Vistbakka J, Sumelahti ML, Lehtimäki T, Hagman S. Temporal variability of serum miR-191, miR-223, miR-128, and miR-24 in multiple sclerosis: A 4-year follow-up study. J Neurol Sci 2022; 442:120395. [PMID: 36084364 DOI: 10.1016/j.jns.2022.120395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 07/18/2022] [Accepted: 08/24/2022] [Indexed: 10/31/2022]
Abstract
BACKGROUND Circulating microRNAs (miRNA) are suggested to be a promising biomarker for multiple sclerosis (MS). Previously, miR-128-3p, miR-24-3p, miR-191-5p and miR-223-3p have been reported to associate with MS pathology. However, their longitudinal changes and association with the disease activity have not been studied. OBJECTIVES To evaluate the serum temporal variability of miR-128-3p, miR-191-5p, miR-24-3p, and miR-223-3p and their association with disability and disease activity in MS. METHODS The expression of four miRNAs in serum was studied in 57 MS patients, 18 clinically isolated syndrome patients, and 32 healthy controls over the four-year follow-up. RESULTS At the baseline, miR-191-5p was overexpressed in RRMS in comparison to controls, and its levels correlated positively with EDSS and progression index (PI) in RRMS. Increased levels of miR-128-3p were detected in PPMS in comparison to controls, and increased levels correlated with EDSS and PI in RRMS. The expression of miR-24-3p and miR-223-3p did not differ between the subtypes, but miR-223-3p correlated negatively with T1 lesions volumes in SPMS and PPMS. Over the four-years follow-up period, the expression of miR-128-3p and miR-24-3p was stable longitudinally, while temporal changes of miR-191-5p and miR-223-3p were observed in MS. Temporal changes in miR-191-5p were observed to be associated with an increase of EDSS or MRI activity, while the variability of miR-223-3p was associated with relapses. CONCLUSION Temporal variability of miR-191-5p and miR-223-3p are associated with changes in disability accumulation and disease activity. While, miR-128-3p was stably expressed and associated with the PPMS subtype and correlated with disability accumulation.
Collapse
Affiliation(s)
- Julia Vistbakka
- Neuroimmunology Research Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| | - Marja-Liisa Sumelahti
- Neuroimmunology Research Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland.
| | - Sanna Hagman
- Neuroimmunology Research Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; Research, Development and Innovation Centre, Tampere University Hospital, Tampere, Finland.
| |
Collapse
|
11
|
miR-140-5p and miR-140-3p: Key Actors in Aging-Related Diseases? Int J Mol Sci 2022; 23:ijms231911439. [PMID: 36232738 PMCID: PMC9570089 DOI: 10.3390/ijms231911439] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/20/2022] [Accepted: 09/26/2022] [Indexed: 12/02/2022] Open
Abstract
microRNAs (miRNAs) are small single strand non-coding RNAs and powerful gene expression regulators. They mainly bind to the 3′UTR sequence of targeted mRNA, leading to their degradation or translation inhibition. miR-140 gene encodes the pre-miR-140 that generates the two mature miRNAs miR-140-5p and miR-140-3p. miR-140-5p/-3p have been associated with the development and progression of cancers, but also non-neoplastic diseases. In aging-related diseases, miR-140-5p and miR-140-3p expressions are modulated. The seric levels of these two miRNAs are used as circulating biomarkers and may represent predictive tools. They are also considered key actors in the pathophysiology of aging-related diseases. miR-140-5p/-3p repress targets regulating cell proliferation, apoptosis, senescence, and inflammation. This work focuses on the roles of miR-140-3p and miR-140-5p in aging-related diseases, details their regulation (i.e., by long non-coding RNA), and reviews the molecular targets of theses miRNAs involved in aging pathophysiology.
Collapse
|
12
|
Ramírez AE, Gil-Jaramillo N, Tapias MA, González-Giraldo Y, Pinzón A, Puentes-Rozo PJ, Aristizábal-Pachón AF, González J. MicroRNA: A Linking between Astrocyte Dysfunction, Mild Cognitive Impairment, and Neurodegenerative Diseases. Life (Basel) 2022; 12:life12091439. [PMID: 36143475 PMCID: PMC9505027 DOI: 10.3390/life12091439] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 12/06/2022] Open
Abstract
Simple Summary Neurodegenerative diseases are complex neurological disorders with a high incidence worldwide in older people, increasing hospital visits and requiring expensive treatments. As a precursor phase of neurodegenerative diseases, cognitive impairment needs to be studied to understand the factors that influence its development and improve patients’ quality of life. The present review compiles possible factors and biomarkers for diagnosing mild cognitive impairment based on the most recent studies involving miRNAs. These molecules can direct the gene expression in multiple cells, affecting their behavior under certain conditions, such as stressing factors. This review encourages further research into biomarkers that identify cognitive impairment in cellular models such as astrocytes, which are brain cells capable of maintaining the optimal conditions for the central nervous system functioning. Abstract The importance of miRNAs in cellular processes and their dysregulation has taken significant importance in understanding different pathologies. Due to the constant increase in the prevalence of neurodegenerative diseases (ND) worldwide and their economic impact, mild cognitive impairment (MCI), considered a prodromal phase, is a logical starting point to study this public health problem. Multiple studies have established the importance of miRNAs in MCI, including astrocyte regulation during stressful conditions. Additionally, the protection mechanisms exerted by astrocytes against some damage in the central nervous system (CNS) lead to astrocytic reactivation, in which a differential expression of miRNAs has been shown. Nevertheless, excessive reactivation can cause neurodegeneration, and a clear pattern defining the equilibrium point between a neuroprotective or detrimental astrocytic phenotype is unknown. Therefore, the miRNA expression has gained significant attention to understand the maintenance of brain balance and improve the diagnosis and treatment at earlier stages in the ND. Here, we provide a comprehensive review of the emerging role of miRNAs in cellular processes that contribute to the loss of cognitive function, including lipotoxicity, which can induce chronic inflammation, also considering the fundamental role of astrocytes in brain homeostasis.
Collapse
Affiliation(s)
- Angelica E. Ramírez
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Natalia Gil-Jaramillo
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - María Alejandra Tapias
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Yeimy González-Giraldo
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Andrés Pinzón
- Laboratorio de Bioinformática y Biología de Sistemas, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Pedro J. Puentes-Rozo
- Grupo de Neurociencias del Caribe, Unidad de Neurociencias Cognitivas, Universidad Simón Bolívar, Barranquilla 080002, Colombia
- Grupo de Neurociencias del Caribe, Universidad del Atlántico, Barranquilla 080007, Colombia
| | | | - Janneth González
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
- Correspondence:
| |
Collapse
|
13
|
Villa C, Stoccoro A. Epigenetic Peripheral Biomarkers for Early Diagnosis of Alzheimer's Disease. Genes (Basel) 2022; 13:1308. [PMID: 35893045 PMCID: PMC9332601 DOI: 10.3390/genes13081308] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and represents the leading cause of cognitive impairment and dementia in older individuals throughout the world. The main hallmarks of AD include brain atrophy, extracellular deposition of insoluble amyloid-β (Aβ) plaques, and the intracellular aggregation of protein tau in neurofibrillary tangles. These pathological modifications start many years prior to clinical manifestations of disease and the spectrum of AD progresses along a continuum from preclinical to clinical phases. Therefore, identifying specific biomarkers for detecting AD at early stages greatly improves clinical management. However, stable and non-invasive biomarkers are not currently available for the early detection of the disease. In the search for more reliable biomarkers, epigenetic mechanisms, able to mediate the interaction between the genome and the environment, are emerging as important players in AD pathogenesis. Herein, we discuss altered epigenetic signatures in blood as potential peripheral biomarkers for the early detection of AD in order to help diagnosis and improve therapy.
Collapse
Affiliation(s)
- Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Andrea Stoccoro
- Department of Translational Research and of New Surgical and Medical Technologies, Medical School, University of Pisa, 56126 Pisa, Italy;
| |
Collapse
|
14
|
Han J, Feng GH, Liu HW, Yi JP, Wu JB, Yao XX. Classifying mild cognitive impairment and Alzheimer's disease by constructing a 14-gene diagnostic model. Am J Transl Res 2022; 14:4477-4492. [PMID: 35958496 PMCID: PMC9360837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) and mild cognitive impairment (MCI) are two neurodegenerative diseases. Most patients with MCI will develop AD. Early detection of AD and MCI is a crucial issue in terms of secondary prevention. Therefore, more diagnostic models need to be developed to distinguish AD patients from MCI patients. METHODS In our research, the expression matrix and were screened from Gene Expression Omnibus (GEO) databases. A 14-gene diagnostic model was constructed with lasso logistic analysis. The efficiency and accuracy of diagnostic model have also been validated. In order to clarify the expression differences of 14 genes in health donor, AD and MCI, the blood samples of patients and healthy individuals were collected. The mRNA expression of the 14 genes in blood sample were detected. The SH-SY5Y cell injury model was constructed and biological function of POU2AF1 and ANKRD22 in SH-SY5Y have been proved. RESULTS We obtained 16 genes which have an area under curve (AUC) ≥0.6. After that, a diagnostic model based on 14 genes was constructed. Validation in independent cohort showed that the diagnostic model has a good diagnostic efficiency. The expressions of 6 genes in AD patients were significantly lower than those in healthy individuals and MCI patients, while the expressions of 8 genes in AD patients were significantly higher than those in healthy individuals and MCI patients. In in vitro experiments, we found that two key genes POU2AF1 and ANKRD22 could regulate neuronal development by regulating cell viability and IL-6 expression. CONCLUSION The diagnostic model established in this study has a good diagnose efficiency. Most of these genes in diagnostic model also showed diagnostic value in AD patients. This research also can help doctors make better diagnosis for the treatment and prevention of AD.
Collapse
Affiliation(s)
- Jing Han
- School of Basic Medical Sciences, Xiangnan UniversityChenzhou 423000, Hunan, China
| | - Gang-Hua Feng
- Department of Neurology, Chenzhou First People’s HospitalChenzhou 423000, Hunan, China
| | - Hua-Wu Liu
- School of Basic Medical Sciences, Xiangnan UniversityChenzhou 423000, Hunan, China
| | - Ji-Ping Yi
- Department of Neurology, Chenzhou First People’s HospitalChenzhou 423000, Hunan, China
| | - Ji-Bao Wu
- Department of Neurology, Chenzhou First People’s HospitalChenzhou 423000, Hunan, China
| | - Xiao-Xi Yao
- Department of Neurology, Chenzhou First People’s HospitalChenzhou 423000, Hunan, China
| |
Collapse
|
15
|
Klyucherev TO, Olszewski P, Shalimova AA, Chubarev VN, Tarasov VV, Attwood MM, Syvänen S, Schiöth HB. Advances in the development of new biomarkers for Alzheimer's disease. Transl Neurodegener 2022; 11:25. [PMID: 35449079 PMCID: PMC9027827 DOI: 10.1186/s40035-022-00296-z] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 03/28/2022] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) is a complex, heterogeneous, progressive disease and is the most common type of neurodegenerative dementia. The prevalence of AD is expected to increase as the population ages, placing an additional burden on national healthcare systems. There is a large need for new diagnostic tests that can detect AD at an early stage with high specificity at relatively low cost. The development of modern analytical diagnostic tools has made it possible to determine several biomarkers of AD with high specificity, including pathogenic proteins, markers of synaptic dysfunction, and markers of inflammation in the blood. There is a considerable potential in using microRNA (miRNA) as markers of AD, and diagnostic studies based on miRNA panels suggest that AD could potentially be determined with high accuracy for individual patients. Studies of the retina with improved methods of visualization of the fundus are also showing promising results for the potential diagnosis of the disease. This review focuses on the recent developments of blood, plasma, and ocular biomarkers for the diagnosis of AD.
Collapse
Affiliation(s)
- Timofey O Klyucherev
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, Sweden.,Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Pawel Olszewski
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, Sweden
| | - Alena A Shalimova
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, Sweden.,Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vladimir N Chubarev
- Institute of Translational Medicine and Biotechnology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vadim V Tarasov
- Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia.,Institute of Translational Medicine and Biotechnology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Misty M Attwood
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, Sweden
| | - Stina Syvänen
- Department of Public Health and Caring Sciences, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Helgi B Schiöth
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, Sweden.
| |
Collapse
|
16
|
Varesi A, Carrara A, Pires VG, Floris V, Pierella E, Savioli G, Prasad S, Esposito C, Ricevuti G, Chirumbolo S, Pascale A. Blood-Based Biomarkers for Alzheimer's Disease Diagnosis and Progression: An Overview. Cells 2022; 11:1367. [PMID: 35456047 PMCID: PMC9044750 DOI: 10.3390/cells11081367] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 01/10/2023] Open
Abstract
Alzheimer's Disease (AD) is a progressive neurodegenerative disease characterized by amyloid-β (Aβ) plaque deposition and neurofibrillary tangle accumulation in the brain. Although several studies have been conducted to unravel the complex and interconnected pathophysiology of AD, clinical trial failure rates have been high, and no disease-modifying therapies are presently available. Fluid biomarker discovery for AD is a rapidly expanding field of research aimed at anticipating disease diagnosis and following disease progression over time. Currently, Aβ1-42, phosphorylated tau, and total tau levels in the cerebrospinal fluid are the best-studied fluid biomarkers for AD, but the need for novel, cheap, less-invasive, easily detectable, and more-accessible markers has recently led to the search for new blood-based molecules. However, despite considerable research activity, a comprehensive and up-to-date overview of the main blood-based biomarker candidates is still lacking. In this narrative review, we discuss the role of proteins, lipids, metabolites, oxidative-stress-related molecules, and cytokines as possible disease biomarkers. Furthermore, we highlight the potential of the emerging miRNAs and long non-coding RNAs (lncRNAs) as diagnostic tools, and we briefly present the role of vitamins and gut-microbiome-related molecules as novel candidates for AD detection and monitoring, thus offering new insights into the diagnosis and progression of this devastating disease.
Collapse
Affiliation(s)
- Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
- Almo Collegio Borromeo, 27100 Pavia, Italy
| | - Adelaide Carrara
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy; (A.C.); (V.F.)
| | - Vitor Gomes Pires
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA;
| | - Valentina Floris
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy; (A.C.); (V.F.)
| | - Elisa Pierella
- School of Medicine, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK;
| | - Gabriele Savioli
- Emergency Department, IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Sakshi Prasad
- Faculty of Medicine, National Pirogov Memorial Medical University, 21018 Vinnytsya, Ukraine;
| | - Ciro Esposito
- Unit of Nephrology and Dialysis, ICS Maugeri, University of Pavia, 27100 Pavia, Italy;
| | - Giovanni Ricevuti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37129 Verona, Italy;
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy;
| |
Collapse
|
17
|
Nguyen HD, Kim MS. Exposure to a mixture of heavy metals induces cognitive impairment: Genes and microRNAs involved. Toxicology 2022; 471:153164. [PMID: 35346790 DOI: 10.1016/j.tox.2022.153164] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/10/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022]
Abstract
Converging evidence demonstrates that microRNAs (miRNAs) play an important role in the etiology of cognitive impairment. Thus, we aim to: (i) identify the molecular mechanisms of heavy metals, particularly miRNAs involved in the development of cognitive impairment; and (ii) generate miRNA sponges to prevent them from binding with their target messenger RNAs. The Comparative Toxicogenomics Database (CTD; http://ctd.mdibl.org), MicroRNA ENrichment TURned NETwork (MIENTURNET, http://userver.bio.uniroma1.it/apps/mienturnet/) and the microRNA sponge generator and tester (miRNAsong, http://www.med.muni.cz/histology/miRNAsong) were used as the core data-mining approaches in the current study. We observed that lead acetate, arsenic, gold, copper, iron, and aluminum, as well as their mixtures, had significant effects on the development of cognitive impairment. Although prevalent genes obtained from investigated heavy metals of cognitive impairment were different, the "PI3K-Akt signaling pathway", "pathways of neurodegeneration-multiple diseases", "apoptosis", "apoptosis-multiple species", "p53 signaling pathway", "NF-kappa B signaling pathway", and "Alzheimer's disease pathway" were highlighted. The mixed heavy metals altered the genes BAX, CASP3, BCL2, TNF, and IL-1B, indicating the significance of apoptosis and pro-inflammatory cytokines in the pathogenesis of cognitive impairment and the possibility of targeting these genes in future neuroprotective therapy. In addition, we used a network-based approach to identify key genes, miRNAs, pathways, and diseases related to the development of cognitive impairment. We also found 16 significant miRNAs related to cognitive impairment (hsa-miR-1-3p, hsa-let-7a-5p, hsa-miR-9-5p, hsa-miR-16-5p, hsa-miR-17-5p, hsa-miR-20a-5p, hsa-miR-26a-5p, hsa-miR-26b-5p, hsa-miR-34a-5p, hsa-miR-101-3p, hsa-miR-106a-5p, hsa-miR-128-3p, hsa-miR-144-3p, hsa-miR-199a-3p, hsa-miR-204-5p, and hsa-miR-335-5p). Finally, we created and evaluated miRNA sponge sequences for these miRNAs in silico. Further studies, including in vivo and in vitro, are needed to assess the link between these genes, miRNAs, pathways, and cognitive impairment.
Collapse
Affiliation(s)
- Hai Duc Nguyen
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Min-Sun Kim
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea.
| |
Collapse
|
18
|
Ogonowski N, Salcidua S, Leon T, Chamorro-Veloso N, Valls C, Avalos C, Bisquertt A, Rentería ME, Orellana P, Duran-Aniotz C. Systematic Review: microRNAs as Potential Biomarkers in Mild Cognitive Impairment Diagnosis. Front Aging Neurosci 2022; 13:807764. [PMID: 35095478 PMCID: PMC8790149 DOI: 10.3389/fnagi.2021.807764] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/15/2021] [Indexed: 12/14/2022] Open
Abstract
The rate of progression from Mild Cognitive Impairment (MCI) to Alzheimer's disease (AD) is estimated at >10% per year, reaching up to 80-90% after 6 years. MCI is considered an indicator of early-stage AD. In this context, the diagnostic screening of MCI is crucial for detecting individuals at high risk of AD before they progress and manifest further severe symptoms. Typically, MCI has been determined using neuropsychological assessment tools such as the Montreal Cognitive Assessment (MoCA) or Mini-Mental Status Examination (MMSE). Unfortunately, other diagnostic methods are not available or are unable to identify MCI in its early stages. Therefore, identifying new biomarkers for MCI diagnosis and prognosis is a significant challenge. In this framework, miRNAs in serum, plasma, and other body fluids have emerged as a promising source of biomarkers for MCI and AD-related cognitive impairments. Interestingly, miRNAs can regulate several signaling pathways via multiple and diverse targets in response to pathophysiological stimuli. This systematic review aims to describe the current state of the art regarding AD-related target genes modulated by differentially expressed miRNAs in peripheral fluids samples in MCI subjects to identify potential miRNA biomarkers in the early stages of AD. We found 30 articles that described five miRNA expression profiles from peripheral fluid in MCI subjects, showing possible candidates for miRNA biomarkers that may be followed up as fluid biomarkers or therapeutic targets of early-stage AD. However, additional research is needed to validate these miRNAs and characterize the precise neuropathological mechanisms.
Collapse
Affiliation(s)
- Natalia Ogonowski
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
- Cognitive Neuroscience Center (CNC), National Scientific and Technical Research Council (CONICET), Universidad de San Andrés, Buenos Aires, Argentina
| | - Stefanny Salcidua
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
- Faculty of Engineering and Sciences, Universidad Adolfo Ibanez, Santiago, Chile
| | - Tomas Leon
- Global Brain Health Institute, Trinity College, Dublin, Ireland
- Memory and Neuropsychiatric Clinic (CMYN) Neurology Department, Hospital del Salvador, Faculty of Medicine, University of Chile, Santiago, Chile
| | | | | | - Constanza Avalos
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
| | | | - Miguel E. Rentería
- Department of Genetics and Computational Biology, Queensland Institute of Medical Research (QIMR) Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Paulina Orellana
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez, Santiago, Chile
| | - Claudia Duran-Aniotz
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez, Santiago, Chile
| |
Collapse
|
19
|
Carini G, Musazzi L, Bolzetta F, Cester A, Fiorentini C, Ieraci A, Maggi S, Popoli M, Veronese N, Barbon A. The Potential Role of miRNAs in Cognitive Frailty. Front Aging Neurosci 2021; 13:763110. [PMID: 34867290 PMCID: PMC8632944 DOI: 10.3389/fnagi.2021.763110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/19/2021] [Indexed: 12/30/2022] Open
Abstract
Frailty is an aging related condition, which has been defined as a state of enhanced vulnerability to stressors, leading to a limited capacity to meet homeostatic demands. Cognitive impairment is also frequent in older people, often accompanying frailty. Age is the main independent risk factor for both frailty and cognitive impairment, and compelling evidence suggests that similar age-associated mechanisms could underlie both clinical conditions. Accordingly, it has been suggested that frailty and cognitive impairment share common pathways, and some authors proposed "cognitive frailty" as a single complex phenotype. Nevertheless, so far, no clear common underlying pathways have been discovered for both conditions. microRNAs (miRNAs) have emerged as key fine-tuning regulators in most physiological processes, as well as pathological conditions. Importantly, miRNAs have been proposed as both peripheral biomarkers and potential molecular factors involved in physiological and pathological aging. In this review, we discuss the evidence linking changes of selected miRNAs expression with frailty and cognitive impairment. Overall, miR-92a-5p and miR-532-5p, as well as other miRNAs implicated in pathological aging, should be investigated as potential biomarkers (and putative molecular effectors) of cognitive frailty.
Collapse
Affiliation(s)
- Giulia Carini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Laura Musazzi
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Francesco Bolzetta
- Medical Department, Geriatric Unit, Azienda ULSS (Unità Locale Socio Sanitaria) 3 "Serenissima," Venice, Italy
| | - Alberto Cester
- Medical Department, Geriatric Unit, Azienda ULSS (Unità Locale Socio Sanitaria) 3 "Serenissima," Venice, Italy
| | - Chiara Fiorentini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alessandro Ieraci
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Stefania Maggi
- Aging Branch, Neuroscience Institute, National Research Council, Padua, Italy
| | - Maurizio Popoli
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Nicola Veronese
- Medical Department, Geriatric Unit, Azienda ULSS (Unità Locale Socio Sanitaria) 3 "Serenissima," Venice, Italy.,Geriatrics Section, Department of Medicine, University of Palermo, Palermo, Italy
| | - Alessandro Barbon
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
20
|
Zhong J, Liu J, Zheng Y, Xie X, He Q, Zhong W, Wu Q. miR-938 rs2505901 T>C polymorphism increases Hirschsprung disease risk: a case-control study of Chinese children. Per Med 2021; 18:551-558. [PMID: 34761964 DOI: 10.2217/pme-2021-0001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: To explore the association between miR-938 rs2505901 T>C polymorphism and Hirschsprung disease (HSCR) risk in Chinese children. Materials & Methods: We conducted a case-control study in a Chinese population with 1381 cases and 1457 controls. The associated correlation strengths were assessed by adjusted odds ratios (AORs) and 95% CIs. Results: The results revealed that the rs2505901 TC and rs2505901 TC/CC genotype were related to an increased HSCR risk compared to the risk contributed by the rs2505901 TT genotype. A stratification analysis showed that the rs2505901 TC/CC genotype promoted the progression of HSCR more significantly in patients with the short-segment HSCR subtype. Conclusion: Our study indicated that miR-938 rs2505901 T>C polymorphism is significantly associated with HSCR risk in Chinese children. This result needs to be confirmed with well-designed studies.
Collapse
Affiliation(s)
- Jun Zhong
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women & Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Jiabin Liu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women & Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Yi Zheng
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women & Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Xiaoli Xie
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women & Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Qiuming He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women & Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Wei Zhong
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women & Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Qiang Wu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women & Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| |
Collapse
|
21
|
Yacovzada NS, Hornstein E. microRNAs trip down memory lane. EMBO Mol Med 2021; 13:e14997. [PMID: 34672084 PMCID: PMC8573596 DOI: 10.15252/emmm.202114997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/06/2021] [Indexed: 11/09/2022] Open
Abstract
A new study by Islam et al, in this issue of EMBO Molecular Medicine, reports three microRNAs in the blood that are linked to inter-individual differences in cognition, prior to any sign of cognitive decline. The novel miRNA biomarkers may assist in predicting the risk of cognitive decline and later of developing dementia and can contribute to decision strategies about early therapeutic interventions.
Collapse
Affiliation(s)
- Nancy S Yacovzada
- Department of Molecular GeneticsWeizmann Institute of ScienceRehovotIsrael
- Department of Molecular NeuroscienceWeizmann Institute of ScienceRehovotIsrael
| | - Eran Hornstein
- Department of Molecular GeneticsWeizmann Institute of ScienceRehovotIsrael
- Department of Molecular NeuroscienceWeizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
22
|
Islam MR, Kaurani L, Berulava T, Heilbronner U, Budde M, Centeno TP, Elerdashvili V, Zafieriou M, Benito E, Sertel SM, Goldberg M, Senner F, Kalman JL, Burkhardt S, Oepen AS, Sakib MS, Kerimoglu C, Wirths O, Bickeböller H, Bartels C, Brosseron F, Buerger K, Cosma N, Fliessbach K, Heneka MT, Janowitz D, Kilimann I, Kleinedam L, Laske C, Metzger CD, Munk MH, Perneczky R, Peters O, Priller J, Rauchmann BS, Roy N, Schneider A, Spottke A, Spruth EJ, Teipel S, Tscheuschler M, Wagner M, Wiltfang J, Düzel E, Jessen F, Rizzoli SO, Zimmermann W, Schulze TG, Falkai P, Sananbenesi F, Fischer A. A microRNA signature that correlates with cognition and is a target against cognitive decline. EMBO Mol Med 2021; 13:e13659. [PMID: 34633146 PMCID: PMC8573587 DOI: 10.15252/emmm.202013659] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 12/25/2022] Open
Abstract
While some individuals age without pathological memory impairments, others develop age-associated cognitive diseases. Since changes in cognitive function develop slowly over time in these patients, they are often diagnosed at an advanced stage of molecular pathology, a time point when causative treatments fail. Thus, there is great need for the identification of inexpensive and minimal invasive approaches that could be used for screening with the aim to identify individuals at risk for cognitive decline that can then undergo further diagnostics and eventually stratified therapies. In this study, we use an integrative approach combining the analysis of human data and mechanistic studies in model systems to identify a circulating 3-microRNA signature that reflects key processes linked to neural homeostasis and inform about cognitive status. We furthermore provide evidence that expression changes in this signature represent multiple mechanisms deregulated in the aging and diseased brain and are a suitable target for RNA therapeutics.
Collapse
|
23
|
Ullah R, Park TJ, Huang X, Kim MO. Abnormal amyloid beta metabolism in systemic abnormalities and Alzheimer's pathology: Insights and therapeutic approaches from periphery. Ageing Res Rev 2021; 71:101451. [PMID: 34450351 DOI: 10.1016/j.arr.2021.101451] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 08/12/2021] [Accepted: 08/19/2021] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is an age-associated, multifactorial neurodegenerative disorder that is incurable. Despite recent success in treatments that partially improve symptomatic relief, they have failed in most clinical trials. Re-holding AD for accurate diagnosis and treatment is widely known as a challenging task. Lack of knowledge of basic molecular pathogenesis might be a possible reason for ineffective AD treatment. Historically, a majority of therapy-based studies have investigated the role of amyloid-β (Aβ peptide) in the central nervous system (CNS), whereas less is known about Aβ peptide in the periphery in AD. In this review, we provide a comprehensive summary of the current understanding of Aβ peptide metabolism (anabolism and catabolism) in the brain and periphery. We show that the abnormal metabolism of Aβ peptide is significantly linked with central-brain and peripheral abnormalities; the interaction between peripheral Aβ peptide metabolism and peripheral abnormalities affects central-brain Aβ peptide metabolism, suggesting the existence of significant communication between these two pathways of Aβ peptide metabolism. This close interaction between the central brain and periphery in abnormal Aβ peptide metabolism plays a key role in the development and progression of AD. In conclusion, we need to obtain a full understanding of the dynamic roles of Aβ peptide at the molecular level in both the brain and periphery in relation to the pathology of AD. This will not only provide new information regarding the complex disease pathology, but also offer potential new clues to improve therapeutic strategies and diagnostic biomarkers for the successful treatment of AD.
Collapse
|
24
|
Asanomi Y, Shigemizu D, Akiyama S, Sakurai T, Ozaki K, Ochiya T, Niida S. Dementia subtype prediction models constructed by penalized regression methods for multiclass classification using serum microRNA expression data. Sci Rep 2021; 11:20947. [PMID: 34686734 PMCID: PMC8536697 DOI: 10.1038/s41598-021-00424-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 10/12/2021] [Indexed: 02/02/2023] Open
Abstract
There are many subtypes of dementia, and identification of diagnostic biomarkers that are minimally-invasive, low-cost, and efficient is desired. Circulating microRNAs (miRNAs) have recently gained attention as easily accessible and non-invasive biomarkers. We conducted a comprehensive miRNA expression analysis of serum samples from 1348 Japanese dementia patients, composed of four subtypes-Alzheimer's disease (AD), vascular dementia, dementia with Lewy bodies (DLB), and normal pressure hydrocephalus-and 246 control subjects. We used this data to construct dementia subtype prediction models based on penalized regression models with the multiclass classification. We constructed a final prediction model using 46 miRNAs, which classified dementia patients from an independent validation set into four subtypes of dementia. Network analysis of miRNA target genes revealed important hub genes, SRC and CHD3, associated with the AD pathogenesis. Moreover, MCU and CASP3, which are known to be associated with DLB pathogenesis, were identified from our DLB-specific target genes. Our study demonstrates the potential of blood-based biomarkers for use in dementia-subtype prediction models. We believe that further investigation using larger sample sizes will contribute to the accurate classification of subtypes of dementia.
Collapse
Affiliation(s)
- Yuya Asanomi
- Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu, Aichi, 474-8511, Japan
| | - Daichi Shigemizu
- Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu, Aichi, 474-8511, Japan. .,Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan. .,RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
| | - Shintaro Akiyama
- Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu, Aichi, 474-8511, Japan
| | - Takashi Sakurai
- Center for Comprehensive Care and Research on Memory Disorders, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan.,Department of Cognition and Behavior Science, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Kouichi Ozaki
- Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu, Aichi, 474-8511, Japan.,RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, Fundamental Innovative Oncology Core Center, National Cancer Center Research Institute, Tokyo, Japan.,Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Shumpei Niida
- Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu, Aichi, 474-8511, Japan.
| |
Collapse
|
25
|
Al-Rawaf HA, Alghadir AH, Gabr SA. Molecular Changes in Circulating microRNAs' Expression and Oxidative Stress in Adults with Mild Cognitive Impairment: A Biochemical and Molecular Study. Clin Interv Aging 2021; 16:57-70. [PMID: 33447019 PMCID: PMC7802783 DOI: 10.2147/cia.s285689] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/15/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The release of miRNAs in tissue fluids significantly recommends its use as non-invasive diagnostic biomarkers for the progression and pathogenesis of mild cognitive impairment (MCI) in aged patients. OBJECTIVE The potential role of circulated miRNAs in the pathogenesis of MCI and its association with cellular oxidative stress, apoptosis, and circulated BDNF, Sirtuin 1 (SIRT1), and dipeptidyl peptidase-4 (DPP4) were evaluated in older adults with MCI. METHODS A total of 150 subjects aged 65.4±3.7 years were recruited in this study. The participants were classified into two groups: healthy normal (n=80) and MCI (n=70). Real-time PCR analysis was performed to estimate the relative expression of miRNAs; miR-124a, miR-483-5p, miR-142-3p, and miR-125b, and apoptotic-related genes Bax, Bcl-2, and caspase-3 in the sera of MCI and control subjects. In addition, oxidative stress parameters; MDA, NO, SOD, and CAT; as well as plasma DPP4 activity, BDNF, SIRT1 levels were colorimetrically estimated. RESULTS The levels of miR-124a and miR-483-5p significantly increased and miR-142-3p and miR-125b significantly reduced in the serum of MCI patients compared to controls. The expressed miRNAs significantly correlated with severe cognitive decline, measured by MMSE, MoCA, ADL, and memory scores. The expression of Bax, and caspase-3 apoptotic inducing genes significantly increased and Bcl-2 antiapoptotic gene significantly reduced in MCI subjects compared to controls. In addition, the plasma levels of MDA, NO, and DPP4 activity significantly increased, and the levels of SOD, CAT, BDNF, and SIRT1 significantly reduced in MCI subjects compared to controls. The expressed miRNAs correlated positively with NO, MDA, DPP4 activity, BDNF, and SIRT-1, and negatively with the levels of CAT, SOD, Bcl-2, Bax, and caspase-3 genes. CONCLUSION Circulating miR-124a, miR-483-5p, miR-142-3p, and miR-125b significantly associated with severe cognitive decline, cellular oxidative stress, and apoptosis in patients with MCI. Thus, it could be potential non-invasive biomarkers for the diagnosis of MCI with high diagnostic performance.
Collapse
Affiliation(s)
- Hadeel A Al-Rawaf
- Rehabilitation Research Chair, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Ahmad H Alghadir
- Rehabilitation Research Chair, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Sami A Gabr
- Rehabilitation Research Chair, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
26
|
Gullett JM, Chen Z, O'Shea A, Akbar M, Bian J, Rani A, Porges EC, Foster TC, Woods AJ, Modave F, Cohen RA. MicroRNA predicts cognitive performance in healthy older adults. Neurobiol Aging 2020; 95:186-194. [PMID: 32846274 PMCID: PMC7606424 DOI: 10.1016/j.neurobiolaging.2020.07.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 07/01/2020] [Accepted: 07/25/2020] [Indexed: 12/11/2022]
Abstract
The expression of microRNA (miRNA) is influenced by ongoing biological processes, including aging, and has begun to play a role in the measurement of neurodegenerative processes in central nervous system. The purpose of this study is to utilize machine learning approaches to determine whether miRNA can be utilized as a blood-based biomarker of cognitive aging. A random forest regression combining miRNA with biological (brain volume), clinical (comorbid conditions), and demographic variables in 115 typically aging older adults explained the greatest level of variance in cognitive performance compared to the other machine learning models explored. Three miRNA (miR-140-5p, miR-197-3p, and miR-501-3p) were top-ranked predictors of multiple cognitive outcomes (Fluid, Crystallized, and Overall Cognition) and past studies of these miRNA link them to cellular senescence, inflammatory signals for atherosclerotic formation, and potential development of neurodegenerative disorders (e.g., Alzheimer's disease). Several novel miRNAs were also linked to age and multiple cognitive functions, findings which together warrant further exploration linking these miRNAs to brain-derived metrics of neurodegeneration in typically aging older adults.
Collapse
Affiliation(s)
- Joseph M Gullett
- Center for Cognitive Aging and Memory, Department of Clinical & Health Psychology, University of Florida, Gainesville, FL, USA.
| | - Zhaoyi Chen
- Department of Health Outcomes & Biomedical Informatics, University of Florida, Gainesville, FL, USA
| | - Andrew O'Shea
- Center for Cognitive Aging and Memory, Department of Clinical & Health Psychology, University of Florida, Gainesville, FL, USA
| | - Maisha Akbar
- Center for Cognitive Aging and Memory, Department of Clinical & Health Psychology, University of Florida, Gainesville, FL, USA
| | - Jiang Bian
- Department of Health Outcomes & Biomedical Informatics, University of Florida, Gainesville, FL, USA
| | - Asha Rani
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Eric C Porges
- Center for Cognitive Aging and Memory, Department of Clinical & Health Psychology, University of Florida, Gainesville, FL, USA
| | - Thomas C Foster
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Adam J Woods
- Center for Cognitive Aging and Memory, Department of Clinical & Health Psychology, University of Florida, Gainesville, FL, USA; Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Francois Modave
- Department of Health Outcomes & Biomedical Informatics, University of Florida, Gainesville, FL, USA
| | - Ronald A Cohen
- Center for Cognitive Aging and Memory, Department of Clinical & Health Psychology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
27
|
Li Y, Li S, Xu S, Yu H, Tang L, Liu X, Wang X, Zhang Y, Zhang K, Mi S, Chen M, Cui H. Association of Androgens and Gonadotropins with Amnestic Mild Cognitive Impairment and Probable Alzheimer’s Disease in Chinese Elderly Men. J Alzheimers Dis 2020; 78:277-290. [DOI: 10.3233/jad-200233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Age-related hormone changes play important roles in cognitive decline in older men, and apolipoprotein E ɛ4 (APOE ɛ4) is a risk factor for Alzheimer’s disease (AD). Objective: This study aimed to investigate the interactive role of androgen decline and APOE ɛ4 genotype in the pathogenesis of amnestic mild cognitive impairment (aMCI) and AD. Methods: In total, 576 elderly men over 65 years old from communities in Shijiazhuang were enrolled in this study, including 243 with normal cognition (NC), 271 with aMCI, and 62 with probable AD. Cognitive function was evaluated with a battery of neuropsychological tests. The serum levels of androgen and gonadotropin were detected by ELISA and chemiluminescence immunoassay. Results: The levels of free testosterone (FT) and dihydrotestosterone (DHT) were lower in the aMCI group (p < 0.05), and even lower in the AD group (p < 0.001), but the levels of follicle stimulating hormone (FSH) and luteinizing hormone (LH) were higher in AD group (p < 0.01), comparing with that in NC or aMCI group. The interaction of lower FT or DHT levels with APOE ɛ4 had a risk role in global cognitive impairment (p < 0.05). The area under the curve (AUC) of the ROC curve for predicting aMCI by serum FT levels was 0.745. Conclusion: These results indicated that the interaction of androgen decline and APOE ɛ4 genotype play a role in aMCI and AD. Serum FT levels have a predictive value for aMCI and might be a potential biomarker for prodromal AD.
Collapse
Affiliation(s)
- Yan Li
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, P. R. China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, P. R. China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, P. R. China
- College of Nursing, Hebei Medical University, Shijiazhuang, P. R. China
| | - Sha Li
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, P. R. China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, P. R. China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, P. R. China
| | - Shunjiang Xu
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P. R. China
| | - Hong Yu
- College of Nursing, Hebei Medical University, Shijiazhuang, P. R. China
| | - Longmei Tang
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Shijiazhuang, P. R. China
| | - Xiaoyun Liu
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, P. R. China
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, P. R. China
| | - Xuemei Wang
- College of Nursing, Hebei Medical University, Shijiazhuang, P. R. China
| | - Yuanyuan Zhang
- College of Nursing, Hebei Medical University, Shijiazhuang, P. R. China
| | - Kaixia Zhang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P. R. China
| | - Shixiong Mi
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, P. R. China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, P. R. China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, P. R. China
| | - Meiqin Chen
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, P. R. China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, P. R. China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, P. R. China
| | - Huixian Cui
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, P. R. China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, P. R. China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, P. R. China
| |
Collapse
|
28
|
Huang Y, Cheng L, Turchinovich A, Mahairaki V, Troncoso JC, Pletniková O, Haughey NJ, Vella LJ, Hill AF, Zheng L, Witwer KW. Influence of species and processing parameters on recovery and content of brain tissue-derived extracellular vesicles. J Extracell Vesicles 2020; 9:1785746. [PMID: 32944174 PMCID: PMC7480582 DOI: 10.1080/20013078.2020.1785746] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Extracellular vesicles (EVs) are involved in a wide range of physiological and pathological processes by shuttling material out of and between cells. Tissue EVs may thus lend insights into disease mechanisms and also betray disease when released into easily accessed biological fluids. Since brain-derived EVs (bdEVs) and their cargo may serve as biomarkers of neurodegenerative diseases, we evaluated modifications to a published, rigorous protocol for separation of EVs from brain tissue and studied effects of processing variables on quantitative and qualitative outcomes. To this end, size exclusion chromatography (SEC) and sucrose density gradient ultracentrifugation were compared as final separation steps in protocols involving stepped ultracentrifugation. bdEVs were separated from brain tissues of human, macaque, and mouse. Effects of tissue perfusion and a model of post-mortem interval (PMI) before final bdEV separation were probed. MISEV2018-compliant EV characterization was performed, and both small RNA and protein profiling were done. We conclude that the modified, SEC-employing protocol achieves EV separation efficiency roughly similar to a protocol using gradient density ultracentrifugation, while decreasing operator time and, potentially, variability. The protocol appears to yield bdEVs of higher purity for human tissues compared with those of macaque and, especially, mouse, suggesting opportunities for optimization. Where possible, perfusion should be performed in animal models. The interval between death/tissue storage/processing and final bdEV separation can also affect bdEV populations and composition and should thus be recorded for rigorous reporting. Finally, different populations of EVs obtained through the modified method reported herein display characteristic RNA and protein content that hint at biomarker potential. To conclude, this study finds that the automatable and increasingly employed technique of SEC can be applied to tissue EV separation, and also reveals more about the importance of species-specific and technical considerations when working with tissue EVs. These results are expected to enhance the use of bdEVs in revealing and understanding brain disease.
Collapse
Affiliation(s)
- Yiyao Huang
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Lesley Cheng
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Andrey Turchinovich
- Molecular Epidemiology, German Cancer Research Center DKFZ, Heidelberg, Germany.,SciBerg e.Kfm, Mannheim, Germany
| | - Vasiliki Mahairaki
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Juan C Troncoso
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Olga Pletniková
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Norman J Haughey
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Laura J Vella
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia.,Department of Surgery, The University of Melbourne, the Royal Melbourne Hospital, Parkville, Australia
| | - Andrew F Hill
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
29
|
Sell SL, Widen SG, Prough DS, Hellmich HL. Principal component analysis of blood microRNA datasets facilitates diagnosis of diverse diseases. PLoS One 2020; 15:e0234185. [PMID: 32502186 PMCID: PMC7274418 DOI: 10.1371/journal.pone.0234185] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022] Open
Abstract
Early, ideally pre-symptomatic, recognition of common diseases (e.g., heart disease, cancer, diabetes, Alzheimer’s disease) facilitates early treatment or lifestyle modifications, such as diet and exercise. Sensitive, specific identification of diseases using blood samples would facilitate early recognition. We explored the potential of disease identification in high dimensional blood microRNA (miRNA) datasets using a powerful data reduction method: principal component analysis (PCA). Using Qlucore Omics Explorer (QOE), a dynamic, interactive visualization-guided bioinformatics program with a built-in statistical platform, we analyzed publicly available blood miRNA datasets from the Gene Expression Omnibus (GEO) maintained at the National Center for Biotechnology Information at the National Institutes of Health (NIH). The miRNA expression profiles were generated from real time PCR arrays, microarrays or next generation sequencing of biologic materials (e.g., blood, serum or blood components such as platelets). PCA identified the top three principal components that distinguished cohorts of patients with specific diseases (e.g., heart disease, stroke, hypertension, sepsis, diabetes, specific types of cancer, HIV, hemophilia, subtypes of meningitis, multiple sclerosis, amyotrophic lateral sclerosis, Alzheimer’s disease, mild cognitive impairment, aging, and autism), from healthy subjects. Literature searches verified the functional relevance of the discriminating miRNAs. Our goal is to assemble PCA and heatmap analyses of existing and future blood miRNA datasets into a clinical reference database to facilitate the diagnosis of diseases using routine blood draws.
Collapse
Affiliation(s)
- Stacy L. Sell
- Department of Anesthesiology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Steven G. Widen
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Donald S. Prough
- Department of Anesthesiology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Helen L. Hellmich
- Department of Anesthesiology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
30
|
Jash K, Gondaliya P, Kirave P, Kulkarni B, Sunkaria A, Kalia K. Cognitive dysfunction: A growing link between diabetes and Alzheimer's disease. Drug Dev Res 2020; 81:144-164. [DOI: 10.1002/ddr.21579] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/12/2019] [Accepted: 06/30/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Kavya Jash
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Ahmedabad Gandhinagar Gujarat India
| | - Piyush Gondaliya
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Ahmedabad Gandhinagar Gujarat India
| | - Prathibha Kirave
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Ahmedabad Gandhinagar Gujarat India
| | - Bhagyashri Kulkarni
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Ahmedabad Gandhinagar Gujarat India
| | - Aditya Sunkaria
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Ahmedabad Gandhinagar Gujarat India
| | - Kiran Kalia
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Ahmedabad Gandhinagar Gujarat India
| |
Collapse
|
31
|
Pagacz K, Kucharski P, Smyczynska U, Grabia S, Chowdhury D, Fendler W. A systemic approach to screening high-throughput RT-qPCR data for a suitable set of reference circulating miRNAs. BMC Genomics 2020; 21:111. [PMID: 32005151 PMCID: PMC6995162 DOI: 10.1186/s12864-020-6530-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 01/22/2020] [Indexed: 12/12/2022] Open
Abstract
Background The consensus on how to choose a reference gene for serum or plasma miRNA expression qPCR studies has not been reached and none of the potential candidates have yet been convincingly validated. We proposed a new in silico approach of finding a suitable reference for human, circulating miRNAs and identified a new set of endogenous reference miRNA based on miRNA profiling experiments from Gene Expression Omnibus. We used 3 known normalization algorithms (NormFinder, BestKeeper, GeNorm) to calculate a new normalization score. We searched for a universal set of endogenous miRNAs and validated our findings on 2 new datasets using our approach. Results We discovered and validated a set of 13 miRNAs (miR-222, miR-92a, miR-27a, miR-17, miR-24, miR-320a, miR-25, miR-126, miR-19b, miR-199a-3p, miR-30b, miR-30c, miR-374a) that can be used to create a reliable reference combination of 3 miRNAs. We showed that on average the mean of 3 miRNAs (p = 0.0002) and 2 miRNAs (p = 0.0031) were a better reference than single miRNA. The arithmetic means of 3 miRNAs: miR-24, miR-222 and miR-27a was shown to be the most stable combination of 3 miRNAs in validation sets. Conclusions No single miRNA was suitable as a universal reference in serum miRNA qPCR profiling, but it was possible to designate a set of miRNAs, which consistently contributed to most stable combinations.
Collapse
Affiliation(s)
- Konrad Pagacz
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Przemyslaw Kucharski
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland.,Institute of Applied Computer Science, Lodz University of Technology, Lodz, Poland
| | - Urszula Smyczynska
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Szymon Grabia
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland.,Institute of Applied Computer Science, Lodz University of Technology, Lodz, Poland
| | | | - Wojciech Fendler
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland. .,Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA.
| |
Collapse
|
32
|
Sandau US, Wiedrick JT, Smith SJ, McFarland TJ, Lusardi TA, Lind B, Harrington CA, Lapidus JA, Galasko DR, Quinn JF, Saugstad JA. Performance of Validated MicroRNA Biomarkers for Alzheimer's Disease in Mild Cognitive Impairment. J Alzheimers Dis 2020; 78:245-263. [PMID: 32955460 PMCID: PMC9262405 DOI: 10.3233/jad-200396] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Cerebrospinal fluid (CSF) microRNA (miRNA) biomarkers of Alzheimer's disease (AD) have been identified, but have not been evaluated in prodromal AD, including mild cognitive impairment (MCI). OBJECTIVE To assess whether a set of validated AD miRNA biomarkers in CSF are also sensitive to early-stage pathology as exemplified by MCI diagnosis. METHODS We measured the expression of 17 miRNA biomarkers for AD in CSF samples from AD, MCI, and cognitively normal controls (NC). We then examined classification performance of the miRNAs individually and in combination. For each miRNA, we assessed median expression in each diagnostic group and classified markers as trending linearly, nonlinearly, or lacking any trend across the three groups. For trending miRNAs, we assessed multimarker classification performance alone and in combination with apolipoprotein E ɛ4 allele (APOEɛ4) genotype and amyloid-β42 to total tau ratio (Aβ42:T-Tau). We identified predicted targets of trending miRNAs using pathway analysis. RESULTS Five miRNAs showed a linear trend of decreasing median expression across the ordered diagnoses (control to MCI to AD). The trending miRNAs jointly predicted AD with area under the curve (AUC) of 0.770, and MCI with AUC of 0.705. Aβ42:T-Tau alone predicted MCI with AUC of 0.758 and the AUC improved to 0.813 (p = 0.051) after adding the trending miRNAs. Multivariate correlation of the five trending miRNAs with Aβ42:T-Tau was weak. CONCLUSION Selected miRNAs combined with Aβ42:T-Tau improved classification performance (relative to protein biomarkers alone) for MCI, despite a weak correlation with Aβ42:T-Tau. Together these data suggest that that these miRNAs carry novel information relevant to AD, even at the MCI stage. Preliminary target prediction analysis suggests novel roles for these biomarkers.
Collapse
Affiliation(s)
- Ursula S. Sandau
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Jack T. Wiedrick
- Biostatistics & Design Program, Oregon Health & Science University, Portland, OR, USA
| | - Sierra J. Smith
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Trevor J. McFarland
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Theresa A. Lusardi
- Knight Cancer Institute Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Babett Lind
- Department of Neurology, Layton Aging and Alzheimer’s Center, Oregon Health & Science University, Portland, OR, USA
| | | | - Jodi A. Lapidus
- Biostatistics & Design Program, Oregon Health & Science University, Portland, OR, USA
- Oregon Health & Science University–Portland State University School of Public Health, Portland, OR, USA
| | - Douglas R. Galasko
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Joseph F. Quinn
- Parkinson Center and Movement Disorders Program, School of Medicine, Oregon Health & Science University, Portland, OR, USA
- Portland VAMC Parkinson’s Disease Research, Education, and Clinical Center, Portland, OR, USA
| | - Julie A. Saugstad
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
33
|
Weldon Furr J, Morales-Scheihing D, Manwani B, Lee J, McCullough LD. Cerebral Amyloid Angiopathy, Alzheimer's Disease and MicroRNA: miRNA as Diagnostic Biomarkers and Potential Therapeutic Targets. Neuromolecular Med 2019; 21:369-390. [PMID: 31586276 DOI: 10.1007/s12017-019-08568-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/04/2019] [Indexed: 12/14/2022]
Abstract
The protein molecules must fold into unique conformations to acquire functional activity. Misfolding, aggregation, and deposition of proteins in diverse organs, the so-called "protein misfolding disorders (PMDs)", represent the conformational diseases with highly ordered assemblies, including oligomers and fibrils that are linked to neurodegeneration in brain illnesses such as cerebral amyloid angiopathy (CAA) and Alzheimer's disease (AD). Recent studies have revealed several aspects of brain pathology in CAA and AD, but both the classification and underlying mechanisms need to be further refined. MicroRNAs (miRNAs) are critical regulators of gene expression at the post-transcriptional level. Increasing evidence with the advent of RNA sequencing technology suggests possible links between miRNAs and these neurodegenerative disorders. To provide insights on the small RNA-mediated regulatory circuitry and the translational significance of miRNAs in PMDs, this review will discuss the characteristics and mechanisms of the diseases and summarize circulating or tissue-resident miRNAs associated with AD and CAA.
Collapse
Affiliation(s)
- J Weldon Furr
- BRAINS Research Laboratory, University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Diego Morales-Scheihing
- BRAINS Research Laboratory, University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Bharti Manwani
- BRAINS Research Laboratory, University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Juneyoung Lee
- BRAINS Research Laboratory, University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Louise D McCullough
- BRAINS Research Laboratory, University of Texas McGovern Medical School, Houston, TX, 77030, USA.
| |
Collapse
|
34
|
Potential Fluid Biomarkers for the Diagnosis of Mild Cognitive Impairment. Int J Mol Sci 2019; 20:ijms20174149. [PMID: 31450692 PMCID: PMC6747411 DOI: 10.3390/ijms20174149] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/20/2019] [Accepted: 08/23/2019] [Indexed: 02/07/2023] Open
Abstract
Mild cognitive impairment (MCI) is characterized by a level of cognitive impairment that is lower than normal for a person’s age, but a higher function than that that observed in a demented person. MCI represents a transitional state between normal aging and dementia disorders, especially Alzheimer’s disease (AD). Much effort has been made towards determining the prognosis of a person with MCI who will convert to AD. It is now clear that cerebrospinal fluid (CSF) levels of Aβ40, Aβ42, total tau and phosphorylated tau are useful for predicting the risk of progression from MCI to AD. This review highlights the advantages of the current blood-based biomarkers in MCI, and discusses some of these challenges, with an emphasis on recent studies to provide an overview of the current state of MCI.
Collapse
|
35
|
Wang J, Gu BJ, Masters CL, Wang YJ. A systemic view of Alzheimer disease - insights from amyloid-β metabolism beyond the brain. Nat Rev Neurol 2019; 13:612-623. [PMID: 28960209 DOI: 10.1038/nrneurol.2017.111] [Citation(s) in RCA: 522] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alzheimer disease (AD) is the most common type of dementia, and is currently incurable; existing treatments for AD produce only a modest amelioration of symptoms. Research into this disease has conventionally focused on the CNS. However, several peripheral and systemic abnormalities are now understood to be linked to AD, and our understanding of how these alterations contribute to AD is becoming more clearly defined. This Review focuses on amyloid-β (Aβ), a major hallmark of AD. We review emerging findings of associations between systemic abnormalities and Aβ metabolism, and describe how these associations might interact with or reflect on the central pathways of Aβ production and clearance. On the basis of these findings, we propose that these abnormal systemic changes might not only develop secondary to brain dysfunction but might also affect AD progression, suggesting that the interactions between the brain and the periphery have a crucial role in the development and progression of AD. Such a systemic view of the molecular pathogenesis of AD could provide a novel perspective for understanding this disease and present new opportunities for its early diagnosis and treatment.
Collapse
Affiliation(s)
- Jun Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, 10 Changjiang branch road, Daping, Chongqing, 400042, China
| | - Ben J Gu
- The Florey Institute, The University of Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia
| | - Colin L Masters
- The Florey Institute, The University of Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia
| | - Yan-Jiang Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, 10 Changjiang branch road, Daping, Chongqing, 400042, China
| |
Collapse
|
36
|
Lea A, Subramaniam M, Ko A, Lehtimäki T, Raitoharju E, Kähönen M, Seppälä I, Mononen N, Raitakari OT, Ala-Korpela M, Pajukanta P, Zaitlen N, Ayroles JF. Genetic and environmental perturbations lead to regulatory decoherence. eLife 2019; 8:e40538. [PMID: 30834892 PMCID: PMC6400502 DOI: 10.7554/elife.40538] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 02/14/2019] [Indexed: 01/24/2023] Open
Abstract
Correlation among traits is a fundamental feature of biological systems that remains difficult to study. To address this problem, we developed a flexible approach that allows us to identify factors associated with inter-individual variation in correlation. We use data from three human cohorts to study the effects of genetic and environmental variation on correlations among mRNA transcripts and among NMR metabolites. We first show that environmental exposures (infection and disease) lead to a systematic loss of correlation, which we define as 'decoherence'. Using longitudinal data, we show that decoherent metabolites are better predictors of whether someone will develop metabolic syndrome than metabolites commonly used as biomarkers of this disease. Finally, we demonstrate that correlation itself is under genetic control by mapping hundreds of 'correlation quantitative trait loci (QTLs)'. Together, this work furthers our understanding of how and why coordinated biological processes break down, and points to a potential role for decoherence in disease. Editorial note This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).
Collapse
Affiliation(s)
- Amanda Lea
- Department of Ecology and EvolutionPrinceton UniversityPrincetonUnited States
- Lewis-Sigler Institute for Integrative GenomicsPrinceton UniversityPrincetonUnited States
| | - Meena Subramaniam
- Department of Medicine, Lung Biology CenterUniversity of California, San FranciscoSan FranciscoUnited States
| | - Arthur Ko
- Department of Medicine, David Geffen School of Medicine at UCLAUniversity of California, Los AngelesLos AngelesUnited States
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
- Finnish Cardiovascular Research Center, Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
| | - Emma Raitoharju
- Finnish Cardiovascular Research Center, Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
| | - Mika Kähönen
- Finnish Cardiovascular Research Center, Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
- Department of Clinical PhysiologyTampere University, Tampere University HospitalTampereFinland
| | - Ilkka Seppälä
- Finnish Cardiovascular Research Center, Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
| | - Nina Mononen
- Finnish Cardiovascular Research Center, Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
| | - Olli T Raitakari
- Research Centre of Applied and Preventive Cardiovascular MedicineUniversity of TurkuTurkuFinland
- Department of Clinical Physiology and Nuclear MedicineTurku University HospitalTurkuFinland
| | - Mika Ala-Korpela
- Systems Epidemiology, Baker Heart and Diabetes InstituteMelbourneAustralia
- Computational Medicine, Faculty of Medicine, Biocenter OuluUniversity of OuluOuluFinland
- NMR Metabolomics Laboratory, School of PharmacyUniversity of Eastern FinlandKuopioFinland
- Population Health Science, Bristol Medical SchoolUniversity of BristolBristolUnited Kingdom
- Medical Research Council Integrative Epidemiology UnitUniversity of BristolBristolUnited Kingdom
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Faculty of Medicine, Nursing and Health SciencesThe Alfred Hospital, Monash UniversityMelbourneAustralia
| | - Päivi Pajukanta
- Department of Human Genetics, David Geffen School of Medicine at UCLAUniversity of California, Los AngelesLos AngelesUnited States
| | - Noah Zaitlen
- Department of Medicine, Lung Biology CenterUniversity of California, San FranciscoSan FranciscoUnited States
| | - Julien F Ayroles
- Department of Ecology and EvolutionPrinceton UniversityPrincetonUnited States
- Lewis-Sigler Institute for Integrative GenomicsPrinceton UniversityPrincetonUnited States
| |
Collapse
|
37
|
MicroRNAs and mild cognitive impairment: A systematic review. Ageing Res Rev 2019; 50:131-141. [PMID: 30472218 DOI: 10.1016/j.arr.2018.11.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/06/2018] [Accepted: 11/21/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Mild cognitive impairment (MCI) is usually described as an intermediate phase between normal cognition and dementia. Identifying the subjects at a higher risk of progressing from MCI to AD is essential to manage this condition. The diagnosis of MCI is mainly clinical. Several biomarkers have been proposed, but mostly for research purposes, as they are based on an invasive procedure to obtain the sample, such as cerebrospinal fluid (CSF). As a consequence, rapid and non-invasive biomarkers are needed to improve diagnosis. The objective of this systematic review is to summarize available evidence on the use of miRNAs as biomarkers in subjects with MCI. METHODS Relevant literature published up to June 2018 was retrieved searching the databases PubMed, ISI Web of Knowledge and the Cochrane Database. Only studies considering microRNAs (miRNAs) and a diagnosis of MCI were included. Data were extracted using a specifically-designed standardized form, and their methodological quality was assessed using QUADAS-2 and QUIPS. RESULTS Twenty-one studies of 153 retrieved articles met the predefined inclusion/exclusion criteria. Studies included participants ranging from 6 to 330. More than 40 miRNAs resulted as dysregulated, and miR-206 was the only miRNA that was found as differentially expressed in patients with MCI by more than two studies. However, these results have either not yet been confirmed in other independent cohorts, or data are still inconsistent. Inconsistencies among included studies could be due to several issues including the selection of participants, pre-analytical and analytical procedures, and statistical analyses.
Collapse
|
38
|
Zhang X, Xi Y, Yu H, An Y, Wang Y, Tao L, Wang Y, Liu W, Wang T, Xiao R. 27-hydroxycholesterol promotes Aβ accumulation via altering Aβ metabolism in mild cognitive impairment patients and APP/PS1 mice. Brain Pathol 2019; 29:558-573. [PMID: 30582229 DOI: 10.1111/bpa.12698] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 12/11/2018] [Indexed: 02/06/2023] Open
Abstract
The oxysterol 27-hydroxycholesterol (27-OHC) has been considered to play a key role in the pathogenesis of Alzheimer's disease (AD). Because β-amyloid peptide (Aβ) is the pathological hallmark of AD, the aim of this study is to verify whether 27-OHC could lead to cognitive impairment through modulating Aβ accumulation and deposition. Regulation of Aβ metabolism was explored as the pathogenic mechanism of 27-OHC. Furthermore, microRNAs (miRNAs) and their relations with 27-OHC were also detected. In present study, matched case-control study and APP/PS1 transgenic mice research were conducted. The results showed that the 27-OHC and Aβ in plasma were increased in mild cognitive impairment patients, and a slight correlation was found between 27-OHC and Aβ1-40. This relationship was also proved by the research of APP/PS1 mice. More severe learning and memory impairment and higher Aβ1-40 expression in brain and plasma were detected in the APP/PS1 mice of 27-OHC treatment group. In addition, increased amyloid plaques were also found in the hippocampus of 27-OHC-treated mice. In order to find out the mechanism of 27-OHC on regulating Aβ metabolism, the factors of Aβ production (APP, BACE1 and ADAM10), transport (LRP1 and RAGE) and elimination (NEP and IDE) were tested respectively. The gene and protein expressions of APP, BACE1 and RAGE were increased while LRP1 and IDE were decreased in the brain of 27-OHC-treated mice. At last, down-regulated expression of miRNA let-7g-5p was found after 27-OHC treatment. In conclusion, these findings suggested that excessive 27-OHC could enhance the accumulation and deposition of Aβ both in brain and blood, resulting in a severe impairment of cognition, especially in the modulation of Aβ1-40. The mechanism might be associated with the regulation of Aβ metabolism, and miRNA let-7g-5p was likely to play a vital role in this pathological process induced by 27-OHC.
Collapse
Affiliation(s)
- Xiaona Zhang
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Yuandi Xi
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Huiyan Yu
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Yu An
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Ying Wang
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Lingwei Tao
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Yushan Wang
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Wen Liu
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Tao Wang
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Rong Xiao
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| |
Collapse
|
39
|
Martinez B, Peplow PV. MicroRNAs as diagnostic and therapeutic tools for Alzheimer's disease: advances and limitations. Neural Regen Res 2019; 14:242-255. [PMID: 30531004 PMCID: PMC6301178 DOI: 10.4103/1673-5374.244784] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common age-related, progressive neurodegenerative disease. It is characterized by memory loss and cognitive decline and responsible for most cases of dementia in the elderly. Late-onset or sporadic AD accounts for > 95% of cases, with age at onset > 65 years. Currently there are no drugs or other therapeutic agents available to prevent or delay the progression of AD. The cellular and molecular changes occurring in the brains of individuals with AD include accumulation of β-amyloid peptide and hyperphosphorylated tau protein, decrease of acetylcholine neurotransmitter, inflammation, and oxidative stress. Aggregation of β-amyloid peptide in extracellular plaques and the hyperphosphorylated tau protein in intracellular neurofibrillary tangles are characteristic of AD. A major challenge is identifying molecular biomarkers of the early-stage AD in patients as most studies have been performed with blood or brain tissue samples (postmortem) at late-stage AD. Subjects with mild cognitive impairment almost always have the neuropathologic features of AD with about 50% of mild cognitive impairment patients progressing to AD. They could provide important information about AD pathomechanism and potentially also highlight minimally or noninvasive, easy-to-access biomarkers. MicroRNAs are dysregulated in AD, and may facilitate the early detection of the disease and potentially the continual monitoring of disease progression and allow therapeutic interventions to be evaluated. Four recent reviews have been published of microRNAs in AD, each of which identified areas of weakness or limitations in the reported studies. Importantly, studies in the last three years have shown considerable progress in overcoming some of these limitations and identifying specific microRNAs as biomarkers for AD and mild cognitive impairment. Further large-scale human studies are warranted with less disparity in the study populations, and using an appropriate method to validate the findings.
Collapse
Affiliation(s)
- Bridget Martinez
- Department of Molecular & Cellular Biology, University of California, Merced, CA, USA; Department of Medicine, St. Georges University School of Medicine, Grenada; Department of Physics and Engineering, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Philip V Peplow
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
40
|
microRNA diagnostic panel for Alzheimer's disease and epigenetic trade-off between neurodegeneration and cancer. Ageing Res Rev 2019; 49:125-143. [PMID: 30391753 DOI: 10.1016/j.arr.2018.10.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/01/2018] [Accepted: 10/19/2018] [Indexed: 12/20/2022]
Abstract
microRNAs (miRNAs) have been extensively studied as potential biomarkers for Alzheimer's disease (AD). Their profiles have been analyzed in blood, cerebrospinal fluid (CSF) and brain tissue. However, due to the high variability between the reported data, stemming from the lack of methodological standardization and the heterogeneity of AD, the most promising miRNA biomarker candidates have not been selected. Our literature review shows that out of 137 miRNAs found to be altered in AD blood, 36 have been replicated in at least one independent study, and out of 166 miRNAs reported as differential in AD CSF, 13 have been repeatedly found. Only 3 miRNAs have been consistently reported as altered in three analyzed specimens: blood, CSF and the brain (hsa-miR-146a, hsa-miR-125b, hsa-miR-135a). Nonetheless, all 36 repeatedly differential miRNAs in AD blood are promising as components of the diagnostic panel. Given their predicted functions, such miRNA panel may report multiple pathways contributing to AD pathology, enabling the design of personalized therapies. In addition, the analysis revealed that the miRNAs dysregulated in AD overlap highly with miRNAs implicated in cancer. However, the directions of the miRNA changes are usually opposite in cancer and AD, indicative of an epigenetic trade-off between the two diseases.
Collapse
|
41
|
Yao J, Zhang Z, Deng Z, Wang Y, Guo Y. An enzyme free electrochemical biosensor for sensitive detection of miRNA with a high discrimination factor by coupling the strand displacement reaction and catalytic hairpin assembly recycling. Analyst 2018; 142:4116-4123. [PMID: 28991307 DOI: 10.1039/c7an01224a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
An isothermal, enzyme free, ultra-specific and ultra-sensitive protocol for electrochemical detection of miRNAs is proposed based on the toehold-mediated strand displacement reaction (SDR) and non-enzymatic catalytic hairpin reaction (CHA) recycling. The SDR was first triggered only in the presence of target miRNA and this process also affects other miRNA interferences having similar target sequences, thus guaranteeing a high discrimination factor and could be used in rare content miRNA detection with various amounts of interferences having similar target sequences. The output protector strand then triggered enzyme free CHA amplification and generates plenty of hairpin self-assembly products. This process in turn influences SDR equilibrium to move to the right and generates large amounts of protector output to ensure analysis sensitivity. Compared with traditional CHA, our proposed method greatly improved the signal to noise ratio and shows excellent performance in rare miRNA detection with miRNA analogue interference. Under the optimal experimental conditions and using square wave voltammetry, the established biosensor could detect target miRNA-21 down to 30 fM (S/N = 3) with a dynamic range from 100 fM to 2 nM, and discriminate rare target miRNA-21 from mismatched miRNA with high selectivity. This method holds great promise in miRNA detection from human cancer cell lines and would be a versatile and powerful tool for clinical molecular diagnostics.
Collapse
Affiliation(s)
- Juan Yao
- Department of Laboratory Medicine, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, P. R. China.
| | | | | | | | | |
Collapse
|
42
|
Koshiba S, Motoike I, Saigusa D, Inoue J, Shirota M, Katoh Y, Katsuoka F, Danjoh I, Hozawa A, Kuriyama S, Minegishi N, Nagasaki M, Takai-Igarashi T, Ogishima S, Fuse N, Kure S, Tamiya G, Tanabe O, Yasuda J, Kinoshita K, Yamamoto M. Omics research project on prospective cohort studies from the Tohoku Medical Megabank Project. Genes Cells 2018; 23:406-417. [PMID: 29701317 DOI: 10.1111/gtc.12588] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 03/22/2018] [Indexed: 01/05/2023]
Abstract
Population-based prospective cohort studies are indispensable for modern medical research as they provide important knowledge on the influences of many kinds of genetic and environmental factors on the cause of disease. Although traditional cohort studies are mainly conducted using questionnaires and physical examinations, modern cohort studies incorporate omics and genomic approaches to obtain comprehensive physical information, including genetic information. Here, we report the design and midterm results of multi-omics analysis on population-based prospective cohort studies from the Tohoku Medical Megabank (TMM) Project. We have incorporated genomic and metabolomic studies in the TMM cohort study as both metabolome and genome analyses are suitable for high-throughput analysis of large-scale cohort samples. Moreover, an association study between the metabolome and genome show that metabolites are an important intermediate phenotype connecting genetic and lifestyle factors to physical and pathologic phenotypes. We apply our metabolome and genome analyses to large-scale cohort samples in the following studies.
Collapse
Affiliation(s)
- Seizo Koshiba
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Ikuko Motoike
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| | - Daisuke Saigusa
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Jin Inoue
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Matsuyuki Shirota
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Yasutake Katoh
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Fumiki Katsuoka
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Inaho Danjoh
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Atsushi Hozawa
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Shinichi Kuriyama
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Graduate School of Medicine, Tohoku University, Sendai, Japan
- International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| | - Naoko Minegishi
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Masao Nagasaki
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Graduate School of Medicine, Tohoku University, Sendai, Japan
- Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| | - Takako Takai-Igarashi
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Soichi Ogishima
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Nobuo Fuse
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Shigeo Kure
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Gen Tamiya
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Graduate School of Medicine, Tohoku University, Sendai, Japan
- RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
| | - Osamu Tanabe
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Jun Yasuda
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Kengo Kinoshita
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Graduate School of Information Sciences, Tohoku University, Sendai, Japan
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Masayuki Yamamoto
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Graduate School of Medicine, Tohoku University, Sendai, Japan
| |
Collapse
|
43
|
Groen K, Maltby VE, Lea RA, Sanders KA, Fink JL, Scott RJ, Tajouri L, Lechner-Scott J. Erythrocyte microRNA sequencing reveals differential expression in relapsing-remitting multiple sclerosis. BMC Med Genomics 2018; 11:48. [PMID: 29783973 PMCID: PMC5963124 DOI: 10.1186/s12920-018-0365-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/01/2018] [Indexed: 02/06/2023] Open
Abstract
Background There is a paucity of knowledge concerning erythrocytes in the aetiology of Multiple Sclerosis (MS) despite their potential to contribute to disease through impaired antioxidant capacity and altered haemorheological features. Several studies have identified an abundance of erythrocyte miRNAs and variable profiles associated with disease states, such as sickle cell disease and malaria. The aim of this study was to compare the erythrocyte miRNA profile of relapsing-remitting MS (RRMS) patients to healthy sex- and age-matched controls. Methods Erythrocytes were purified by density-gradient centrifugation and RNA was extracted. Following library preparation, samples were run on a HiSeq4000 Illumina instrument (paired-end 100 bp sequencing). Sequenced erythrocyte miRNA profiles (9 patients and 9 controls) were analysed by DESeq2. Differentially expressed miRNAs were validated by RT-qPCR using miR-152-3p as an endogenous control and replicated in a larger cohort (20 patients and 18 controls). After logarithmic transformation, differential expression was determined by two-tailed unpaired t-tests. Logistic regression analysis was carried out and receiver operating characteristic (ROC) curves were generated to determine biomarker potential. Results A total of 236 erythrocyte miRNAs were identified. Of twelve differentially expressed miRNAs in RRMS two showed increased expression (adj. p < 0.05). Only modest fold-changes were evident across differentially expressed miRNAs. RT-qPCR confirmed differential expression of miR-30b-5p (0.61 fold, p < 0.05) and miR-3200-3p (0.36 fold, p < 0.01) in RRMS compared to healthy controls. Relative expression of miR-3200-5p (0.66 fold, NS p = 0.096) also approached significance. MiR-3200-5p was positively correlated with cognition measured by audio-recorded cognitive screen (r = 0.60; p < 0.01). MiR-3200-3p showed greatest biomarker potential as a single miRNA (accuracy = 75.5%, p < 0.01, sensitivity = 72.7%, specificity = 84.0%). Combining miR-3200-3p, miR-3200-5p, and miR-30b-5p into a composite biomarker increased accuracy to 83.0% (p < 0.05), sensitivity to 77.3%, and specificity to 88.0%. Conclusions This is the first study to report differences in erythrocyte miRNAs in RRMS. While the role of miRNAs in erythrocytes remains to be elucidated, differential expression of erythrocyte miRNAs may be exploited as biomarkers and their potential contribution to MS pathology and cognition should be further investigated. Electronic supplementary material The online version of this article (10.1186/s12920-018-0365-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kira Groen
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, 2308, Australia.,Centre for Information Based Medicine, Level 3 West, Hunter Medical Research Institute, 1 Kookaburra Circuit, New Lambton Heights, NSW, 2305, Australia
| | - Vicki E Maltby
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, 2308, Australia.,Centre for Information Based Medicine, Level 3 West, Hunter Medical Research Institute, 1 Kookaburra Circuit, New Lambton Heights, NSW, 2305, Australia
| | - Rodney A Lea
- Centre for Information Based Medicine, Level 3 West, Hunter Medical Research Institute, 1 Kookaburra Circuit, New Lambton Heights, NSW, 2305, Australia.,Institute of Health and Biomedical Innovations, Genomics Research Centre, Queensland University of Technology, Kelvin Grove, QLD, 4059, Australia
| | - Katherine A Sanders
- Centre for Anatomical and Human Sciences, Hull York Medical School, Hull, HU6 7RX, UK
| | - J Lynn Fink
- Diamantina Institute, University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Rodney J Scott
- Centre for Information Based Medicine, Level 3 West, Hunter Medical Research Institute, 1 Kookaburra Circuit, New Lambton Heights, NSW, 2305, Australia.,Division of Molecular Genetics, Pathology North, John Hunter Hospital, New Lambton Heights, NSW, 2305, Australia.,School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Lotti Tajouri
- Faculty of Health Sciences and Medicine, Bond University, QLD, Robina, 4229, Australia
| | - Jeannette Lechner-Scott
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, 2308, Australia. .,Centre for Information Based Medicine, Level 3 West, Hunter Medical Research Institute, 1 Kookaburra Circuit, New Lambton Heights, NSW, 2305, Australia. .,Department of Neurology, John Hunter Hospital, New Lambton Heights, NSW, 2305, Australia.
| |
Collapse
|
44
|
Lee HA, Ahn EH, Jang HG, Kim JO, Kim JH, Lee YB, Lee WS, Kim NK. Association Between miR-605A>G, miR-608G>C, miR-631I>D, miR-938C>T, and miR-1302-3C>T Polymorphisms and Risk of Recurrent Implantation Failure. Reprod Sci 2018; 26:469-475. [PMID: 29739285 DOI: 10.1177/1933719118773413] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recurrent implantation failure (RIF) is diagnosed when pregnancy failure occurs after 2 consecutive in vitro fertilization-embryo transfers (IVF-ET) to the endometrium using at least 4 high-quality embryos. MicroRNAs (miRNAs) are a class of small noncoding RNA and reported to play an important role in cell proliferation as well as implantation process. Recently, it has been reported that miRNA can regulate RIF occurrence. So, we were to examine the association between the specific miRNA polymorphisms and RIF in Korean women. Genotyping was performed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay to determine the frequency of the following polymorphisms: miR-605A>G, miR-608G>C, miR-631I>D, miR-938C>T, and miR-1302-3C>T. Our results demonstrate a decreased incidence of RIF in patients with the miR-1302-3C>T polymorphism (adjusted odds ratio [AOR], 0.234; 95% confidence interval [CI], 0.089-0.618; P = .003). Based on our allele combination analysis, the C-T ( miR-938/ miR-1302-3: OR = 0.259; 95% CI, 0.100-0.674; P = .003) allele was also associated with decreased RIF risk. From our interaction analysis with miR-1302-3, the miR-1302-3CC genotype (AOR = 43.332; 95% CI, 5.576-336.745) showed an association with RIF prevalence in participants with an activated partial thromboplastin time (aPTT) ≤22.6. We found that the miR-1302-3C>T polymorphism is significantly associated with RIF development in Korean women. Specifically, our study suggests that the T allele of miR-1302-3 may decrease the risk of RIF in Korean women.
Collapse
Affiliation(s)
- Hyun Ah Lee
- 1 Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Republic of Korea.,Both authors contributed equally to this work
| | - Eun Hee Ahn
- 2 Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea.,Both authors contributed equally to this work
| | - Hyo Geun Jang
- 1 Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Republic of Korea
| | - Jung Oh Kim
- 1 Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Republic of Korea
| | - Ji Hyang Kim
- 2 Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Yu Bin Lee
- 3 Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul, Republic of Korea
| | - Woo Sik Lee
- 3 Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul, Republic of Korea
| | - Nam Keun Kim
- 1 Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Republic of Korea
| |
Collapse
|
45
|
Singh AJ, Ramsey SA, Filtz TM, Kioussi C. Differential gene regulatory networks in development and disease. Cell Mol Life Sci 2018; 75:1013-1025. [PMID: 29018868 PMCID: PMC11105524 DOI: 10.1007/s00018-017-2679-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/19/2017] [Accepted: 10/04/2017] [Indexed: 02/02/2023]
Abstract
Gene regulatory networks, in which differential expression of regulator genes induce differential expression of their target genes, underlie diverse biological processes such as embryonic development, organ formation and disease pathogenesis. An archetypical systems biology approach to mapping these networks involves the combined application of (1) high-throughput sequencing-based transcriptome profiling (RNA-seq) of biopsies under diverse network perturbations and (2) network inference based on gene-gene expression correlation analysis. The comparative analysis of such correlation networks across cell types or states, differential correlation network analysis, can identify specific molecular signatures and functional modules that underlie the state transition or have context-specific function. Here, we review the basic concepts of network biology and correlation network inference, and the prevailing methods for differential analysis of correlation networks. We discuss applications of gene expression network analysis in the context of embryonic development, cancer, and congenital diseases.
Collapse
Affiliation(s)
- Arun J Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, 97331, USA
| | - Stephen A Ramsey
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, 97331, USA
- School of Electrical Engineering and Computer Science, College of Engineering, Oregon State University, Corvallis, OR, 97331, USA
| | - Theresa M Filtz
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, 97331, USA
| | - Chrissa Kioussi
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, 97331, USA.
| |
Collapse
|
46
|
Stivaros S, Garg S, Tziraki M, Cai Y, Thomas O, Mellor J, Morris AA, Jim C, Szumanska-Ryt K, Parkes LM, Haroon HA, Montaldi D, Webb N, Keane J, Castellanos FX, Silva AJ, Huson S, Williams S, Gareth Evans D, Emsley R, Green J. Randomised controlled trial of simvastatin treatment for autism in young children with neurofibromatosis type 1 (SANTA). Mol Autism 2018; 9:12. [PMID: 29484149 PMCID: PMC5824534 DOI: 10.1186/s13229-018-0190-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/12/2018] [Indexed: 11/24/2022] Open
Abstract
Background Neurofibromatosis 1 (NF1) is a monogenic model for syndromic autism. Statins rescue the social and cognitive phenotype in animal knockout models, but translational trials with subjects > 8 years using cognition/behaviour outcomes have shown mixed results. This trial breaks new ground by studying statin effects for the first time in younger children with NF1 and co-morbid autism and by using multiparametric imaging outcomes. Methods A single-site triple-blind RCT of simvastatin vs. placebo was done. Assessment (baseline and 12-week endpoint) included peripheral MAPK assay, awake magnetic resonance imaging spectroscopy (MRS; GABA and glutamate+glutamine (Glx)), arterial spin labelling (ASL), apparent diffusion coefficient (ADC), resting state functional MRI, and autism behavioural outcomes (Aberrant Behaviour Checklist and Clinical Global Impression). Results Thirty subjects had a mean age of 8.1 years (SD 1.8). Simvastatin was well tolerated. The amount of imaging data varied by test. Simvastatin treatment was associated with (i) increased frontal white matter MRS GABA (t(12) = - 2.12, p = .055), GABA/Glx ratio (t(12) = - 2.78, p = .016), and reduced grey nuclei Glx (ANCOVA p < 0.05, Mann-Whitney p < 0.01); (ii) increased ASL perfusion in ventral diencephalon (Mann-Whitney p < 0.01); and (iii) decreased ADC in cingulate gyrus (Mann-Whitney p < 0.01). Machine-learning classification of imaging outcomes achieved 79% (p < .05) accuracy differentiating groups at endpoint against chance level (64%, p = 0.25) at baseline. Three of 12 (25%) simvastatin cases compared to none in placebo met 'clinical responder' criteria for behavioural outcome. Conclusions We show feasibility of peripheral MAPK assay and autism symptom measurement, but the study was not powered to test effectiveness. Multiparametric imaging suggests possible simvastatin effects in brain areas previously associated with NF1 pathophysiology and the social brain network. Trial registration EU Clinical Trial Register (EudraCT) 2012-005742-38 (www.clinicaltrialsregister.eu).
Collapse
Affiliation(s)
- Stavros Stivaros
- Academic Unit of Paediatric Radiology, Royal Manchester Children’s Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
- Division of Informatics, Imaging and Data Sciences, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Shruti Garg
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Greater Manchester Mental Health NHS Foundation Trust, Room 3.311, Jean McFarlane Building, Oxford Road, Manchester, M13 9PL UK
| | - Maria Tziraki
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Ying Cai
- Departments of Neurobiology, Psychiatry and Biobehavioral Sciences and Psychology, Integrative Center for Learning and Memory, Brain Research Institute, Brain Research Institute, University of California, California, LA 90095 USA
| | - Owen Thomas
- Academic Unit of Radiology, Salford Royal Foundation NHS Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Joseph Mellor
- Computer Science, University of Manchester, Manchester, UK
| | - Andrew A. Morris
- Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Carly Jim
- Manchester Metropolitan University, Manchester, UK
| | - Karolina Szumanska-Ryt
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Laura M Parkes
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Hamied A. Haroon
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Daniela Montaldi
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Nicholas Webb
- Department of Paediatric Nephrology, Royal Manchester Children’s Hospital, Manchester University NHS Foundation Trust, Academic Health Sciences Centre, Manchester, UK
| | - John Keane
- Computer Science, University of Manchester, Manchester, UK
| | - Francisco X. Castellanos
- Hassenfeld Children’s Hospital at NYU Langone, Nathan S. Kline Institute for Psychiatric Research, New York, USA
| | - Alcino J. Silva
- Departments of Neurobiology, Psychiatry and Biobehavioral Sciences and Psychology, Integrative Center for Learning and Memory, Brain Research Institute, Brain Research Institute, University of California, California, LA 90095 USA
| | - Sue Huson
- Manchester Centre for Genomic Medicine, St Mary’s Hospital, Manchester University NHS Foundation Trust, Academic Health Sciences Centre, Manchester, UK
| | - Stephen Williams
- Division of Informatics, Imaging and Data Sciences, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - D. Gareth Evans
- Manchester Centre for Genomic Medicine, St Mary’s Hospital, Manchester University NHS Foundation Trust, Academic Health Sciences Centre, Manchester, UK
| | - Richard Emsley
- Centre for Biostatistics, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jonathan Green
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Greater Manchester Mental Health NHS Foundation Trust, Room 3.311, Jean McFarlane Building, Oxford Road, Manchester, M13 9PL UK
| |
Collapse
|
47
|
The Bioinformatic Analysis of the Dysregulated Genes and MicroRNAs in Entorhinal Cortex, Hippocampus, and Blood for Alzheimer's Disease. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9084507. [PMID: 29359159 PMCID: PMC5735586 DOI: 10.1155/2017/9084507] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/15/2017] [Accepted: 08/29/2017] [Indexed: 02/08/2023]
Abstract
Aim The incidence of Alzheimer's disease (AD) has been increasing in recent years, but there exists no cure and the pathological mechanisms are not fully understood. This study aimed to find out the pathogenesis of learning and memory impairment, new biomarkers, potential therapeutic targets, and drugs for AD. Methods We downloaded the microarray data of entorhinal cortex (EC) and hippocampus (HIP) of AD and controls from Gene Expression Omnibus (GEO) database, and then the differentially expressed genes (DEGs) in EC and HIP regions were analyzed for functional and pathway enrichment. Furthermore, we utilized the DEGs to construct coexpression networks to identify hub genes and discover the small molecules which were capable of reversing the gene expression profile of AD. Finally, we also analyzed microarray and RNA-seq dataset of blood samples to find the biomarkers related to gene expression in brain. Results We found some functional hub genes, such as ErbB2, ErbB4, OCT3, MIF, CDK13, and GPI. According to GO and KEGG pathway enrichment, several pathways were significantly dysregulated in EC and HIP. CTSD and VCAM1 were dysregulated significantly in blood, EC, and HIP, which were potential biomarkers for AD. Target genes of four microRNAs had similar GO_terms distribution with DEGs in EC and HIP. In addtion, small molecules were screened out for AD treatment. Conclusion These biological pathways and DEGs or hub genes will be useful to elucidate AD pathogenesis and identify novel biomarkers or drug targets for developing improved diagnostics and therapeutics against AD.
Collapse
|
48
|
Sheinerman KS, Toledo JB, Tsivinsky VG, Irwin D, Grossman M, Weintraub D, Hurtig HI, Chen-Plotkin A, Wolk DA, McCluskey LF, Elman LB, Trojanowski JQ, Umansky SR. Circulating brain-enriched microRNAs as novel biomarkers for detection and differentiation of neurodegenerative diseases. ALZHEIMERS RESEARCH & THERAPY 2017; 9:89. [PMID: 29121998 PMCID: PMC5679501 DOI: 10.1186/s13195-017-0316-0] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/19/2017] [Indexed: 12/11/2022]
Abstract
Background Minimally invasive specific biomarkers of neurodegenerative diseases (NDs) would facilitate patient selection and disease progression monitoring. We describe the assessment of circulating brain-enriched microRNAs as potential biomarkers for Alzheimer’s disease (AD), frontotemporal dementia (FTD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS). Methods In this case-control study, the plasma samples were collected from 250 research participants with a clinical diagnosis of AD, FTD, PD, and ALS, as well as from age- and sex-matched control subjects (n = 50 for each group), recruited from 2003 to 2015 at the University of Pennsylvania Health System, including the Alzheimer’s Disease Center, the Parkinson’s Disease and Movement Disorders Center, the Frontotemporal Degeneration Center, and the Amyotrophic Lateral Sclerosis Clinic. Each group was randomly divided into training and confirmation sets of equal size. To evaluate the potential of circulating microRNAs enriched in specific brain regions affected by NDs and present in synapses as biomarkers of NDs, the levels of 37 brain-enriched and inflammation-associated microRNAs in the plasma of all participants were measured using individual qRT-PCR. A “microRNA pair” approach was used for data normalization. Results MicroRNA pairs and their combinations (classifiers) capable of differentiating NDs from control and from each other were defined using independently and jointly analyzed training and confirmation datasets. AD, PD, FTD, and ALS are differentiated from control with accuracy of 0.89, 0.90, 0.88, and 0.83 (AUCs, 0.96, 0.96, 0.94, and 0.93), respectively; NDs are differentiated from each other with accuracy ranging from 0.77 (AUC, 0.87) for AD vs. FTD to 0.93 (AUC, 0.98) for AD vs. ALS. The data further indicate sex dependence of some microRNA markers. The average increase in accuracy in distinguishing ND from control for all and male/female groups is 0.06; the largest increase is for ALS, from 0.83 for all participants to 0.92/0.98 for male/female participants. Conclusions The work presented here suggests the possibility of developing microRNA-based diagnostics for detection and differentiation of NDs. Larger multicenter clinical studies are needed to further evaluate circulating brain-enriched microRNAs as biomarkers for NDs and to investigate their association with other ND biomarkers in clinical trial settings. Electronic supplementary material The online version of this article (doi:10.1186/s13195-017-0316-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Jon B Toledo
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Present address: Department of Neurology, Houston Methodist Hospital, Houston, TX, 77030, USA
| | | | - David Irwin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Murray Grossman
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Daniel Weintraub
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Howard I Hurtig
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Alice Chen-Plotkin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - David A Wolk
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Leo F McCluskey
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lauren B Elman
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - John Q Trojanowski
- Institute on Aging, Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | |
Collapse
|
49
|
Zhang Z, Wang J, Li J, Wang X, Song W. MicroRNA-150 promotes cell proliferation, migration, and invasion of cervical cancer through targeting PDCD4. Biomed Pharmacother 2017; 97:511-517. [PMID: 29091902 DOI: 10.1016/j.biopha.2017.09.143] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 09/25/2017] [Accepted: 09/26/2017] [Indexed: 11/30/2022] Open
Abstract
Recent studies have showed that microRNA-150 (miR-150) is up-regulated in various cancers including cervical cancer. However, the specific mechanism of miR-150 in the regulation of cell proliferation, migration and invasion is still unclear. In this study, a total of 150 cervical cancer samples, including 50 cervical cancer tissues, 50 corresponding adjacent non-neoplastic tissues, and 50 serum samples were collected from cervical cancer patients. 50 matched normal tissues and 50 serum samples were collected from the control group. MiR-150 was evaluated by quantitative real-time polymerase chain reaction (qRT-PCR). Programmed cell death protein 4 (PDCD4) was evaluated by qRT-PCR and western blot. Cell migration and invasion were assessed by transwell assays. Proliferative abilities were determined by MTT assays. Luciferase reporter assay was employed to validate the direct target of PDCD4 by miR-150. We found that miR-150 was increased in cervical cancer specimens. In contrast, PDCD4 was decreased in cervical cancer tissues. MiR-150 promoted cell migration, invasion and proliferation through targeting PDCD4. These results collectively indicated that miR-150 might be used as a potential therapeutic biomarker in cervical cancer.
Collapse
Affiliation(s)
- Zhan Zhang
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, PR China; Shangqiu Medical College, Shangqiu, Henan 476000, PR China.
| | - Jinming Wang
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, PR China
| | - Jing Li
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, PR China
| | - Xiaofang Wang
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, PR China
| | - Wanyu Song
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, PR China
| |
Collapse
|