1
|
Zeng W, Zhang Y, Wang X, Wang S, Lin T, Su T, Jin Y, Yuan Y, Luo M, Zhong Y, Li L, Zhang D, Gong M, Cheng J, Liu J, Liu S, Wang W, Yang L, Yang H. Chemical Affinity Capture of Plasma Extracellular Vesicles Enables Efficient and Large-Scale Proteomic Identification of Prostate Cancer Biomarkers. ACS NANO 2025. [PMID: 40248970 DOI: 10.1021/acsnano.5c01564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
The serum prostate-specific antigen (PSA) testing is widely used for prostate cancer (PCa) screening but suffers from poor specificity, leading to unnecessary biopsies and overtreatment. The significant potential of extracellular vesicles (EVs) in cancer diagnosis has driven the development of efficient methods to isolate and identify EV biomarkers from large-scale clinical samples. Here, we systematically evaluate five commonly used EV isolation techniques through proteomic profiling of plasma-derived EVs, endorsing TiO2-based chemical affinity capture as a superior approach for analyzing EVs from complex clinical samples. This method demonstrates exceptional advantages in speed, throughput, reproducibility, and protein coverage. Using this optimized workflow, we analyzed plasma EVs from 80 patients with PCa and benign prostatic hyperplasia (BPH), identifying growth differentiation factor 15 (GDF15) as a compelling biomarker with a predictive power (AUC) of 0.908 for PCa. Extensive validation across independent cohorts comprising 457 samples, including plasma EVs and prostate tissues, confirmed GDF15's ability to distinguish PCa from BPH and stratify PCa stages. Notably, the combination of GDF15 with PSA further enhanced diagnostic efficiency, particularly for patients in the PSA diagnostic gray zone. This study establishes a robust workflow for EV protein analysis in large clinical cohorts and highlights EV-GDF15 as a promising biomarker for noninvasive PCa diagnosis.
Collapse
Affiliation(s)
- Wenjuan Zeng
- Liver Surgery and NHC Key Lab of Transplant Engineering and Immunology, Institutes for Systems Genetics; National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu610041, China
- Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University, Chengdu610041, China
| | - Yong Zhang
- Liver Surgery and NHC Key Lab of Transplant Engineering and Immunology, Institutes for Systems Genetics; National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu610041, China
- Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University, Chengdu610041, China
| | - Xinyuan Wang
- Proteomics and Metabolomics Core Facilities, West China Hospital, Sichuan University, Chengdu610041, China
| | - Shisheng Wang
- Liver Surgery and NHC Key Lab of Transplant Engineering and Immunology, Institutes for Systems Genetics; National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu610041, China
- Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University, Chengdu610041, China
| | - Tianhai Lin
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu610041, China
| | - Tao Su
- Proteomics and Metabolomics Core Facilities, West China Hospital, Sichuan University, Chengdu610041, China
| | - Youmei Jin
- Proteomics and Metabolomics Core Facilities, West China Hospital, Sichuan University, Chengdu610041, China
| | - Yujia Yuan
- Liver Surgery and NHC Key Lab of Transplant Engineering and Immunology, Institutes for Systems Genetics; National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu610041, China
- Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University, Chengdu610041, China
| | - Mengqi Luo
- Proteomics and Metabolomics Core Facilities, West China Hospital, Sichuan University, Chengdu610041, China
| | - Yi Zhong
- Proteomics and Metabolomics Core Facilities, West China Hospital, Sichuan University, Chengdu610041, China
| | - Li Li
- Liver Surgery and NHC Key Lab of Transplant Engineering and Immunology, Institutes for Systems Genetics; National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu610041, China
- Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University, Chengdu610041, China
| | - Dingkun Zhang
- Liver Surgery and NHC Key Lab of Transplant Engineering and Immunology, Institutes for Systems Genetics; National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu610041, China
- Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University, Chengdu610041, China
| | - Meng Gong
- Liver Surgery and NHC Key Lab of Transplant Engineering and Immunology, Institutes for Systems Genetics; National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu610041, China
- Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University, Chengdu610041, China
| | - Jingqiu Cheng
- Liver Surgery and NHC Key Lab of Transplant Engineering and Immunology, Institutes for Systems Genetics; National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu610041, China
- Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University, Chengdu610041, China
| | - Jingping Liu
- Liver Surgery and NHC Key Lab of Transplant Engineering and Immunology, Institutes for Systems Genetics; National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu610041, China
- Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University, Chengdu610041, China
| | - Shan Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu610072, China
| | - Weiya Wang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu610041, China
| | - Lu Yang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu610041, China
| | - Hao Yang
- Liver Surgery and NHC Key Lab of Transplant Engineering and Immunology, Institutes for Systems Genetics; National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu610041, China
- Proteomics and Metabolomics Core Facilities, West China Hospital, Sichuan University, Chengdu610041, China
- Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University, Chengdu610041, China
| |
Collapse
|
2
|
Wang C, Zhou C, Zhang YF, He H, Wang D, Lv HX, Yang ZJ, Wang J, Ren YQ, Zhang WB, Zhou FH. Integrating plasma exosomal miRNAs, ultrasound radiomics and tPSA for the diagnosis and prediction of early prostate cancer: a multi-center study. Clin Transl Oncol 2025; 27:1248-1262. [PMID: 39196498 DOI: 10.1007/s12094-024-03682-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024]
Abstract
INTRODUCTION This multi-center study aims to explore the roles of plasma exosomal microRNAs (miRNAs), ultrasound (US) radiomics, and total prostate-specific antigen (tPSA) levels in early prostate cancer detection. METHODS We analyzed the publicly available dataset GSE112264 to identify the differentially expressed miRNAs associated with prostate cancer. Then, PyRadiomics was used to extract image features, and least absolute shrinkage and selection operator (LASSO) was used to screen the data. Subsequently, according to strict inclusion and exclusion criteria, the internal dataset (n = 199) was used to construct a diagnostic model, and the receiver operating characteristic (ROC) curve, calibration curve, decision curve analysis (DCA), and DeLong test were used to evaluate its diagnostic performance. Finally, we used an external dataset (n = 158) for further validation. RESULTS The number of features extracted by PyRadiomics was 851, and the number of features screened by LASSO was 23. We combined the hsa-miR-320c, hsa-miR-944, radiomics, and tPSA features to construct a joint model. The area under the ROC curve of the combined model was 0.935. In the internal validation, the area under the curve (AUC) of the training set was 0.943, and the AUC of the test set was 0.946. The AUC of the external data set was 0.910. The calibration curve and decision curve were consistent with the performance of the combined model. There was a significant difference in the prediction ability between the combined prediction model and the single index prediction model, indicating the high credibility and accuracy of the combined model in predicting PCa. CONCLUSIONS The combined prediction model, consisting of plasma exosomal miRNAs (hsa-miR-320c and hsa-miR-944), US radiomics, and clinical tPSA, can be utilized for the early diagnosis of prostate cancer.
Collapse
Affiliation(s)
- Chao Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, 73000, China
| | - Chuan Zhou
- The First Clinical Medical College of Lanzhou University, Lanzhou, 73000, China
| | - Yun-Feng Zhang
- The First Clinical Medical College of Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Han He
- The First Clinical Medical College of Lanzhou University, Lanzhou, 73000, China
| | - Dong Wang
- The First Clinical Medical College of Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Hao-Xuan Lv
- The First Clinical Medical College of Lanzhou University, Lanzhou, 73000, China
| | - Zhi-Jun Yang
- The First Clinical Medical College of Lanzhou University, Lanzhou, 73000, China
| | - Jia Wang
- The First Clinical Medical College of Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Yong-Qi Ren
- The First Clinical Medical College of Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Wen-Bo Zhang
- The First Clinical Medical College of Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Feng-Hai Zhou
- The First Clinical Medical College of Lanzhou University, Lanzhou, 73000, China.
- Department of Urology, Gansu Provincial Hospital, Lanzhou, 730000, China.
| |
Collapse
|
3
|
Luan X, Wang X, Bian G, Li X, Gao Z, Liu Z, Zhang Z, Han T, Zhao J, Zhao H, Luan X, Zhu W, Dong L, Guo F. Exosome applications for the diagnosis and treatment of pancreatic ductal adenocarcinoma: An update (Review). Oncol Rep 2025; 53:13. [PMID: 39575479 PMCID: PMC11605277 DOI: 10.3892/or.2024.8846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a malignant neoplasm that typically manifests with subtle clinical manifestations in its early stages and frequently eludes diagnosis until the advanced phases of the disease. The limited therapeutic options available for PDAC significantly contribute to its high mortality rate, highlighting the urgent need for novel biomarkers capable of effectively identifying early clinical manifestations and facilitating precise diagnosis. The pivotal role of cellular exosomes in both the pathogenesis and therapeutic interventions for PDAC has been underscored. Furthermore, researchers have acknowledged the potential of exosomes as targeted drug carriers against regulatory cells in treating PDAC. The present article aims to provide a comprehensive review encompassing recent advancements in utilizing exosomes for elucidating mechanisms underlying disease development, patterns of metastasis, diagnostic techniques and treatment strategies associated with PDAC.
Collapse
Affiliation(s)
- Xinchi Luan
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Xuezhe Wang
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Gang Bian
- Department of Gastroenterology, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, Shandong 266041, P.R. China
| | - Xiaoxuan Li
- Department of Oncology, Key Laboratory of Cancer Molecular and Translational Research, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266031, P.R. China
| | - Ziru Gao
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Zijiao Liu
- School of Clinical and Basic Medicine and Institute of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Zhishang Zhang
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Tianyue Han
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Jinpeng Zhao
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Hongjiao Zhao
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Xinyue Luan
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Wuhui Zhu
- Department of Hepatobiliary surgery, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, Shandong 266041, P.R. China
| | - Lili Dong
- Department of Gastroenterology, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, Shandong 266041, P.R. China
| | - Feifei Guo
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| |
Collapse
|
4
|
Jasim SA, Ahmed AT, Kubaev A, Kyada A, Alshahrani MY, Sharma S, Al-Hetty HRAK, Vashishth R, Chauhan AS, Abosaoda MK. Exosomal microRNA as a key regulator of PI3K/AKT pathways in human tumors. Med Oncol 2024; 41:265. [PMID: 39400677 DOI: 10.1007/s12032-024-02529-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/27/2024] [Indexed: 10/15/2024]
Abstract
MicroRNAs (miRNAs) are conserved non-protein-coding RNAs that are naturally present in organisms and can control gene expression by suppressing the translation of mRNA or causing the degradation of mRNA. MicroRNAs are highly concentrated in the PI3K/AKT pathway, and abnormal activation of the PI3K/AKT pathway plays a role in cancer progression. The AKT/PI3K pathway is critical for cellular functions and can be stimulated by cytokines and in normal situations. It is involved in regulating various intracellular signal transduction, including development, differentiation, transcriptional regulation, protein, and synthesis. There is a growing body of evidence indicating that miRNAs, which are abundant in exosomes released by different cells, can control cellular biological activities via modulating the PI3K/AKT pathway, hence influencing cancer progression and drug resistance. This article provides an overview of the latest research progress regarding the function and medical use of the PI3K/AKT pathway and exosomal miRNA/AKT/PI3K axis in the behaviors of cancer cells.
Collapse
Affiliation(s)
- Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-Maarif University College, Ramadi, Anbar, Iraq
- Biotechnology Department, College of Applied Science, Fallujah University, Anbar, Iraq
| | - Abdulrahman T Ahmed
- Department of Nursing, Al-Maarif University College, AL-Anbar Governorate, Ramadi, Iraq.
| | - Aziz Kubaev
- Department of Maxillofacial Surgery, Samarkand State Medical University, 18 Amir Temur Street, 140100, Samarkand, Uzbekistan
| | - Ashishkumar Kyada
- Department of Pharmacy, Faculty of Health Sciences, Marwadi University, Rajkot, Gujarat, 360003, India
| | - Mohammad Y Alshahrani
- King Khalid University, AlQura'a, P.O. Box 960, Abha, Saudi Arabia
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Shilpa Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, 140307, India
| | | | - Raghav Vashishth
- Department of Surgery, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Ashish Singh Chauhan
- Division of Research and Innovation, Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Munther Kadhim Abosaoda
- College of Pharmacy, the Islamic University, Najaf, Iraq
- College of Pharmacy, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Pharmacy, the Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
5
|
Wang X, Zhang L, Cheng L, Wang Y, Li M, Yu J, Ma Z, Ho PCL, Sethi G, Chen X, Wang L, Goh BC. Extracellular vesicle-derived biomarkers in prostate cancer care: Opportunities and challenges. Cancer Lett 2024; 601:217184. [PMID: 39142499 DOI: 10.1016/j.canlet.2024.217184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024]
Abstract
Prostate cancer (PCa) is the second most prevalent cancer in men worldwide, presenting a significant global public health challenge that necessitates early detection and personalized treatment. Recently, non-invasive liquid biopsy methods have emerged as promising tools to provide insights into the genetic landscape of PCa and monitor disease progression, aiding decision-making at all stages. Research efforts have concentrated on identifying liquid biopsy biomarkers to improve PCa diagnosis, prognosis, and treatment prediction. This article reviews recent research advances over the last five years utilizing extracellular vesicles (EVs) as a natural biomarker library for PCa, and discusses the clinical translation of EV biomarkers, including ongoing trials and key implementation challenges. The findings underscore the transformative role of liquid biopsy, particularly EV-based biomarkers, in revolutionizing PCa diagnosis, prediction, and treatment.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
| | - Limin Zhang
- Jingzhou Hospital of Traditional Chinese Medicine, Jingzhou, 434000, China; The Third Clinical Medical College of Yangtze University, Jingzhou, 434000, China
| | - Le Cheng
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
| | - Yufei Wang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
| | - Mengnan Li
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
| | - Jiahui Yu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
| | - Zhaowu Ma
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
| | - Paul Chi-Lui Ho
- School of Pharmacy, Monash University Malaysia, 47500, Subang Jaya, Malaysia
| | - Gautam Sethi
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Xiaoguang Chen
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China.
| | - Lingzhi Wang
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore.
| | - Boon-Cher Goh
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore; Department of Haematology-Oncology, National University Cancer Institute, 119228, Singapore
| |
Collapse
|
6
|
Wang J, Zhang X, Xing J, Gao L, Lu H. Nanomedicines in diagnosis and treatment of prostate cancers: an updated review. Front Bioeng Biotechnol 2024; 12:1444201. [PMID: 39318666 PMCID: PMC11420853 DOI: 10.3389/fbioe.2024.1444201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/05/2024] [Indexed: 09/26/2024] Open
Abstract
Prostate cancer (PC) is the third most common male cancer in the world, which occurs due to various mutations leading to the loss of chromatin structure. There are multiple treatments for this type of cancer, of which chemotherapy is one of the most important. Sometimes, a combination of different treatments, such as chemotherapy, radiotherapy, and surgery, are used to prevent tumor recurrence. Among other treatments, androgen deprivation therapy (ADT) can be mentioned, which has had promising results. One of the drawbacks of chemotherapy and ADT treatments is that they are not targeted to the tumor tissue. For this reason, their use can cause extensive side effects. Treatments based on nanomaterials, known as nanomedicine, have attracted much attention today. Nanoparticles (NPs) are one of the main branches of nanomedicine, and they can be made of different materials such as polymer, metal, and carbon, each of which has distinct characteristics. In addition to NPs, nanovesicles (NVs) also have therapeutic applications in PC. In treating PC, synthetic NVs (liposomes, micelles, and nanobubbles) or produced from cells (exosomes) can be used. In addition to the role that NPs and NVs have in treating PC, due to being targeted, they can be used to diagnose PC and check the treatment process. Knowing the characteristics of nanomedicine-based treatments can help design new treatments and improve researchers' understanding of tumor biology and its rapid diagnosis. In this study, we will discuss conventional and nanomedicine-based treatments. The results of these studies show that the use of NPs and NVs in combination with conventional treatments has higher efficacy in tumor treatment than the individual use of each of them.
Collapse
Affiliation(s)
- Jiajia Wang
- Department of Oncology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, China
| | - Xuan Zhang
- Department of Urology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, China
| | - Jiazhen Xing
- Department of Urology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, China
| | - Lijian Gao
- Department of Urology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, China
| | - Hua Lu
- Department of Urology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, China
| |
Collapse
|
7
|
Huang B, Deng X, Zhou G, Li K, Feng Y, Xie G, Liu R, Song L, Huang Z, Jia Z. SYT4 binds to SNAP25 to facilitate exosomal secretion and prostate cancer enzalutamide resistance. Cancer Sci 2024; 115:2630-2645. [PMID: 38889208 PMCID: PMC11309949 DOI: 10.1111/cas.16239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/09/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
Prostate carcinoma represents a predominant malignancy affecting the male population, with androgen deprivation therapy (ADT) serving as a critical therapeutic modality for advanced disease states, but it often leads to the development of resistance. Enzalutamide (Enz), a second-generation antiandrogen drug, initially offers substantial therapeutic benefit, but its efficacy wanes as drug resistance ensues. In this study, we found that synaptotagmin 4 (SYT4) is an upregulated gene in enzalutamide-resistant (EnzR) cell lines. The downregulation of SYT4, in combination with enzalutamide therapy, substantially enhances the antiproliferative effect on resistant prostate cancer cells beyond the capacity of enzalutamide monotherapy. SYT4 promotes vesicle efflux by binding to the synaptosome-associated protein 25 (SNAP25), thereby contributing to cell resistance against enzalutamide. The elevated expression of SYT4 is mediated by bromodomain-containing protein 4 (BRD4), and BRD4 inhibition effectively suppressed the expression of SYT4. Treatment with a therapeutic dose of enzalutamide combined with ASO-1, an antisense oligonucleotide drug targeting SYT4, shows promising results in reversing the resistance of prostate cancer to enzalutamide.
Collapse
Affiliation(s)
- Budeng Huang
- Department of UrologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Xiyue Deng
- Department of UrologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Guochao Zhou
- The 947th Army Hospital of the Chinese PLAKashgarChina
| | - Keqiang Li
- Department of UrologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yuankang Feng
- Department of UrologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Guoqing Xie
- Department of UrologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Ruoyang Liu
- Department of UrologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Liang Song
- Department of UrologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Zhenlin Huang
- Department of UrologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Zhankui Jia
- Department of UrologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
8
|
Li Y, Ma L, Chen H, Jin Z, Yang W, Qiao Y, Ji Z, Liu G. Knowledge mapping of exosomes in prostate cancer from 2003 to 2022: a bibliometric analysis. Discov Oncol 2024; 15:307. [PMID: 39048891 PMCID: PMC11269540 DOI: 10.1007/s12672-024-01183-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Prostate cancer (PCa) is highly prevalent among males worldwide. The investigation of exosomes in PCa has emerged as a dynamic and important research area. To visually depict the prominent research areas and evolutionary patterns of exosomes in PCa, we performed a comprehensive analysis via bibliometric methods. METHODS Studies were retrieved from the Web of Science Core Collection. CiteSpace, VOSviewers, and the R package "bibliometrix" were employed to analyze the relationships and collaborations among countries/regions, organizations, authors, journals, references, and keywords. RESULTS Over the past 20 years (2003-2022), 995 literatures on exosomes in PCa have been collected. The findings indicate a consistent upward trend in annual publications with the United States being the leading contributor. Cancers is widely recognized as the most prominent journal in this area. In total, 5936 authors have contributed to these publications, with Alicia Llorente being the most prolific. The primary keywords associated with research hotspots include "liquid biopsy", "identification", "growth", "microRNAs", and "tumor-derived exosomes". CONCLUSION Our analysis reveals that investigating the intrinsic mechanisms of exosomes in PCa pathogenesis and exploring the potential of exosomes as biomarkers of PCa constitute the principal focal points in this domain of research.
Collapse
Affiliation(s)
- Yingjie Li
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Lin Ma
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Hualin Chen
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Zhaoheng Jin
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Wenjie Yang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Yi Qiao
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Zhigang Ji
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Guanghua Liu
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
9
|
Atri Roozbahani G, Kokal-Ribaudo M, Heidari Horestani M, Pungsrinont T, Baniahmad A. The protein composition of exosomes released by prostate cancer cells is distinctly regulated by androgen receptor-antagonists and -agonist to stimulate growth of target cells. Cell Commun Signal 2024; 22:219. [PMID: 38589887 PMCID: PMC11000412 DOI: 10.1186/s12964-024-01584-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/23/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Prostate cancer (PCa) is a prevalent malignancy in men worldwide, ranking as the second leading cause of cancer-related death in Western countries. Various PCa hormone therapies, such as androgen receptor (AR)-antagonists or supraphysiological androgen level (SAL) reduce cancer cell proliferation. However, treated cells may influence the growth of neighboring cells through secreted exosomes in the tumor microenvironment (TME). Here, the change of protein content of exosomes secreted from PCa cells through treatment with different AR-antagonists or SAL has been analyzed. METHODS Isolation of exosomes via ultracentrifugation of treated human PCa LNCaP cells with AR-agonist and various AR-antagonists; analysis of cellular senescence by detection of senescence associated beta galactosidase activity (SA β-Gal); Western blotting and immunofluorescence staining; Mass spectrometry (MS-spec) of exosomes and bioinformatic analyses to identify ligand-specific exosomal proteins. Growth assays to analyze influence of exosomes on non-treated cells. RESULTS MS-spec analysis identified ligand-specific proteins in exosomes. One thousand seventy proteins were up- and 52 proteins downregulated by SAL whereas enzalutamide upregulated 151 proteins and downregulated 42 exosomal proteins. The bioinformatic prediction indicates an up-regulation of pro-proliferative pathways. AR ligands augment hub factors in exosomes that include AKT1, CALM1, PAK2 and CTNND1. Accordingly, functional assays confirmed that the isolated exosomes from AR-ligand treated cells promote growth of untreated PCa cells. CONCLUSION The data suggest that the cargo of exosomes is controlled by AR-agonist and -antagonists and distinct among the AR-antagonists. Further, exosomes promote growth that might influence the TME. This finding sheds light into the complex interplay between AR signaling and exosome-mediated communication between PCa cells.
Collapse
Affiliation(s)
- Golnaz Atri Roozbahani
- Institute of Human Genetics, Jena University Hospital, Am Klinikum 1, 07740, Jena, Germany
| | - Miriam Kokal-Ribaudo
- Institute of Human Genetics, Jena University Hospital, Am Klinikum 1, 07740, Jena, Germany
| | | | - Thanakorn Pungsrinont
- Institute of Human Genetics, Jena University Hospital, Am Klinikum 1, 07740, Jena, Germany
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Am Klinikum 1, 07740, Jena, Germany.
| |
Collapse
|
10
|
Sun L, Tuo Z, Chen X, Wang H, Lyu Z, Li G. Identification of cell differentiation trajectory-related gene signature to reveal the prognostic significance and immune landscape in prostate cancer based on multiomics analysis. Heliyon 2024; 10:e27628. [PMID: 38510027 PMCID: PMC10950568 DOI: 10.1016/j.heliyon.2024.e27628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/22/2024] Open
Abstract
Background In the context of prostate cancer (PCa), the occurrence of biochemical recurrence (BCR) stands out as a pivotal factor significantly impacting prognosis, potentially leading to metastasis and mortality. However, the early detection of BCR poses a substantial challenge for PCa patients. There is an urgent need to pinpoint hub genes that can serve as predictive indicators for BCR in PCa patients. Methods Our primary goal was to identify cell differentiation trajectory-related gene signature in PCa patients by pseudo-time trajectory analysis. We further explored the functional enrichment of overlapped marker genes and probed clinically relevant modules and BCR-related genes using Weighted Gene Co-expression Network Analysis (WGCNA) in PCa patients. Key genes predicting recurrence-free survival were meticulously identified through univariate and multivariate Cox regression analyses. Subsequently, these genes were utilized to construct a prognostic gene signature, the expression, predictive efficacy, putative functions, and immunological landscape of which were thoroughly validated. Additionally, we employed immunohistochemistry (IHC) and a western blotting assay to quantify the expression of PYCR1 in clinical samples. Results Our single-cell RNA (scRNA) sequencing analysis unveiled three subgroups characterized by distinct differentiation trajectories, and the marker genes associated with these groups were extracted from PCa patients. These marker genes successfully classified the PCa sample into two molecular subtypes, demonstrating a robust correlation with clinical characteristics and recurrence-free survival. Through WGCNA and Lasso analysis, we identified four hub genes (KLK3, CD38, FASN, and PYCR1) to construct a risk profile of prognostic genes linked to BCR. Notably, the high-risk patient group exhibited elevated levels of B cell naive, Macrophage M0, and Macrophage M2 infiltration, while the low-risk group displayed higher levels of T cells CD4 memory activated and monocyte infiltration. Furthermore, IHC and western blotting assays confirmed the heightened expression of PYCR1 in PCa tissues. Conclusion This study leveraged the differentiation trajectory and genetic variability of the microenvironment to uncover crucial prognostic genes associated with BCR in PCa patients. These findings present novel perspectives for tailoring treatment strategies for PCa patients on an individualized basis.
Collapse
Affiliation(s)
- Liangxue Sun
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Public Health Clinical Center, Hefei, China
- Department of Urology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Zhouting Tuo
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xin Chen
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Huming Wang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Zhaojie Lyu
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Guangyuan Li
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Public Health Clinical Center, Hefei, China
- The Lu’ an Hospital Affiliated to Anhui Medical University, Lu’ an, China
- The Lu’ an People’s Hospital, Lu’ an, China
| |
Collapse
|
11
|
Zheng Q, Lu C, Yu L, Zhan Y, Chen Z. Exploring the metastasis-related biomarker and carcinogenic mechanism in liver cancer based on single cell technology. Heliyon 2024; 10:e27473. [PMID: 38509894 PMCID: PMC10950590 DOI: 10.1016/j.heliyon.2024.e27473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/16/2024] [Accepted: 02/29/2024] [Indexed: 03/22/2024] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a fatal primary malignancy characterized by high invasion and migration. We aimed to explore the underlying metastasis-related mechanism supporting the development of HCC. Methods The dataset of single cell RNA-seq (GSE149614) were collected for cell clustering by using the Seurat R package, the FindAllMarkers function was used to find the highly expression and defined the cell cluster. The WebGestaltR package was used for the GO and KEGG function analysis of shared genes, the Gene Set Enrichment Analysis (GSVA) was performed by clusterProfiler R package, the hTFtarget database was used to identify the crucial transcription factors (TFs), the Genomics of Drug Sensitivity in Cancer (GDSC) database was used for the drug sensitivity analysis. Finally, the overexpression and trans-well assay was used for gene function analysis. Results We obtained 9 cell clusters from the scRNA-seq data, including the nature killer (NK)/T cells, Myeloid cells, Hepatocytes, Epithelial cells, Endothelial cells, Plasma B cells, Smooth muscle cells, B cells, Liver bud hepatic cells. Further cell ecological analysis indicated that the Hepatocytes and Endothelial cell cluster were closely related to the cancer metastasis. Subsequently, the NDUFA4L2-Hepatocyte, GTSE1-Hepatocyte, ENTPD1-Endothelial and NDUFA4L2-Endothelial were defined as metastasis-supporting cell clusters, in which the NDUFA4L2-Hepatocyte cells was closely related to angiogenesis, while the NDUFA4L2-Endothelial was related with the inflammatory response and complement response. The overexpression and trans-well assay displayed that NDUFA4L2 exhibited clearly metastasis-promoting role in HCC progression. Conclusion We identified and defined 4 metastasis-supporting cell clusters by using the single cell technology, the specify shared gene was observed and played crucial role in promoting cancer progression, our findings were expected to provide new insight in control cancer metastasis.
Collapse
Affiliation(s)
- Qiuxiang Zheng
- Department of Oncology, Longyan First Hospital, Affiliated to Fujian Medical University, Longyan, 364000, China
| | - Cuiping Lu
- Department of Oncology, Longyan First Hospital, Affiliated to Fujian Medical University, Longyan, 364000, China
| | - Lian Yu
- Department of Hematology, Longyan First Hospital, Affiliated to Fujian Medical University, Longyan, 364000, China
| | - Ying Zhan
- Department of Oncology, Longyan First Hospital, Affiliated to Fujian Medical University, Longyan, 364000, China
| | - Zhiyong Chen
- Department of Oncology, Longyan First Hospital, Affiliated to Fujian Medical University, Longyan, 364000, China
| |
Collapse
|
12
|
Sang H, Li L, Zhao Q, Liu Y, Hu J, Niu P, Hao Z, Chai K. The regulatory process and practical significance of non-coding RNA in the dissemination of prostate cancer to the skeletal system. Front Oncol 2024; 14:1358422. [PMID: 38577343 PMCID: PMC10991771 DOI: 10.3389/fonc.2024.1358422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/12/2024] [Indexed: 04/06/2024] Open
Abstract
Prostate cancer is a major contributor to male cancer-related mortality globally. It has a particular affinity for the skeletal system with metastasis to bones seriously impacting prognosis. The identification of prostate cancer biomarkers can significantly enhance diagnosis and patient monitoring. Research has found that cancer and metastases exhibit abnormal expression of numerous non-coding RNA. Some of these RNA facilitate prostate cancer bone metastasis by activating downstream signaling pathways, while others inhibit this process. Elucidating the functional processes of non-coding RNA in prostate cancer bone metastasis will likely lead to innovative treatment strategies for this malignant condition. In this review, the mechanistic role of the various RNA in prostate cancer is examined. Our goal is to provide a new avenue of approach to the diagnosis and treatment of bone metastasis in this cancer.
Collapse
Affiliation(s)
- Hui Sang
- Department of Urology, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Luxi Li
- Department of Urology, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Qiang Zhao
- Department of Urology, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Yulin Liu
- Department of Urology, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Jinbo Hu
- Department of Urology, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Peng Niu
- Department of Urology, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Zhenming Hao
- Department of Urology, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Keqiang Chai
- Department of Urology, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| |
Collapse
|
13
|
Chen H, Pang B, Zhou C, Han M, Gong J, Li Y, Jiang J. Prostate cancer-derived small extracellular vesicle proteins: the hope in diagnosis, prognosis, and therapeutics. J Nanobiotechnology 2023; 21:480. [PMID: 38093355 PMCID: PMC10720096 DOI: 10.1186/s12951-023-02219-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/18/2023] [Indexed: 12/17/2023] Open
Abstract
Current diagnostic tools for prostate cancer (PCa) diagnosis and risk stratification are insufficient. The hidden onset and poor efficacy of traditional therapies against metastatic PCa make this disease a heavy burden in global men's health. Prostate cancer-derived extracellular vesicles (PCDEVs) have garnered attention in recent years due to their important role in communications in tumor microenvironment. Recent advancements have demonstrated PCDEVs proteins play an important role in PCa invasion, progression, metastasis, therapeutic resistance, and immune escape. In this review, we briefly discuss the applications of sEV proteins in PCa diagnosis and prognosis in liquid biopsy, focus on the roles of the PCa-derived small EVs (sEVs) proteins in tumor microenvironment associated with cancer progression, and explore the therapeutic potential of sEV proteins applied for future metastatic PCa therapy.
Collapse
Affiliation(s)
- Haotian Chen
- Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, People's Republic of China
- Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, People's Republic of China
- Translational Research Laboratory for Urology, Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, People's Republic of China
| | - Bairen Pang
- Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, People's Republic of China
- Translational Research Laboratory for Urology, Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, People's Republic of China
| | - Cheng Zhou
- Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, People's Republic of China
- Translational Research Laboratory for Urology, Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, People's Republic of China
| | - Meng Han
- Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, People's Republic of China
- Translational Research Laboratory for Urology, Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, People's Republic of China
| | - Jie Gong
- Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, People's Republic of China
- Translational Research Laboratory for Urology, Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, People's Republic of China
| | - Yong Li
- Cancer Care Centre, St George Hospital, Kogarah, NSW, 2217, Australia.
- School of Clinical Medicine, St. George and Sutherland Clinical Campuses, UNSW Sydney, Kensington, NSW, 2052, Australia.
| | - Junhui Jiang
- Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, People's Republic of China.
- Translational Research Laboratory for Urology, Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, People's Republic of China.
- Department of Urology, Ningbo First Hospital, The First Affiliated Hospital of Ningbo University, Haishu District, Ningbo, 315600, Zhejiang, People's Republic of China.
| |
Collapse
|
14
|
Davoudi F, Moradi A, Becker TM, Lock JG, Abbey B, Fontanarosa D, Haworth A, Clements J, Ecker RC, Batra J. Genomic and Phenotypic Biomarkers for Precision Medicine Guidance in Advanced Prostate Cancer. Curr Treat Options Oncol 2023; 24:1451-1471. [PMID: 37561382 PMCID: PMC10547634 DOI: 10.1007/s11864-023-01121-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2023] [Indexed: 08/11/2023]
Abstract
OPINION STATEMENT Prostate cancer (PCa) is the second most diagnosed malignant neoplasm and is one of the leading causes of cancer-related death in men worldwide. Despite significant advances in screening and treatment of PCa, given the heterogeneity of this disease, optimal personalized therapeutic strategies remain limited. However, emerging predictive and prognostic biomarkers based on individual patient profiles in combination with computer-assisted diagnostics have the potential to guide precision medicine, where patients may benefit from therapeutic approaches optimally suited to their disease. Also, the integration of genotypic and phenotypic diagnostic methods is supporting better informed treatment decisions. Focusing on advanced PCa, this review discusses polygenic risk scores for screening of PCa and common genomic aberrations in androgen receptor (AR), PTEN-PI3K-AKT, and DNA damage response (DDR) pathways, considering clinical implications for diagnosis, prognosis, and treatment prediction. Furthermore, we evaluate liquid biopsy, protein biomarkers such as serum testosterone levels, SLFN11 expression, total alkaline phosphatase (tALP), neutrophil-to-lymphocyte ratio (NLR), tissue biopsy, and advanced imaging tools, summarizing current phenotypic biomarkers and envisaging more effective utilization of diagnostic and prognostic biomarkers in advanced PCa. We conclude that prognostic and treatment predictive biomarker discovery can improve the management of patients, especially in metastatic stages of advanced PCa. This will result in decreased mortality and enhanced quality of life and help design a personalized treatment regimen.
Collapse
Affiliation(s)
- Fatemeh Davoudi
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, 4059 Australia
- Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Afshin Moradi
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, 4059 Australia
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, 4059 Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, 4102 Australia
| | - Therese M. Becker
- Ingham Institute for Applied Medical Research, University of Western Sydney and University of New South Wales, Liverpool, 2170 Australia
| | - John G. Lock
- Ingham Institute for Applied Medical Research, University of Western Sydney and University of New South Wales, Liverpool, 2170 Australia
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, 2052 Australia
| | - Brian Abbey
- Department of Mathematical and Physical Sciences, School of Computing Engineering and Mathematical Sciences, La Trobe Institute for Molecular Sciences, La Trobe University, Bundoora, VIC Australia
| | - Davide Fontanarosa
- School of Clinical Sciences, Queensland University of Technology, Gardens Point Campus, 2 George St, Brisbane, QLD 4000 Australia
- Centre for Biomedical Technologies (CBT), Queensland University of Technology, Brisbane, QLD 4000 Australia
| | - Annette Haworth
- Institute of Medical Physics, School of Physics, University of Sydney, Camperdown, NSW 2006 Australia
| | - Judith Clements
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, 4059 Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, 4102 Australia
| | - Rupert C. Ecker
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, 4059 Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, 4102 Australia
- TissueGnostics GmbH, EU 1020 Vienna, Austria
| | - Jyotsna Batra
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, 4059 Australia
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, 4059 Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, 4102 Australia
| |
Collapse
|
15
|
Yap JYY, Goh LSH, Lim AJW, Chong SS, Lim LJ, Lee CG. Machine Learning Identifies a Signature of Nine Exosomal RNAs That Predicts Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:3749. [PMID: 37509410 PMCID: PMC10377993 DOI: 10.3390/cancers15143749] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/21/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. Although alpha fetoprotein (AFP) remains a commonly used serological marker of HCC, the sensitivity and specificity of AFP in detecting HCC is often limited. Exosomal RNA has emerged as a promising diagnostic tool for various cancers, but its use in HCC detection has yet to be fully explored. Here, we employed Machine Learning on 114,602 exosomal RNAs to identify a signature that can predict HCC. The exosomal expression data of 118 HCC patients and 112 healthy individuals were stratified split into Training, Validation and Unseen Test datasets. Feature selection was then performed on the initial training dataset using permutation importance, and the predictive performance of the selected features were tested on the validation dataset using Support Vector Machine (SVM) Classifier. A minimum of nine features were identified to be predictive of HCC and these nine features were then evaluated across six different models in an unseen test set. These features, mainly in the immune, platelet/neutrophil and cytoskeletal pathways, exhibited good predictive performance with ROC-AUC from 0.79-0.88 in the unseen test set. Hence, these nine exosomal RNAs have potential to be clinically useful minimally invasive biomarkers for HCC.
Collapse
Affiliation(s)
- Josephine Yu Yan Yap
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- NUS Graduate School, National University of Singapore, Singapore 119077, Singapore
| | - Laura Shih Hui Goh
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Ashley Jun Wei Lim
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Samuel S Chong
- Department of Paediatrics and Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
| | - Lee Jin Lim
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Caroline G Lee
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- NUS Graduate School, National University of Singapore, Singapore 119077, Singapore
- Division of Cellular & Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore 168583, Singapore
- Duke-NUS Medical School, Singapore 169857, Singapore
| |
Collapse
|
16
|
Song R, Liu F, Ping Y, Zhang Y, Wang L. Potential non-invasive biomarkers in tumor immune checkpoint inhibitor therapy: response and prognosis prediction. Biomark Res 2023; 11:57. [PMID: 37268978 DOI: 10.1186/s40364-023-00498-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/07/2023] [Indexed: 06/04/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have dramatically enhanced the treatment outcomes for diverse malignancies. Yet, only 15-60% of patients respond significantly. Therefore, accurate responder identification and timely ICI administration are critical issues in tumor ICI therapy. Recent rapid developments at the intersection of oncology, immunology, biology, and computer science have provided an abundance of predictive biomarkers for ICI efficacy. These biomarkers can be invasive or non-invasive, depending on the specific sample collection method. Compared with invasive markers, a host of non-invasive markers have been confirmed to have superior availability and accuracy in ICI efficacy prediction. Considering the outstanding advantages of dynamic monitoring of the immunotherapy response and the potential for widespread clinical application, we review the recent research in this field with the aim of contributing to the identification of patients who may derive the greatest benefit from ICI therapy.
Collapse
Affiliation(s)
- Ruixia Song
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou University, Zhengzhou, Henan, China
| | - Fengsen Liu
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou University, Zhengzhou, Henan, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yu Ping
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yi Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou University, Zhengzhou, Henan, China.
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China.
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, Henan, China.
| | - Liping Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
17
|
Small Extracellular Vesicles Derived from Induced Pluripotent Stem Cells in the Treatment of Myocardial Injury. Int J Mol Sci 2023; 24:ijms24054577. [PMID: 36902008 PMCID: PMC10003569 DOI: 10.3390/ijms24054577] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Induced pluripotent stem cell (iPSC) therapy brings great hope to the treatment of myocardial injuries, while extracellular vesicles may be one of the main mechanisms of its action. iPSC-derived small extracellular vesicles (iPSCs-sEVs) can carry genetic and proteinaceous substances and mediate the interaction between iPSCs and target cells. In recent years, more and more studies have focused on the therapeutic effect of iPSCs-sEVs in myocardial injury. IPSCs-sEVs may be a new cell-free-based treatment for myocardial injury, including myocardial infarction, myocardial ischemia-reperfusion injury, coronary heart disease, and heart failure. In the current research on myocardial injury, the extraction of sEVs from mesenchymal stem cells induced by iPSCs was widely used. Isolation methods of iPSCs-sEVs for the treatment of myocardial injury include ultracentrifugation, isodensity gradient centrifugation, and size exclusion chromatography. Tail vein injection and intraductal administration are the most widely used routes of iPSCs-sEV administration. The characteristics of sEVs derived from iPSCs which were induced from different species and organs, including fibroblasts and bone marrow, were further compared. In addition, the beneficial genes of iPSC can be regulated through CRISPR/Cas9 to change the composition of sEVs and improve the abundance and expression diversity of them. This review focused on the strategies and mechanisms of iPSCs-sEVs in the treatment of myocardial injury, which provides a reference for future research and the application of iPSCs-sEVs.
Collapse
|