1
|
Ozdemir-Sanci T, Piskin I, Köksal Y, Cayli S, Ozbek NY, Ozguner HM. The dynamic interaction of pediatric ALL cells and MSCs: influencing leukemic cell survival and modulating MSC β-catenin expression. Histochem Cell Biol 2025; 163:26. [PMID: 39836255 PMCID: PMC11750926 DOI: 10.1007/s00418-025-02353-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2025] [Indexed: 01/22/2025]
Abstract
Bone marrow mesenchymal stromal cells (BM-MSCs) are integral components of the bone marrow microenvironment, playing a crucial role in supporting hematopoiesis. Recent studies have investigated the potential involvement of BM-MSCs in the pathophysiology of acute lymphoblastic leukemia (ALL). However, the exact contribution of BM-MSCs to leukemia progression remains unclear because of conflicting findings and limited characterization. In this study, we compared BM-MSCs derived from pediatric ALL patients with those from matched healthy donors (HDs). Our results indicate that while both ALL-MSCs and HD-MSCs meet the criteria established by the International Society for Cellular Therapy, they exhibit significant differences in proliferation and differentiation capacity. ALL-MSCs displayed markedly lower proliferation rates and reduced osteogenic/adipogenic differentiation potential compared to HD-MSCs. Furthermore, co-culture experiments revealed that MSCs enhance the survival of leukemic blasts through both soluble factors and direct cell-cell interactions, underscoring their anti-apoptotic properties. Importantly, our findings demonstrate that interactions with leukemic cells activate the Wnt/β-catenin signaling pathway in MSCs, suggesting a potential target for therapeutic intervention. Overall, this study enhances our understanding of the role of BM-MSCs in leukemia and highlights β-catenin as a promising target for future therapies.
Collapse
Affiliation(s)
- Tuba Ozdemir-Sanci
- Department of Histology and Embryology, Faculty of Medicine, Ankara Yildirim Beyazit University, 06800, Ankara, Turkey
| | - Ilkay Piskin
- Department of Histology and Embryology, Faculty of Medicine, Ankara Yildirim Beyazit University, 06800, Ankara, Turkey
| | - Yasin Köksal
- Stem Cell Research Laboratory, Ankara City Children's Hospital, Ankara, Turkey
| | - Sevil Cayli
- Department of Histology and Embryology, Faculty of Medicine, Ankara Yildirim Beyazit University, 06800, Ankara, Turkey
| | - Namik Y Ozbek
- Department of Pediatric Hematology and Oncology, Ankara City Children's Hospital, Ankara, Turkey
| | - H Meltem Ozguner
- Department of Histology and Embryology, Faculty of Medicine, Ankara Yildirim Beyazit University, 06800, Ankara, Turkey.
- Stem Cell Research Laboratory, Ankara City Children's Hospital, Ankara, Turkey.
| |
Collapse
|
2
|
Yan R, Chen T. SLC35A2 is a novel prognostic biomarker and promotes cell proliferation and metastasis via Wnt/β-catenin/EMT signaling pathway in breast cancer. Sci Rep 2025; 15:130. [PMID: 39748019 PMCID: PMC11695858 DOI: 10.1038/s41598-024-84584-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025] Open
Abstract
Although it is a leading cause of cancer-related mortality among women globally, breast cancer (BC) has drawn increased attention owing to its poor prognosis and the challenges associated with limited treatment options. SLC35A2 was shown to be dysregulated in a number of tumor types according to multiple investigations. However, its function in BC was rarely reported. This study aims to investigate the expression of SLC35A2 in BC and its impact on the functionality and prognosis of BC cells. We collected 11 pairs of BC tissues and normal specimens, obtaining clinical information from 1,118 BC patients through RNA sequencing analysis. Different BC cell lines were used in experiments, and the roles of SLC35A2 in cell proliferation, invasion, and migration was assessed through gene silencing and functional assays. Additionally, a prognostic model, including SLC35A2 expression levels, age, T-stage, M-stage, N-stage, and clinical stage, was constructed, and its predictive performance in overall survival was validated using time-dependent receiver operating characteristic curves. High SLC35A2 expression was correlated positively with patient age and T-stage. Kaplan-Meier survival curves and Cox regression analysis confirmed the independent and significant prognostic value of SLC35A2 in overall survival. Functional experiments demonstrated that SLC35A2 silencing inhibited the proliferation, migration, and invasion of BC cells, affecting their metastatic potential through modulation of the Wnt/β-catenin/EMT signaling pathway. In conclusion, our study reveals the crucial role of SLC35A2 in BC, providing a novel biomarker for clinical management and valuable insights into the underlying mechanisms of BC pathogenesis.
Collapse
Affiliation(s)
- Rushu Yan
- Department of Surgery, Medical School Shenzhen University, Shenzhen, China
| | - Tianwen Chen
- Department of Breast Surgery, Huazhong University of Science and Technology Union Medical College Shenzhen Hospital, No. 89 Taoyuan Road, Shenzhen, China.
| |
Collapse
|
3
|
Yang R, Pray B, Alinari L, Li PK, Cheng X. Design, Synthesis, and Biological Evaluation of Selective TBL1X Degraders. ACS Med Chem Lett 2024; 15:1699-1707. [PMID: 39411529 PMCID: PMC11472461 DOI: 10.1021/acsmedchemlett.4c00255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/21/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024] Open
Abstract
Transducin β-like protein 1 X-linked (TBL1X) is an essential scaffold protein involved in multiple signaling pathways, such as the Wnt/β-catenin pathway, where it protects β-catenin from ubiquitination and proteasomal degradation. Recent studies, however, suggest that TBL1X might modulate Wnt-regulated genes independently of β-catenin in diffuse large B-cell lymphoma (DLBCL). Here, we developed selective TBL1X degraders against DLBCL using the Proteolysis Targeting Chimeras (PROTACs) strategy as a proof-of-concept. Eight PROTACs showed strong cytotoxic activity. Interestingly, N-linked PROTACs exhibited minimal TBL1X degradation, while most O-linked PROTACs significantly reduced TBL1X levels, suggesting the crucial role of the linker attachment site in successful TBL1X degradation. Our mechanistic study revealed that TBL1X degradation induced by TD11 relied on the formation of the ternary complex and was dependent on the proteasome. The TBL1X degraders developed in this study could be a valuable chemical tool for investigating TBL1X-related pathways.
Collapse
Affiliation(s)
- Rui Yang
- Division
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Betsy Pray
- Division
of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Lapo Alinari
- Division
of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Pui Kai Li
- Division
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Xiaolin Cheng
- Division
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
- Translational
Data Analytics Institute, The Ohio State
University, Columbus, Ohio 43210, United States
| |
Collapse
|
4
|
Li S, Xiong Q, Shen Y, Lin J, Zhang L, Wu Y, Jin J, Luan X. Toosendanin: upgrade of an old agent in cancer treatment. Chin J Nat Med 2024; 22:887-899. [PMID: 39428181 DOI: 10.1016/s1875-5364(24)60693-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Indexed: 10/22/2024]
Abstract
Toosendanin (TSN), a tetracyclic triterpenoid derived from Melia toosendan and M. azedarach, demonstrates broad application prospects in cancer treatment. Although previously employed as a pesticide, recent studies have revealed its potential therapeutic value in treating various types of cancer. TSN exerts an anticancer effect via mechanisms including proliferation inhibition, apoptosis induction, migration suppression, and angiogenesis inhibition. However, TSN's toxicity, particularly its hepatotoxicity, significantly limits its therapeutic application. This review explored the dual nature of TSN, evaluating both its anticancer potential and toxicological risks, emphasizing the importance of balancing these aspects in therapeutic applications. Furthermore, we investigated the incorporation of TSN into novel therapeutic strategies, such as Proteolysis-targeting chimeras (PROTAC) technology and nanotechnology-based drug delivery systems (DDS), which enhance treatment efficacy while mitigating toxicity in normal tissues.
Collapse
Affiliation(s)
- Shuwei Li
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qingyi Xiong
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yiwen Shen
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiayi Lin
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lijun Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ye Wu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jinmei Jin
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Xin Luan
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
5
|
Chen S, Yu B, DU GT, Huang TY, Zhang N, Fu N. KIF18B: an important role in signaling pathways and a potential resistant target in tumor development. Discov Oncol 2024; 15:430. [PMID: 39259333 PMCID: PMC11390998 DOI: 10.1007/s12672-024-01330-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/09/2024] [Indexed: 09/13/2024] Open
Abstract
KIF18B is a key member of the kinesin-8 family, involved in regulating various physiological processes such as microtubule length, spindle assembly, and chromosome alignment. This article briefly introduces the structure and physiological functions of KIF18B, examines its role in malignant tumors, and the associated carcinogenic signaling pathways such as PI3K/AKT, Wnt/β-catenin, and mTOR pathways. Research indicates that the upregulation of KIF18B enhances tumor malignancy and resistance to radiotherapy and chemotherapy. KIF18B could become a new target for anticancer drugs, offering significant potential for the treatment of malignant tumors and reducing chemotherapy resistance.
Collapse
Affiliation(s)
- Shicheng Chen
- Department of Urology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, P. R. China
| | - Bo Yu
- Department of Urology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, P. R. China
| | - Guo Tu DU
- Department of Urology, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, P. R. China
| | - Tian Yu Huang
- Department of Urology, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, P. R. China
| | - Neng Zhang
- Department of Urology, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, P. R. China.
| | - Ni Fu
- Department of Urology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, P. R. China.
| |
Collapse
|
6
|
Rathee M, Umar SM, Dev AJR, Kashyap A, Mathur SR, Gogia A, Mohapatra P, Prasad CP. Canonical WNT/β-catenin signaling upregulates aerobic glycolysis in diverse cancer types. Mol Biol Rep 2024; 51:788. [PMID: 38970704 DOI: 10.1007/s11033-024-09694-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/31/2024] [Indexed: 07/08/2024]
Abstract
Despite many efforts, a comprehensive understanding and clarification of the intricate connections within cancer cell metabolism remain elusive. This might pertain to intracellular dynamics and the complex interplay between cancer cells, and cells with the tumor stroma. Almost a century ago, Otto Warburg found that cancer cells exhibit a glycolytic phenotype, which continues to be a subject of thorough investigation. Past and ongoing investigations have demonstrated intricate mechanisms by which tumors modulate their functionality by utilizing extracellular glucose as a substrate, thereby sustaining the essential proliferation of cancer cells. This concept of "aerobic glycolysis," where cancer cells (even in the presence of enough oxygen) metabolize glucose to produce lactate plays a critical role in cancer progression and is regulated by various signaling pathways. Recent research has revealed that the canonical wingless-related integrated site (WNT) pathway promotes aerobic glycolysis, directly and indirectly, thereby influencing cancer development and progression. The present review seeks to gather knowledge about how the WNT/β-catenin pathway influences aerobic glycolysis, referring to relevant studies in different types of cancer. Furthermore, we propose the concept of impeding the glycolytic phenotype of tumors by employing specific inhibitors that target WNT/β-catenin signaling.
Collapse
Affiliation(s)
- Meetu Rathee
- Department of Medical Oncology Lab, DR BRA IRCH, All India Institute of Medical Sciences (AIIMS), 4thFloor, Ansari Nagar, New Delhi, 110029, India
| | - Sheikh Mohammad Umar
- Department of Medical Oncology Lab, DR BRA IRCH, All India Institute of Medical Sciences (AIIMS), 4thFloor, Ansari Nagar, New Delhi, 110029, India
| | - Arundhathi J R Dev
- Department of Medical Oncology Lab, DR BRA IRCH, All India Institute of Medical Sciences (AIIMS), 4thFloor, Ansari Nagar, New Delhi, 110029, India
| | - Akanksha Kashyap
- Department of Medical Oncology Lab, DR BRA IRCH, All India Institute of Medical Sciences (AIIMS), 4thFloor, Ansari Nagar, New Delhi, 110029, India
| | - Sandeep R Mathur
- Department of Pathology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | - Ajay Gogia
- Department of Medical Oncology, DR BRA IRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | | | - Chandra Prakash Prasad
- Department of Medical Oncology Lab, DR BRA IRCH, All India Institute of Medical Sciences (AIIMS), 4thFloor, Ansari Nagar, New Delhi, 110029, India.
| |
Collapse
|
7
|
Bell I, Khan H, Stutt N, Horn M, Hydzik T, Lum W, Rea V, Clapham E, Hoeg L, Van Raay TJ. Nkd1 functions downstream of Axin2 to attenuate Wnt signaling. Mol Biol Cell 2024; 35:ar93. [PMID: 38656801 PMCID: PMC11244159 DOI: 10.1091/mbc.e24-02-0059-t] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/10/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024] Open
Abstract
Wnt signaling is a crucial developmental pathway involved in early development as well as stem-cell maintenance in adults and its misregulation leads to numerous diseases. Thus, understanding the regulation of this pathway becomes vitally important. Axin2 and Nkd1 are widely utilized negative feedback regulators in Wnt signaling where Axin2 functions to destabilize cytoplasmic β-catenin, and Nkd1 functions to inhibit the nuclear localization of β-catenin. Here, we set out to further understand how Axin2 and Nkd1 regulate Wnt signaling by creating axin2gh1/gh1, nkd1gh2/gh2 single mutants and axin2gh1/gh1;nkd1gh2/gh2 double mutant zebrafish using sgRNA/Cas9. All three Wnt regulator mutants were viable and had impaired heart looping, neuromast migration defects, and behavior abnormalities in common, but there were no signs of synergy in the axin2gh1/gh1;nkd1gh2/gh2 double mutants. Further, Wnt target gene expression by qRT-PCR and RNA-seq, and protein expression by mass spectrometry demonstrated that the double axin2gh1/gh1;nkd1gh2/gh2 mutant resembled the nkd1gh2/gh2 phenotype demonstrating that Nkd1 functions downstream of Axin2. In support of this, the data further demonstrates that Axin2 uniquely alters the properties of β-catenin-dependent transcription having novel readouts of Wnt activity compared with nkd1gh2/gh2 or the axin2gh1/gh1;nkd1gh2/gh2 double mutant. We also investigated the sensitivity of the Wnt regulator mutants to exacerbated Wnt signaling, where the single mutants displayed characteristic heightened Wnt sensitivity, resulting in an eyeless phenotype. Surprisingly, this phenotype was rescued in the double mutant, where we speculate that cross-talk between Wnt/β-catenin and Wnt/Planar Cell Polarity pathways could lead to altered Wnt signaling in some scenarios. Collectively, the data emphasizes both the commonality and the complexity in the feedback regulation of Wnt signaling.
Collapse
Affiliation(s)
- Ian Bell
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, N1G 2W1 Ontario, Canada
| | - Haider Khan
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, N1G 2W1 Ontario, Canada
| | - Nathan Stutt
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Matthew Horn
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, N1G 2W1 Ontario, Canada
| | - Teesha Hydzik
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, N1G 2W1 Ontario, Canada
| | - Whitney Lum
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, N1G 2W1 Ontario, Canada
| | - Victoria Rea
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, N1G 2W1 Ontario, Canada
| | - Emma Clapham
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, N1G 2W1 Ontario, Canada
| | - Lisa Hoeg
- Department of Bioinformatics, University of Guelph, Guelph, Ontario, N1G 2W1 Canada
| | - Terence J. Van Raay
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, N1G 2W1 Ontario, Canada
| |
Collapse
|
8
|
Cai Y, Xia L, Zhu H, Cheng H, Tian Y, Sun L, Wang J, Lu N, Wang J, Chen Y. MiR-3682-3p promotes esophageal cancer progression by targeting FHL1 and activating the Wnt/β-catenin signaling pathway. Cell Signal 2024; 119:111155. [PMID: 38565413 DOI: 10.1016/j.cellsig.2024.111155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/13/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Esophageal cancer (EC) is highly ranked among all cancers in terms of its incidence and mortality rates. MicroRNAs (miRNAs) are considered to play key regulatory parts in EC. Multiple research studies have indicated the involvement of miR-3682-3p and four and a half LIM domain protein 1 (FHL1) in the achievement of tumors. The aim of this research was to clarify the significance of these genes and their possible molecular mechanism in EC. METHODS Data from a database and the tissue microarray were made to analyze the expression and clinical significance of miR-3682-3p or FHL1 in EC. Reverse transcription quantitative PCR and Western blotting were used to detect the expression levels of miR-3682-3p and FHL1 in EC cells. CCK8, EdU, wound healing, Transwell, flow cytometry, and Western blotting assays were performed to ascertain the biological roles of miR-3682-3p and FHL1 in EC cells. To confirm the impact of miR-3682-3p in vivo, a subcutaneous tumor model was created in nude mice. The direct interaction between miR-3682-3p and FHL1 was demonstrated through a luciferase assay, and the western blotting technique was employed to assess the levels of crucial proteins within the Wnt/β-catenin pathway. RESULTS The noticeable increase in the expression of miR-3682-3p and the decrease in the expression of FHL1 were observed, which correlated with a negative impact on the patients' overall survival. Upregulation of miR-3682-3p expression promoted the growth and metastasis of EC, while overexpression of FHL1 partially reversed these effects. Finally, miR-3682-3p motivates the Wnt/β-catenin signal transduction by directly targeting FHL1. CONCLUSION MiR-3682-3p along the FHL1 axis activated the Wnt/β-catenin signaling pathway and thus promoted EC malignancy.
Collapse
Affiliation(s)
- Yuxin Cai
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lingling Xia
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hangjia Zhu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hao Cheng
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yuanyuan Tian
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Liying Sun
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jun Wang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ning Lu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jing Wang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Yongshun Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
9
|
Varisli L, Vlahopoulos S. Epithelial-Mesenchymal Transition in Acute Leukemias. Int J Mol Sci 2024; 25:2173. [PMID: 38396852 PMCID: PMC10889420 DOI: 10.3390/ijms25042173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a metabolic process that confers phenotypic flexibility to cells and the ability to adapt to new functions. This transition is critical during embryogenesis and is required for the differentiation of many tissues and organs. EMT can also be induced in advanced-stage cancers, leading to further malignant behavior and chemotherapy resistance, resulting in an unfavorable prognosis for patients. Although EMT was long considered and studied only in solid tumors, it has been shown to be involved in the pathogenesis of hematological malignancies, including acute leukemias. Indeed, there is increasing evidence that EMT promotes the progression of acute leukemias, leading to the emergence of a more aggressive phenotype of the disease, and also causes chemotherapy resistance. The current literature suggests that the levels and activities of EMT inducers and markers can be used to predict prognosis, and that targeting EMT in addition to conventional therapies may increase treatment success in acute leukemias.
Collapse
Affiliation(s)
- Lokman Varisli
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir 21280, Turkey
| | - Spiros Vlahopoulos
- First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, Goudi, 11527 Athens, Greece
| |
Collapse
|
10
|
Zhang Y, Sun X, Li Z, Han X, Wang W, Xu P, Liu Y, Xue Y, Wang Z, Xu S, Wang X, Li G, Tian Y, Zhao Q. Interactions between miRNAs and the Wnt/β-catenin signaling pathway in endometriosis. Biomed Pharmacother 2024; 171:116182. [PMID: 38262146 DOI: 10.1016/j.biopha.2024.116182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/25/2024] Open
Abstract
Endometriosis is a disease characterized by the ectopic growth of endometrial tissue (glands and stroma) outside the confines of the uterus and often involves vital organs such as the intestines and urinary system. Endometriosis is considered a refractory disease owing to its enigmatic etiology, propensity for recurrence following conservative or surgical interventions, and the absence of radical treatment and long-term management. In recent years, the incidence of endometriosis has gradually increased, rendering it a pressing concern among women of childbearing age. A more profound understanding of its pathogenesis can significantly improve prognosis. Recent research endeavors have spotlighted the molecular mechanisms by which microRNAs (miRNAs) regulate the occurrence and progression of endometriosis. Many miRNAs have been reported to be aberrantly expressed in the affected tissues of both patients and animal models. These miRNAs actively participate in the regulation of inflammatory reactions, cellular proliferation, angiogenesis, and tissue remodeling. Their capacity to modulate crucial signaling pathways, such as the Wnt/β-catenin signaling pathway, reinforces their potential utility as diagnostic markers or therapeutic agents for endometriosis. In this review, we provide the latest insights into the role of miRNAs that interact with the Wnt/β-catenin pathway to regulate the biological behaviors of endometriosis cells and disease-related symptoms, such as pain and infertility. We hope that this review will provide novel insights and promising targets for innovative therapies addressing endometriosis.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Xueyu Sun
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China; Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Zhongkang Li
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China
| | - Xianhong Han
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Wenjun Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Penglin Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Yangyang Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Yuna Xue
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Zhe Wang
- Department of Basic Medicine, Chengde Medical College, Chengde, Hebei 067000, PR China
| | - Shuling Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Xueying Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Gailing Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Yanpeng Tian
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China.
| | - Qian Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China.
| |
Collapse
|
11
|
Shen X, Gao C, Li H, Liu C, Wang L, Li Y, Liu R, Sun C, Zhuang J. Natural compounds: Wnt pathway inhibitors with therapeutic potential in lung cancer. Front Pharmacol 2023; 14:1250893. [PMID: 37841927 PMCID: PMC10568034 DOI: 10.3389/fphar.2023.1250893] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023] Open
Abstract
The Wnt/β-catenin pathway is abnormally activated in most lung cancer tissues and considered to be an accelerator of carcinogenesis and lung cancer progression, which is closely related to increased morbidity rates, malignant progression, and treatment resistance. Although targeting the canonical Wnt/β-catenin pathway shows significant potential for lung cancer therapy, it still faces challenges owing to its complexity, tumor heterogeneity and wide physiological activity. Therefore, it is necessary to elucidate the role of the abnormal activation of the Wnt/β-catenin pathway in lung cancer progression. Moreover, Wnt inhibitors used in lung cancer clinical trials are expected to break existing therapeutic patterns, although their adverse effects limit the treatment window. This is the first study to summarize the research progress on various compounds, including natural products and derivatives, that target the canonical Wnt pathway in lung cancer to develop safer and more targeted drugs or alternatives. Various natural products have been found to inhibit Wnt/β-catenin in various ways, such as through upstream and downstream intervention pathways, and have shown encouraging preclinical anti-tumor efficacy. Their diversity and low toxicity make them a popular research topic, laying the foundation for further combination therapies and drug development.
Collapse
Affiliation(s)
- Xuetong Shen
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chundi Gao
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
| | - Huayao Li
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
| | - Cun Liu
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
| | - Longyun Wang
- State Key Laboratory of Quality Research in Chinese Medicine and Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, China
| | - Ye Li
- State Key Laboratory of Quality Research in Chinese Medicine and Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, China
| | - Ruijuan Liu
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| | - Changgang Sun
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| |
Collapse
|
12
|
Michalkova R, Kello M, Cizmarikova M, Bardelcikova A, Mirossay L, Mojzis J. Chalcones and Gastrointestinal Cancers: Experimental Evidence. Int J Mol Sci 2023; 24:ijms24065964. [PMID: 36983038 PMCID: PMC10059739 DOI: 10.3390/ijms24065964] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/10/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Colorectal (CRC) and gastric cancers (GC) are the most common digestive tract cancers with a high incidence rate worldwide. The current treatment including surgery, chemotherapy or radiotherapy has several limitations such as drug toxicity, cancer recurrence or drug resistance and thus it is a great challenge to discover an effective and safe therapy for CRC and GC. In the last decade, numerous phytochemicals and their synthetic analogs have attracted attention due to their anticancer effect and low organ toxicity. Chalcones, plant-derived polyphenols, received marked attention due to their biological activities as well as for relatively easy structural manipulation and synthesis of new chalcone derivatives. In this study, we discuss the mechanisms by which chalcones in both in vitro and in vivo conditions suppress cancer cell proliferation or cancer formation.
Collapse
Affiliation(s)
- Radka Michalkova
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Martin Kello
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Martina Cizmarikova
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Annamaria Bardelcikova
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Ladislav Mirossay
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Jan Mojzis
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| |
Collapse
|
13
|
"Losing the Brakes"-Suppressed Inhibitors Triggering Uncontrolled Wnt/ ß-Catenin Signaling May Provide a Potential Therapeutic Target in Elderly Acute Myeloid Leukemia. Curr Issues Mol Biol 2023; 45:604-613. [PMID: 36661526 PMCID: PMC9858232 DOI: 10.3390/cimb45010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/25/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Dysregulated Wnt/β-catenin signal transduction is implicated in initiation, propagation, and poor prognosis in AML. Epigenetic inactivation is central to Wnt/β-catenin hyperactivity, and Wnt/β-catenin inhibitors are being investigated as targeted therapy. Dysregulated Wnt/β-catenin signaling has also been linked to accelerated aging. Since AML is a disease of old age (>60 yrs), we hypothesized age-related differential activity of Wnt/β-catenin signaling in AML patients. We probed Wnt/β-catenin expression in a series of AML in the elderly (>60 yrs) and compared it to a cohort of pediatric AML (<18 yrs). RNA from diagnostic bone marrow biopsies (n = 101) were evaluated for key Wnt/β-catenin molecule expression utilizing the NanoString platform. Differential expression of significance was defined as >2.5-fold difference (p < 0.01). A total of 36 pediatric AML (<18 yrs) and 36 elderly AML (>60 yrs) were identified in this cohort. Normal bone marrows (n = 10) were employed as controls. Wnt/β-catenin target genes (MYC, MYB, and RUNX1) showed upregulation, while Wnt/β-catenin inhibitors (CXXR, DKK1-4, SFRP1-4, SOST, and WIFI) were suppressed in elderly AML compared to pediatric AML and controls. Our data denote that suppressed inhibitor expression (through mutation or hypermethylation) is an additional contributing factor in Wnt/β-catenin hyperactivity in elderly AML, thus supporting Wnt/β-catenin inhibitors as potential targeted therapy.
Collapse
|