1
|
Majeed R, Bester J, Kgarosi K, Strydom M. Mapping evidence on the regulations affecting accessibility, availability and management of snake antivenom globally: a scoping review protocol. BMJ Open 2024; 14:e086964. [PMID: 39806579 PMCID: PMC11667422 DOI: 10.1136/bmjopen-2024-086964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 11/21/2024] [Indexed: 01/16/2025] Open
Abstract
INTRODUCTION Snakebite envenomation has been declared a neglected tropical disease by the WHO since 2017. The disease is endemic in affected areas due to the lack of availability and access to antivenom, despite it being the standard treatment for snakebites. This challenge is perpetuated by the shortcomings of the regulatory systems and policies governing the management of antivenoms. This study aims to map the evidence about regulations of snake antivenom globally and identify gaps in the literature. This protocol provides an overview of the methodology and analysis which will be used to conduct the scoping review. METHOD AND ANALYSIS The scoping review follows the guidelines from the Arksey and O'Malley framework for scoping reviews and will be reported using Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews. A search strategy was developed with assistance from a health sciences librarian, and the search was done using six relevant databases. The databases used are PubMed, SCOPUS, ProQuest Central, Africa Wide Web, Academic Search Output and Web of Science. Articles in the English language and between 2009 and 2023 were included. The search results were collated, duplicates were removed and results were exported to Rayyan (https://www.rayyan.ai/) for screening. The initial screening for titles and abstracts is currently in progress, and thereafter the second round of screening will be done for full texts. Data extraction will be done using Google Forms. The results of the review will be synthesised using quantitative and qualitative tools. ETHICS AND DISSEMINATION This review will provide guidance for studies investigating regulatory gaps globally and inform future policies governing antivenom management. Ethics approval for the complete postgraduate project was obtained from the University of Pretoria Research Ethics Committee. The review will be published in a scientific journal, and findings will also be disseminated using conference presentations. TRIAL REGISTRATION This review has been registered on Open Science Framework (OSF): https://osf.io/54zja.
Collapse
Affiliation(s)
- Ramsha Majeed
- Department of Pharmacology, University of Pretoria, Pretoria, South Africa
| | - Janette Bester
- Department of Physiology, University of Pretoria, Pretoria, South Africa
| | - Kabelo Kgarosi
- Department of Library Services, University of Pretoria, Pretoria, South Africa
| | - Morné Strydom
- Department of Pharmacology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
2
|
Shirai R, Shibata K, Fujii S, Fukunaga R, Inoue S. One-Step Affinity Purification of Leucine-Rich α 2-Glycoproteins from Snake Sera and Characterization of Their Phospholipase A 2-Inhibitory Activities as β-Type Phospholipase A 2 Inhibitors. Toxins (Basel) 2024; 16:126. [PMID: 38535791 PMCID: PMC10975490 DOI: 10.3390/toxins16030126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/12/2024] [Accepted: 02/27/2024] [Indexed: 04/25/2025] Open
Abstract
Snakes contain three types of phospholipase A2 (PLA2)-inhibitory proteins in their blood, PLIα, β, and γ, which protect them from their own venom, PLA2. PLIβ is the snake ortholog of leucine-rich α2 glycoprotein (LRG). Since autologous cytochrome c (Cyt c) serves as an endogenous ligand for LRG, in this study, we purified snake LRGs from various snake serum samples using Cyt c affinity chromatography. All purified snake LRGs were found to be dimers linked by disulfide bonds. Laticauda semifasciata and Naja kaouthia LRGs showed no inhibitory activity against L. semifasciata PLA2 and weak inhibitory activity against Gloydius brevicauda basic PLA2. Elaphe climacophora PLIβ had weaker inhibitory activity against G. brevicauda basic PLA2 than G. brevicauda and Elaphe quadrivirgata PLIs, which are abundant in blood and known to neutralize G. brevicauda basic PLA2. Protobothrops flavoviridis LRG showed no inhibitory activity against basic venom PLA2, PL-X, or G. brevicauda basic PLA2. Binding analysis of P. flavoviridis LRG using surface plasmon resonance showed very strong binding to snake Cyt c, followed by that to horse Cyt c, weak binding to yeast Cyt c, and no binding to P. flavoviridis PL-X or BPI/II. We also deduced the amino acid sequences of L. semifasciata and P. flavoviridis LRG by means of cDNA sequencing and compared them with those of other known sequences of PLIs and LRGs. This study concluded that snake LRG can potentially inhibit basic PLA2, but, whether it actually functions as a PLA2-inhibitory protein, PLIβ, depends on the snake.
Collapse
Affiliation(s)
- Ryoichi Shirai
- Department of Biochemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki 569-1094, Osaka, Japan; (R.S.); (S.F.); (R.F.)
- Misasa Onsen Hospital, Misasa 682-1097, Tottori, Japan
| | - Kana Shibata
- Department of Biochemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki 569-1094, Osaka, Japan; (R.S.); (S.F.); (R.F.)
| | - Shinobu Fujii
- Department of Biochemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki 569-1094, Osaka, Japan; (R.S.); (S.F.); (R.F.)
| | - Rikiro Fukunaga
- Department of Biochemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki 569-1094, Osaka, Japan; (R.S.); (S.F.); (R.F.)
| | - Seiji Inoue
- Department of Biochemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki 569-1094, Osaka, Japan; (R.S.); (S.F.); (R.F.)
- Center for the Advancement of Pharmaceutical Education, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki 569-1094, Osaka, Japan
| |
Collapse
|
3
|
Sampat GH, Hiremath K, Dodakallanavar J, Patil VS, Harish DR, Biradar P, Mahadevamurthy RK, Barvaliya M, Roy S. Unraveling snake venom phospholipase A 2: an overview of its structure, pharmacology, and inhibitors. Pharmacol Rep 2023; 75:1454-1473. [PMID: 37926795 DOI: 10.1007/s43440-023-00543-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023]
Abstract
Snake bite is a neglected disease that affects millions of people worldwide. WHO reported approximately 5 million people are bitten by various species of snakes each year, resulting in nearly 1 million deaths and an additional three times cases of permanent disability. Snakes utilize the venom mainly for immobilization and digestion of their prey. Snake venom is a composition of proteins and enzymes which is responsible for its diverse pharmacological action. Snake venom phospholipase A2 (SvPLA2) is an enzyme that is present in every snake species in different quantities and is known to produce remarkable functional diversity and pharmacological action like inflammation, necrosis, myonecrosis, hemorrhage, etc. Arachidonic acid, a precursor to eicosanoids, such as prostaglandins and leukotrienes, is released when SvPLA2 catalyzes the hydrolysis of the sn-2 positions of membrane glycerophospholipids, which is responsible for its actions. Polyvalent antivenom produced from horses or lambs is the standard treatment for snake envenomation, although it has many drawbacks. Traditional medical practitioners treat snake bites using plants and other remedies as a sustainable alternative. More than 500 plant species from more than 100 families reported having venom-neutralizing abilities. Plant-derived secondary metabolites have the ability to reduce the venom's adverse consequences. Numerous studies have documented the ability of plant chemicals to inhibit the enzymes found in snake venom. Research in recent years has shown that various small molecules, such as varespladib and methyl varespladib, effectively inhibit the PLA2 toxin. In the present article, we have overviewed the knowledge of snake venom phospholipase A2, its classification, and the mechanism involved in the pathophysiology of cytotoxicity, myonecrosis, anticoagulation, and inflammation clinical application and inhibitors of SvPLA2, along with the list of studies carried out to evaluate the potency of small molecules like varespladib and secondary metabolites from the traditional medicine for their anti-PLA2 effect.
Collapse
Affiliation(s)
- Ganesh H Sampat
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India
| | - Kashinath Hiremath
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India
| | - Jagadeesh Dodakallanavar
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India
| | - Vishal S Patil
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India
| | - Darasaguppe R Harish
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India.
| | - Prakash Biradar
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India.
| | | | - Manish Barvaliya
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
| | - Subarna Roy
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
| |
Collapse
|
4
|
Lian Q, Zhong L, Fu K, Ji Y, Zhang X, Liu C, Huang C. Hepatic inhibitors expression profiling of venom-challenged Sinonatrix annularis and antidotal activities. Biomed Pharmacother 2022; 156:113900. [DOI: 10.1016/j.biopha.2022.113900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/07/2022] [Accepted: 10/17/2022] [Indexed: 11/02/2022] Open
|
5
|
A comparative study of endogenous phospholipase A 2 inhibitors in the serum of Brazilian pit vipers. Toxicon 2022; 213:87-91. [PMID: 35487313 DOI: 10.1016/j.toxicon.2022.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 11/20/2022]
Abstract
This work compared the presence of phospholipase A2 inhibitors (PLIs) in the serum of 19 snake species maintained at Instituto Butantan to better understand the mechanisms of venom resistance in snakes and improve the treatment of snakebite. PLI was isolated from blood of 19 snake species by one-step chromatography and identified in all samples, besides its identity was confirmed through the interaction with both phospholipase A2 and anti-γPLI. These findings highlight the diversity of snake serum PLIs and emphasize the importance of structure-function studies.
Collapse
|
6
|
Lian Q, Zhang D, Fu K, Liu C, Cao L, Xiong K, Huang C. The molecular basis of venom resistance in the non-venomous snake Sinonatrix annularis. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1195:123182. [DOI: 10.1016/j.jchromb.2022.123182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 02/12/2022] [Accepted: 02/15/2022] [Indexed: 12/22/2022]
|
7
|
Ivanušec A, Šribar J, Križaj I. Secreted Phospholipases A 2 - not just Enzymes: Revisited. Int J Biol Sci 2022; 18:873-888. [PMID: 35002531 PMCID: PMC8741859 DOI: 10.7150/ijbs.68093] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/02/2021] [Indexed: 12/18/2022] Open
Abstract
Secreted phospholipases A2 (sPLA2s) participate in a very broad spectrum of biological processes through their enzymatic activity and as ligands for membrane and soluble receptors. The physiological roles of sPLA2s as enzymes have been very well described, while their functions as ligands are still poorly known. Since the last overview of sPLA2-binding proteins (sPLA2-BPs) 10 years ago, several important discoveries have occurred in this area. New and more sensitive analytical tools have enabled the discovery of additional sPLA2-BPs, which are presented and critically discussed here. The structural diversity of sPLA2-BPs reveals sPLA2s as very promiscuous proteins, and we offer some structural explanations for this nature that makes these proteins evolutionarily highly advantageous. Three areas of physiological engagement of sPLA2-BPs have appeared most clearly: cellular transport and signalling, and regulation of the enzymatic activity of sPLA2s. Due to the multifunctionality of sPLA2s, they appear to be exceptional pharmacological targets. We reveal the potential to exploit interactions of sPLA2s with other proteins in medical terms, for the development of original diagnostic and therapeutic procedures. We conclude this survey by suggesting the priority questions that need to be answered.
Collapse
Affiliation(s)
- Adrijan Ivanušec
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Jernej Šribar
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Igor Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| |
Collapse
|
8
|
Venom proteomic analysis of medically important Nigerian viper Echis ocellatus and Bitis arietans snake species. Biochem Biophys Rep 2021; 28:101164. [PMID: 34765747 PMCID: PMC8571701 DOI: 10.1016/j.bbrep.2021.101164] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/13/2021] [Accepted: 10/25/2021] [Indexed: 11/29/2022] Open
Abstract
Snakebite envenoming remains a neglected tropical disease which poses severe health hazard, especially for the rural inhabitants in Africa. In Nigeria, vipers are responsible for the highest number of deaths. Hydrophilic interaction liquid chromatography coupled with LC-MS/MS was used to analyze the crude venoms of Echis ocellatus (Carpet viper) and Bitis arietans (Puff adder) in order to understand their venom proteomic identities. Results obtained revealed that gel-free proteomic analysis of the crude venoms led to the identification of 85 and 79 proteins, respectively. Seventy-eight (78) proteins were common between the two snake species with a 91.8% similarity score. The identified proteins belong to 18 protein families in E. ocellatus and 14 protein families in B. arietans. Serine proteases (22.31%) and metalloproteinases (21.06%) were the dominant proteins in the venom of B. arietans; while metalloproteinases (34.84%), phospholipase A2s (21.19%) and serine proteases (15.50%) represent the major toxins in the E. ocellatus venom. Other protein families such as three-finger toxins and cysteine-rich venom proteins were detected in low proportions. This study provides an insight into the venom proteomic analysis of the two Nigerian viper species, which could be useful in identifying the toxin families to be neutralized in case of envenomation. Venom proteomic of Nigeria's most medically important snakes is presented. SVMP, SVSP and PLA2 were the major toxin families in E. ocellatus and B. arietans. The venom proteomes of these vipers displayed 91.8% similarity in composition.
Collapse
|
9
|
Andrade-Silva D, Zelanis A, Travaglia-Cardoso SR, Nishiyama MY, Serrano SMT. Venom Profiling of the Insular Species Bothrops alcatraz: Characterization of Proteome, Glycoproteome, and N-Terminome Using Terminal Amine Isotopic Labeling of Substrates. J Proteome Res 2021; 20:1341-1358. [PMID: 33404253 DOI: 10.1021/acs.jproteome.0c00737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Bothrops alcatraz, a species endemic to Alcatrazes Islands, is regarded as critically endangered due to its small area of occurrence and the declining quality of its habitat. We recently reported the identification of N-glycans attached to toxins of Bothrops species, showing similar compositions in venoms of the B. jararaca complex (B. jararaca, B. insularis, and B. alcatraz). Here, we characterized B. alcatraz venom using electrophoretic, proteomic, and glycoproteomic approaches. Electrophoresis showed that B. alcatraz venom differs from B. jararaca and B. insularis; however, N-glycan removal revealed similarities between them, indicating that the occupation of N-glycosylation sites contributes to interspecies variability in the B. jararaca complex. Metalloproteinase was the major toxin class identified in the B. alcatraz venom proteome followed by serine proteinase and C-type lectin, and overall, the adult B. alcatraz venom resembles that of B. jararaca juvenile specimens. The comparative glycoproteomic analysis of B. alcatraz venom with B. jararaca and B. insularis indicated that there may be differences in the utilization of N-glycosylation motifs among their different toxin classes. Furthermore, we prospected for the first time the N-terminome of a snake venom using the terminal amine isotopic labeling of substrates (TAILS) approach and report the presence of ∼30% of N-termini corresponding to truncated toxin forms and ∼37% N-terminal sequences blocked by pyroglutamic acid in B. alcatraz venom. These findings underscore a low correlation between venom gland transcriptomes and proteomes and support the view that post-translational processes play a major role in shaping venom phenotypes.
Collapse
Affiliation(s)
- Débora Andrade-Silva
- Laboratório de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo 05503-900, Brazil
| | - André Zelanis
- Functional Proteomics Laboratory, Department of Science and Technology, Federal University of São Paulo, (ICT-UNIFESP), São José dos Campos 12231-280, SP, Brazil
| | | | - Milton Y Nishiyama
- Laboratório de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo 05503-900, Brazil
| | - Solange M T Serrano
- Laboratório de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo 05503-900, Brazil
| |
Collapse
|
10
|
Hanf ZR, Chavez AS. A Comprehensive Multi-Omic Approach Reveals a Relatively Simple Venom in a Diet Generalist, the Northern Short-Tailed Shrew, Blarina brevicauda. Genome Biol Evol 2020; 12:1148-1166. [PMID: 32520994 PMCID: PMC7486961 DOI: 10.1093/gbe/evaa115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2020] [Indexed: 12/15/2022] Open
Abstract
Animals that use venom to feed on a wide diversity of prey may evolve a complex mixture of toxins to target a variety of physiological processes and prey-defense mechanisms. Blarina brevicauda, the northern short-tailed shrew, is one of few venomous mammals, and is also known to eat evolutionarily divergent prey. Despite their complex diet, earlier proteomic and transcriptomic studies of this shrew's venom have only identified two venom proteins. Here, we investigated with comprehensive molecular approaches whether B. brevicauda venom is more complex than previously understood. We generated de novo assemblies of a B. brevicauda genome and submaxillary-gland transcriptome, as well as sequenced the salivary proteome. Our findings show that B. brevicauda's venom composition is simple relative to their broad diet and is likely limited to seven proteins from six gene families. Additionally, we explored expression levels and rate of evolution of these venom genes and the origins of key duplications that led to toxin neofunctionalization. We also found three proteins that may be involved in endogenous self-defense. The possible synergism of the toxins suggests that vertebrate prey may be the main target of the venom. Further functional assays for all venom proteins on both vertebrate and invertebrate prey would provide further insight into the ecological relevance of venom in this species.
Collapse
Affiliation(s)
- Zachery R Hanf
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University
| | - Andreas S Chavez
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University
- Translational Data Analytics Institute, The Ohio State University
| |
Collapse
|
11
|
Rodrigues CFB, Serino-Silva C, de Morais-Zani K, Kavazoi VK, Carvalho MPN, Grego KF, Chiarelli T, Tashima AK, Toyama MH, Tanaka-Azevedo AM. BoaγPLI: Structural and functional characterization of the gamma phospholipase A2 plasma inhibitor from the non-venomous Brazilian snake Boa constrictor. PLoS One 2020; 15:e0229657. [PMID: 32106235 PMCID: PMC7046197 DOI: 10.1371/journal.pone.0229657] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 02/11/2020] [Indexed: 01/01/2023] Open
Abstract
Plasma in several organisms has components that promote resistance to envenomation by inhibiting specific proteins from snake venoms, such as phospholipases A2 (PLA2s). The major hypothesis for inhibitor's presence would be the protection against self-envenomation in venomous snakes, but the occurrence of inhibitors in non-venomous snakes and other animals has opened new perspectives for this molecule. Thus, this study showed for the first time the structural and functional characterization of the PLA2 inhibitor from the Boa constrictor serum (BoaγPLI), a non-venomous snake that dwells extensively the Brazilian territory. Therefore, the inhibitor was isolated from B. constrictor serum, with 0.63% of recovery. SDS-PAGE showed a band at ~25 kDa under reducing conditions and ~20 kDa under non-reducing conditions. Chromatographic analyses showed the presence of oligomers formed by BoaγPLI. Primary structure of BoaγPLI suggested an estimated molecular mass of 22 kDa. When BoaγPLI was incubated with Asp-49 and Lys-49 PLA2 there was no severe change in its dichroism spectrum, suggesting a non-covalent interaction. The enzymatic assay showed a dose-dependent inhibition, up to 48.2%, when BoaγPLI was incubated with Asp-49 PLA2, since Lys-49 PLA2 has a lack of enzymatic activity. The edematogenic and myotoxic effects of PLA2s were also inhibited by BoaγPLI. In summary, the present work provides new insights into inhibitors from non-venomous snakes, which possess PLIs in their plasma, although the contact with venom is unlikely.
Collapse
Affiliation(s)
- Caroline Fabri Bittencourt Rodrigues
- Interunidades em Biotecnologia, Universidade de São Paulo—Instituto de Pesquisas Tecnológicas—Instituto Butantan, São Paulo, São Paulo, Brazil
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Caroline Serino-Silva
- Interunidades em Biotecnologia, Universidade de São Paulo—Instituto de Pesquisas Tecnológicas—Instituto Butantan, São Paulo, São Paulo, Brazil
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Karen de Morais-Zani
- Interunidades em Biotecnologia, Universidade de São Paulo—Instituto de Pesquisas Tecnológicas—Instituto Butantan, São Paulo, São Paulo, Brazil
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, São Paulo, Brazil
| | | | | | | | - Tassia Chiarelli
- Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | | | - Marcos Hikari Toyama
- Instituto de Biociências do Litoral Paulista, Universidade Estadual Paulista, São Vicente, São Paulo, Brazil
| | - Anita Mitico Tanaka-Azevedo
- Interunidades em Biotecnologia, Universidade de São Paulo—Instituto de Pesquisas Tecnológicas—Instituto Butantan, São Paulo, São Paulo, Brazil
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, São Paulo, Brazil
| |
Collapse
|
12
|
Sun S, Zhang D, Zhang J, Huang C, Xiong Y. High activity chimeric snake gamma-type phospholipase A2 inhibitor created by DNA shuffling. Toxicon 2018; 153:32-38. [DOI: 10.1016/j.toxicon.2018.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 11/28/2022]
|
13
|
Li J, Xiong Y, Sun S, Yu L, Huang C. Preparation of monoclonal antibodies against gamma-type phospholipase A 2 inhibitors and immunodetection of these proteins in snake blood. J Venom Anim Toxins Incl Trop Dis 2017; 23:37. [PMID: 28785278 PMCID: PMC5543733 DOI: 10.1186/s40409-017-0128-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/25/2017] [Indexed: 12/04/2022] Open
Abstract
Background The gamma-type phospholipase A2 inhibitor (PLIγ) is a natural protein commonly found in snake serum, which can neutralize pathophysiological effects of snake venom phospholipases A2. Therefore, this protein is a potential candidate to the development of a novel antivenom. To the best of our knowledge, there is no antibody currently available for PLIγ identification and characterization. Methods Bioinformatics prediction of epitope using DNAStar software was performed based on the sequence of Sinonatrix annularis PLIγ (SaPLIγ). The best epitope 151CPVLRLSNRTHEANRNDLIKVA172 was chosen and synthesized, and then conjugated to keyhole limpet hemocyanin and bovine serum albumin for use as an immunogen and plate-coating antigen, respectively. Results Eighteen IgG anti-PLIγ mAb hybridoma cell strains were obtained, and all the mAbs had positive interaction with recombinant His6-PLIγ and natural SaPLIγ. Moreover, the mAb from 10E9 strain was also successfully used for the immunodetection of other snake serum PLIγs. cDNA sequence alignment of those PLIγs from different snake species showed that their epitope segments were highly homologous. Conclusions The successful preparation of anti-PLIγmAb is significant for further investigation on the relationship between the structure and function of PLIγs, as well as the interaction between PLIγs and PLA2s.
Collapse
Affiliation(s)
- Jingjing Li
- Department of Biochemistry, College of Basic Medical Science, Nanchang University, Nanchang, 330006 China
| | - Ying Xiong
- Second Affiliated Hospital to Nanchang University, Nanchang University, Nanchang, 330006 China
| | - Shimin Sun
- Department of Biochemistry, College of Basic Medical Science, Nanchang University, Nanchang, 330006 China
| | - Lehan Yu
- Department of Biochemistry, College of Basic Medical Science, Nanchang University, Nanchang, 330006 China
| | - Chunhong Huang
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Nanchang University, 461 Bayi Avenue, Nanchang, 330006 China
| |
Collapse
|