1
|
Alves ÁEF, Barros ABC, Silva LCF, Carvalho LMM, Pereira GMA, Uchôa AFC, Barbosa-Filho JM, Silva MS, Luna KPO, Soares KSR, Xavier-Júnior FH. Emerging Trends in Snake Venom-Loaded Nanobiosystems for Advanced Medical Applications: A Comprehensive Overview. Pharmaceutics 2025; 17:204. [PMID: 40006571 PMCID: PMC11858983 DOI: 10.3390/pharmaceutics17020204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 12/24/2024] [Accepted: 01/06/2025] [Indexed: 02/27/2025] Open
Abstract
Advances in medical nanobiotechnology have notably enhanced the application of snake venom toxins, facilitating the development of new therapies with animal-derived toxins. The vast diversity of snake species and their venom complexities underline the need for ongoing research. This review is dedicated to exploring the integration of snake venom with nanoparticles to enable their use in human therapies aiming to develop treatments. The complex mixture of snake venom not only inflicts significant pathological effects but also offers valuable insights for the creation of innovative therapies, particularly in the realm of nanobiotechnology. Nanoscale encapsulation not only mitigates the inherent toxicity of snake venom but also amplifies their antitumoral, antimicrobial, and immunomodulatory properties. The synergy between venom-derived macromolecules and nanotechnology offers a novel pathway for augmenting the efficacy and safety of conventional antivenom therapies, extending their applicability beyond treating bites to potentially addressing a myriad of health issues. In conclusion, nanotechnology presents a compelling therapeutic frontier that promises to improve current treatment modalities and ameliorate the adverse effects associated with venomous snakebites.
Collapse
Affiliation(s)
- Álisson E. F. Alves
- Laboratory of Pharmaceutical Biotechnology (BioTecFarm), Department of Pharmacy, Federal University of Paraíba (UFPB), Campus I-Castelo Branco III., Joao Pessoa 58051-900, PB, Brazil; (Á.E.F.A.); (A.B.C.B.); (L.C.F.S.); (L.M.M.C.); (G.M.A.P.); (A.F.C.U.); (K.S.R.S.)
- Post-Graduated Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba (UFPB), Campus I-Castelo Branco III., Joao Pessoa 58051-900, PB, Brazil; (J.M.B.-F.); (M.S.S.)
| | - Anne B. C. Barros
- Laboratory of Pharmaceutical Biotechnology (BioTecFarm), Department of Pharmacy, Federal University of Paraíba (UFPB), Campus I-Castelo Branco III., Joao Pessoa 58051-900, PB, Brazil; (Á.E.F.A.); (A.B.C.B.); (L.C.F.S.); (L.M.M.C.); (G.M.A.P.); (A.F.C.U.); (K.S.R.S.)
| | - Lindomara C. F. Silva
- Laboratory of Pharmaceutical Biotechnology (BioTecFarm), Department of Pharmacy, Federal University of Paraíba (UFPB), Campus I-Castelo Branco III., Joao Pessoa 58051-900, PB, Brazil; (Á.E.F.A.); (A.B.C.B.); (L.C.F.S.); (L.M.M.C.); (G.M.A.P.); (A.F.C.U.); (K.S.R.S.)
| | - Lucas M. M. Carvalho
- Laboratory of Pharmaceutical Biotechnology (BioTecFarm), Department of Pharmacy, Federal University of Paraíba (UFPB), Campus I-Castelo Branco III., Joao Pessoa 58051-900, PB, Brazil; (Á.E.F.A.); (A.B.C.B.); (L.C.F.S.); (L.M.M.C.); (G.M.A.P.); (A.F.C.U.); (K.S.R.S.)
| | - Graziela M. A. Pereira
- Laboratory of Pharmaceutical Biotechnology (BioTecFarm), Department of Pharmacy, Federal University of Paraíba (UFPB), Campus I-Castelo Branco III., Joao Pessoa 58051-900, PB, Brazil; (Á.E.F.A.); (A.B.C.B.); (L.C.F.S.); (L.M.M.C.); (G.M.A.P.); (A.F.C.U.); (K.S.R.S.)
| | - Ana F. C. Uchôa
- Laboratory of Pharmaceutical Biotechnology (BioTecFarm), Department of Pharmacy, Federal University of Paraíba (UFPB), Campus I-Castelo Branco III., Joao Pessoa 58051-900, PB, Brazil; (Á.E.F.A.); (A.B.C.B.); (L.C.F.S.); (L.M.M.C.); (G.M.A.P.); (A.F.C.U.); (K.S.R.S.)
| | - José M. Barbosa-Filho
- Post-Graduated Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba (UFPB), Campus I-Castelo Branco III., Joao Pessoa 58051-900, PB, Brazil; (J.M.B.-F.); (M.S.S.)
| | - Marcelo S. Silva
- Post-Graduated Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba (UFPB), Campus I-Castelo Branco III., Joao Pessoa 58051-900, PB, Brazil; (J.M.B.-F.); (M.S.S.)
| | - Karla P. O. Luna
- Venomics Laboratory (LabVenom), Center for Biological and Health Sciences, State University of Paraíba (UEPB), Campus I, Bodocongó, Campina Grande 58429-600, PB, Brazil;
| | - Karla S. R. Soares
- Laboratory of Pharmaceutical Biotechnology (BioTecFarm), Department of Pharmacy, Federal University of Paraíba (UFPB), Campus I-Castelo Branco III., Joao Pessoa 58051-900, PB, Brazil; (Á.E.F.A.); (A.B.C.B.); (L.C.F.S.); (L.M.M.C.); (G.M.A.P.); (A.F.C.U.); (K.S.R.S.)
| | - Francisco H. Xavier-Júnior
- Laboratory of Pharmaceutical Biotechnology (BioTecFarm), Department of Pharmacy, Federal University of Paraíba (UFPB), Campus I-Castelo Branco III., Joao Pessoa 58051-900, PB, Brazil; (Á.E.F.A.); (A.B.C.B.); (L.C.F.S.); (L.M.M.C.); (G.M.A.P.); (A.F.C.U.); (K.S.R.S.)
- Post-Graduated Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba (UFPB), Campus I-Castelo Branco III., Joao Pessoa 58051-900, PB, Brazil; (J.M.B.-F.); (M.S.S.)
| |
Collapse
|
2
|
Hemajha L, Singh S, Biji CA, Balde A, Benjakul S, Nazeer RA. A review on inflammation modulating venom proteins/peptide therapeutics and their delivery strategies: A review. Int Immunopharmacol 2024; 142:113130. [PMID: 39278056 DOI: 10.1016/j.intimp.2024.113130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/02/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
Inflammation is an initial biological reaction that occurs in response to infection caused by foreign pathogens or injury. This process involves a tightly controlled series of signaling events at the molecular and cellular levels, with the ultimate goal of restoring tissue balance and protecting against invading pathogens. Malfunction in the process of inflammation can result in a diverse array of diseases, such as cardiovascular, neurological, and autoimmune disorders. Therefore, the management of inflammation is of utmost importance in modern medicine. Nonsteroidal anti-inflammatory drugs (NSAIDs) and corticosteroids have long been the mainstays of pharmacological treatment for inflammation, effectively alleviating symptoms in many patients. Recently, toxins and venom, formerly seen as mostly harmful to the human body, have been recognized as possible medicinal substances for treating inflammation. Organisms that are venomous, such as spiders, scorpions, snakes, and certain marine species, have developed a wide range of powerful toxins that can effectively disable or discourage predators. Remarkably, the majority of these poisons and venoms consist of proteins and peptides, which are acknowledged as significant bioactive compounds with medicinal potential. The goal of this review is to investigate the medicinal potential of peptides derived from venoms and their complex mechanism of action in suppressing inflammation. This review also discusses various challenges and future prospects for effective venom delivery.
Collapse
Affiliation(s)
- Lakshmikanthan Hemajha
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamilnadu, India
| | - Simran Singh
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamilnadu, India
| | - Catherin Ann Biji
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamilnadu, India
| | - Akshad Balde
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamilnadu, India
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Rasool Abdul Nazeer
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamilnadu, India.
| |
Collapse
|
3
|
Bernardes CP, Lopes Pinheiro E, Ferreira IG, de Oliveira IS, dos Santos NAG, Sampaio SV, Arantes EC, dos Santos AC. Fraction of C. d. collilineatus venom containing crotapotin protects PC12 cells against MPP + toxicity by activating the NGF-signaling pathway. J Venom Anim Toxins Incl Trop Dis 2024; 30:e20230056. [PMID: 38915449 PMCID: PMC11194915 DOI: 10.1590/1678-9199-jvatitd-2023-0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 05/08/2024] [Indexed: 06/26/2024] Open
Abstract
Background Parkinson's disease (PD) is the second most prevalent neurodegenerative disease. There is no effective treatment for neurodegenerative diseases. Snake venoms are a cocktail of proteins and peptides with great therapeutic potential and might be useful in the treatment of neurodegenerative diseases. Crotapotin is the acid chain of crotoxin, the major component of Crotalus durissus collilineatus venom. PD is characterized by low levels of neurotrophins, and synaptic and axonal degeneration; therefore, neurotrophic compounds might delay the progression of PD. The neurotrophic potential of crotapotin has not been studied yet. Methods We evaluated the neurotrophic potential of crotapotin in untreated PC12 cells, by assessing the induction of neurite outgrowth. The activation of the NGF signaling pathway was investigated through pharmacological inhibition of its main modulators. Additionally, its neuroprotective and neurorestorative effects were evaluated by assessing neurite outgrowth and cell viability in PC12 cells treated with the dopaminergic neurotoxin MPP+ (1-methyl-4-phenylpyridinium), known to induce Parkinsonism in humans and animal models. Results Crotapotin induced neuritogenesis in PC12 cells through the NGF-signaling pathway, more specifically, by activating the NGF-selective receptor trkA, and the PI3K/Akt and the MAPK/ERK cascades, which are involved in neuronal survival and differentiation. In addition, crotapotin had no cytotoxic effect and protected PC12 cells against the inhibitory effects of MPP+ on cell viability and differentiation. Conclusion These findings show, for the first time, that crotapotin has neurotrophic/neuroprotective/neurorestorative potential and might be beneficial in Parkinson's disease. Additional studies are necessary to evaluate the toxicity of crotapotin in other cell models.
Collapse
Affiliation(s)
- Carolina Petri Bernardes
- Department of Clinical Analyses, Toxicology and Food Science, School
of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP),
Ribeirão Preto, SP, Brazil
| | - Ernesto Lopes Pinheiro
- Department of Biomolecular Sciences, School of Pharmaceutical
Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP,
Brazil
| | - Isabela Gobbo Ferreira
- Department of Biomolecular Sciences, School of Pharmaceutical
Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP,
Brazil
| | - Isadora Sousa de Oliveira
- Department of Biomolecular Sciences, School of Pharmaceutical
Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP,
Brazil
| | - Neife Aparecida Guinaim dos Santos
- Department of Clinical Analyses, Toxicology and Food Science, School
of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP),
Ribeirão Preto, SP, Brazil
| | - Suely Vilela Sampaio
- Department of Clinical Analyses, Toxicology and Food Science, School
of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP),
Ribeirão Preto, SP, Brazil
| | - Eliane Candiani Arantes
- Department of Biomolecular Sciences, School of Pharmaceutical
Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP,
Brazil
| | - Antonio Cardozo dos Santos
- Department of Clinical Analyses, Toxicology and Food Science, School
of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP),
Ribeirão Preto, SP, Brazil
| |
Collapse
|
4
|
Pedro G, Brasileiro FCDS, Macedo JM, Soares AM, Mafra GC, Alves CEF, Laufer-Amorim R. Cytotoxic effects of crotoxin from Crotalus durissus terrificus snake in canine mammary tumor cell lines. J Venom Anim Toxins Incl Trop Dis 2024; 30:e20230062. [PMID: 38505509 PMCID: PMC10950368 DOI: 10.1590/1678-9199-jvatitd-2023-0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/16/2024] [Indexed: 03/21/2024] Open
Abstract
Background Mammary gland tumors are the most prevalent neoplasm in intact female dogs, and they are good natural models to study comparative oncology. Most canine mammary malignancies, as in women, are commonly refractory to conventional therapies and demand continuous new therapeutic approaches. Crotalus durissus terrificus, also called rattlesnake, has more than 60 different proteins in its venom with multiple pharmaceutical uses, such as antitumor, antiviral, and antimicrobial action. Crotoxin, a potent β-neurotoxin formed by the junction of two subunits, a basic subunit (CB-PLA2) and an acidic subunit (crotapotin), has already been reported to have anticancer properties in different types of cancers. Methods In this work, we describe the cytotoxic potential of crotoxin and its subunits compared to doxorubicin (drug of choice) in two canine mammary carcinoma cell lines. Results Crotoxin, CB-PLA2, crotalic venom, and doxorubicin decreased cell viability and the ability to migrate in a dose-dependent manner, and crotapotin did not present an antitumoral effect. For all compounds, the predominant cell death mechanism was apoptosis. In addition, crotoxin did not show toxicity in normal canine mammary gland cells. Conclusion Therefore, this work showed that crotoxin and CB-PLA2 had cytotoxic activity, migration inhibition, and pro-apoptotic potential in canine mammary gland carcinoma cell lines, making their possible use in cancer research.
Collapse
Affiliation(s)
- Giovana Pedro
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | | | - Jamile Mariano Macedo
- Laboratory of Biotechnology and Education Applied to One Health (LABIOPROT), Oswaldo Cruz Foundation, Fiocruz - Porto Velho, RO, Brazil
- Federal University of Rondônia (UNIR), Porto Velho, RO, Brazil
- São Lucas University Center - São Lucas PVH, Porto Velho, RO, Brazil
| | - Andreimar Martins Soares
- Laboratory of Biotechnology and Education Applied to One Health (LABIOPROT), Oswaldo Cruz Foundation, Fiocruz - Porto Velho, RO, Brazil
- Federal University of Rondônia (UNIR), Porto Velho, RO, Brazil
- São Lucas University Center - São Lucas PVH, Porto Velho, RO, Brazil
- Western Amazon Research and Knowledge Network of Excellence (RED-CONEXAO), Porto Velho, RO, Brazil
- National Institute of Science and Technology of Epidemiology of the Western Amazon (INCT EpiAmO), Porto Velho, RO, Brazil
| | - Gabriel Caporale Mafra
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | | | - Renée Laufer-Amorim
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, SP, Brazil
- Western Amazon Research and Knowledge Network of Excellence (RED-CONEXAO), Porto Velho, RO, Brazil
- National Institute of Science and Technology of Epidemiology of the Western Amazon (INCT EpiAmO), Porto Velho, RO, Brazil
| |
Collapse
|
5
|
Chang Estrada JE, Guerrero TN, Reyes-Enríquez DF, Nardy ES, Guimarães Ferreira R, Ruiz Calderón CJ, Wellmann IA, Monteiro Espíndola KM, do Prado AF, Soares AM, Fontes MRDM, Chagas Monteiro M, Zingali RB. Potential Biotechnological Applications of Venoms from the Viperidae Family in Central America for Thrombosis. Toxins (Basel) 2024; 16:142. [PMID: 38535808 PMCID: PMC10975971 DOI: 10.3390/toxins16030142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/24/2024] [Accepted: 03/01/2024] [Indexed: 04/25/2025] Open
Abstract
Central America is home to one of the most abundant herpetofauna in the Americas, occupying only 7% of the continent's total area. Vipers and lizards are among the most relevant venomous animals in medical practice due to the consequences of envenomation from the bite of these animals. A great diversity of biomolecules with immense therapeutic and biotechnological value is contained in their venom. This paper describes the prominent leading representatives of the family Viperidae, emphasizing their morphology, distribution, habitat, feeding, and venom composition, as well as the biotechnological application of some isolated components from the venom of the animals from these families, focusing on molecules with potential anti-thrombotic action. We present the leading protein families that interfere with blood clotting, platelet activity, or the endothelium pro-thrombotic profile. In conclusion, Central America is an endemic region of venomous animals that can provide many molecules for biotechnological applications.
Collapse
Affiliation(s)
- Jorge Eduardo Chang Estrada
- Instituto de Bioquímica Médica Leopoldo de Meis CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.E.C.E.); (T.N.G.); (D.F.R.-E.)
| | - Taissa Nunes Guerrero
- Instituto de Bioquímica Médica Leopoldo de Meis CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.E.C.E.); (T.N.G.); (D.F.R.-E.)
| | - Daniel Fernando Reyes-Enríquez
- Instituto de Bioquímica Médica Leopoldo de Meis CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.E.C.E.); (T.N.G.); (D.F.R.-E.)
| | - Erica Santos Nardy
- Instituto de Bioquímica Médica Leopoldo de Meis CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.E.C.E.); (T.N.G.); (D.F.R.-E.)
| | - Roseane Guimarães Ferreira
- Postgraduate Program in Neuroscience and Cell Biology, Federal University of Pará, Belém 66075-110, PA, Brazil; (R.G.F.); (M.C.M.)
| | - Cristian José Ruiz Calderón
- Department of Biochemistry and Microbiology, Universidad del Valle de Guatemala, Guatemala City 01015, Guatemala;
| | - Irmgardt A. Wellmann
- Postgraduate Program in Tropical Medicine, State University of Amazonas, Manaus 69005-010, AM, Brazil;
- Faculty of Medical Sciences, Universidad de San Carlos de Guatemala, Guatemala City 01015, Guatemala
| | - Kaio Murilo Monteiro Espíndola
- Postgraduate Program in Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Pará, Belém 66075-110, PA, Brazil;
| | - Alejandro Ferraz do Prado
- Laboratory of Pharmacology and Toxicology of Cardiovascular System, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil;
| | - Andreimar Martins Soares
- Laboratory of Biotechnology and Education Applied to One Health (LABIOPROT), Oswaldo Cruz Foundation, FIOCRUZ, RONDÔNIA, Federal University of Rondônia, UNIR, Porto Velho 76812-245, RO, Brazil;
- Sao Lucas University Center, SÃO LUCAS PVH, Porto Velho 76804-414, RO, Brazil
- Western Amazon Research and Knowledge Network of Excellence (RED-CONEXAO), Basic and Applied Toxinology Research Network (RED-TOX), the National Institute of Science and Technology of Epidemiology of the Western Amazon (INCT EpiAmO), Porto Velho 76812-245, Ro, Brazil;
| | - Marcos Roberto de Mattos Fontes
- Western Amazon Research and Knowledge Network of Excellence (RED-CONEXAO), Basic and Applied Toxinology Research Network (RED-TOX), the National Institute of Science and Technology of Epidemiology of the Western Amazon (INCT EpiAmO), Porto Velho 76812-245, Ro, Brazil;
- Institute for Advanced Studies of the Sea (IEAMar), Universidade Estadual Paulista (UNESP), São Vicente 11350-011, SP, Brazil
- Department of Biophysics and Pharmacology, Institute of Biosciences, Universidade Estadual Paulista (UNESP), Botucatu 18618-970, SP, Brazil
| | - Marta Chagas Monteiro
- Postgraduate Program in Neuroscience and Cell Biology, Federal University of Pará, Belém 66075-110, PA, Brazil; (R.G.F.); (M.C.M.)
| | - Russolina Benedeta Zingali
- Instituto de Bioquímica Médica Leopoldo de Meis CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.E.C.E.); (T.N.G.); (D.F.R.-E.)
| |
Collapse
|
6
|
Pereira AFM, Cavalcante JS, Angstmam DG, Almeida C, Soares GS, Pucca MB, Ferreira Junior RS. Unveiling the Pain Relief Potential: Harnessing Analgesic Peptides from Animal Venoms. Pharmaceutics 2023; 15:2766. [PMID: 38140106 PMCID: PMC10748172 DOI: 10.3390/pharmaceutics15122766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/08/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
The concept of pain encompasses a complex interplay of sensory and emotional experiences associated with actual or potential tissue damage. Accurately describing and localizing pain, whether acute or chronic, mild or severe, poses a challenge due to its diverse manifestations. Understanding the underlying origins and mechanisms of these pain variations is crucial for effective management and pharmacological interventions. Derived from a wide spectrum of species, including snakes, arthropods, mollusks, and vertebrates, animal venoms have emerged as abundant repositories of potential biomolecules exhibiting analgesic properties across a broad spectrum of pain models. This review focuses on highlighting the most promising venom-derived toxins investigated as potential prototypes for analgesic drugs. The discussion further encompasses research prospects, challenges in advancing analgesics, and the practical application of venom-derived toxins. As the field continues its evolution, tapping into the latent potential of these natural bioactive compounds holds the key to pioneering approaches in pain management and treatment. Therefore, animal toxins present countless possibilities for treating pain caused by different diseases. The development of new analgesic drugs from toxins is one of the directions that therapy must follow, and it seems to be moving forward by recommending the composition of multimodal therapy to combat pain.
Collapse
Affiliation(s)
- Ana Flávia Marques Pereira
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP—Univ Estadual Paulista), Botucatu 01419-901, SP, Brazil;
| | - Joeliton S. Cavalcante
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP—Univ Estadual Paulista), Botucatu 01419-901, SP, Brazil; (J.S.C.); (D.G.A.)
| | - Davi Gomes Angstmam
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP—Univ Estadual Paulista), Botucatu 01419-901, SP, Brazil; (J.S.C.); (D.G.A.)
| | - Cayo Almeida
- Center of Mathematics, Computing Sciences and Cognition, Federal University of ABC, Santo André 09280-560, SP, Brazil;
| | - Gean S. Soares
- Delphina Rinaldi Abdel Azil Hospital and Emergency Room (HPSDRAA), Manaus 69093-415, AM, Brazil;
| | - Manuela B. Pucca
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University, Araraquara 14801-320, SP, Brazil;
| | - Rui Seabra Ferreira Junior
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP—Univ Estadual Paulista), Botucatu 01419-901, SP, Brazil;
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP—Univ Estadual Paulista), Botucatu 01419-901, SP, Brazil; (J.S.C.); (D.G.A.)
- Center for Translational Science and Development of Biopharmaceuticals FAPESP/CEVAP, São Paulo State University (UNESP—Univ Estadual Paulista), Botucatu 01419-901, SP, Brazil
| |
Collapse
|
7
|
Sartim MA, Nogueira RC, Cavalcante TTA, Sousa LO, Monteiro WM, Cintra ACO, Neto-Neves EM, Sampaio SV. Hemodynamic impairment induced by Crotoxin using in vivo and ex vivo approach in a rat model. Int J Biol Macromol 2023; 232:123408. [PMID: 36709813 DOI: 10.1016/j.ijbiomac.2023.123408] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023]
Abstract
Crotalus durissus snakebite represent 10 % of snakebite cases in Brazil, which cardiovascular disorders are associated with severe cases. Considering crotoxin (CTX) as the major venom component, the present study aimed to evaluate the hemodynamic alterations induced by CTX using in vivo and ex vivo approaches in a rat model. In vivo cardiac function parameters were analyzed from anesthetized rats treated with CTX or saline only (Sham), along with serum creatine kinase MB (CK-MB) and lung myeloperoxidase. From the same animals, hearts were isolated and functional parameters evaluated in Langendorff method ex vivo. CTX binding to myoblast cell line in vitro were evaluated using confocal microscopy and flow cytometry. CTX was capable of reducing arterial and diastolic blood pressure, heart rate, along with left ventricle pressure development or decay during systole (LVdP/dtmax and LVdP/dtmin) in vivo, however no differences were found in the ex vivo approach, showing that intrinsic heart function was preserved. In vitro, CTX binding to myoblast cell line was mitigated by hexamethonium, a nicotinic acetylcholine receptor antagonist. The present study has shown that CTX induce hemodynamic failure in rats, which can help improve the clinical management of cardiovascular alterations during Crotalus durissus snakebite.
Collapse
Affiliation(s)
- Marco A Sartim
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil; Department of Research and Development, University Nilton Lins, Manaus, Brazil; Department of Teaching and Research, Fundação de Medicina Tropical, Heitor Vieira Dourado, Manaus, Brazil
| | - Renato C Nogueira
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Lucas O Sousa
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Wuelton M Monteiro
- Department of Teaching and Research, Fundação de Medicina Tropical, Heitor Vieira Dourado, Manaus, Brazil; Amazonas State University, Manaus, Brazil
| | - Adélia C O Cintra
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Evandro M Neto-Neves
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitoria, Brazil
| | - Suely V Sampaio
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
8
|
Alves BFA, Ferreira RS. Antineoplastic properties and pharmacological applications of Crotalus durissus terrificus snake venom. Rev Soc Bras Med Trop 2022; 55:S0037-86822022000100207. [PMID: 36542014 PMCID: PMC9757715 DOI: 10.1590/0037-8682-0323-2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/04/2022] [Indexed: 12/23/2022] Open
Abstract
Snake toxins are widely studied owing to their importance in snakebite accidents, a serious public health issue in tropical countries, and their broad therapeutic potential. Isolated fractions from venom produced by snakes of the genus Crotalus sp. present a wide variety of pharmacological uses such as antifungal, antiviral, antibacterial, and antitumor properties, among other therapeutic potentialities. Given the direct effect of this venom on tumor cells, isolation of its compounds is important for the characterization of its anticarcinogenic actions. Crotalus durissus terrificus venom and its toxins have been widely evaluated as potential candidates for the development of new antineoplastic therapies that are efficient against different tumor lines and cellular targets. This review highlights the venom toxins of this species, with a focus on their antineoplastic properties.
Collapse
Affiliation(s)
| | - Rui Seabra Ferreira
- Center for the Study of Venoms and Venomous Animals (CEVAP), São
Paulo State University (UNESP), Botucatu, SP, Brazil.
| |
Collapse
|
9
|
Biological and Medical Aspects Related to South American Rattlesnake Crotalus durissus (Linnaeus, 1758): A View from Colombia. Toxins (Basel) 2022; 14:toxins14120875. [PMID: 36548772 PMCID: PMC9784998 DOI: 10.3390/toxins14120875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/25/2022] [Accepted: 12/03/2022] [Indexed: 12/16/2022] Open
Abstract
In Colombia, South America, there is a subspecies of the South American rattlesnake Crotalus durissus, C. d. cumanensis, a snake of the Viperidae family, whose presence has been reduced due to the destruction of its habitat. It is an enigmatic snake from the group of pit vipers, venomous, with large articulated front fangs, special designs on its body, and a characteristic rattle on its tail. Unlike in Brazil, the occurrence of human envenomation by C. durisus in Colombia is very rare and contributes to less than 1% of envenomation caused by snakes. Its venom is a complex cocktail of proteins with different biological effects, which evolved with the purpose of paralyzing the prey, killing it, and starting its digestive process, as well as having defense functions. When its venom is injected into humans as the result of a bite, the victim presents with both local tissue damage and with systemic involvement, including a diverse degree of neurotoxic, myotoxic, nephrotoxic, and coagulopathic effects, among others. Its biological effects are being studied for use in human health, including the possible development of analgesic, muscle relaxant, anti-inflammatory, immunosuppressive, anti-infection, and antineoplastic drugs. Several groups of researchers in Brazil are very active in their contributions in this regard. In this work, a review is made of the most relevant biological and medical aspects related to the South American rattlesnake and of what may be of importance for a better understanding of the snake C. d. cumanensis, present in Colombia and Venezuela.
Collapse
|
10
|
Antibacterial Properties of Crotoxin from Crotalus durissus terrificus-Insight into the Mechanism of Action. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227726. [PMID: 36431827 PMCID: PMC9696005 DOI: 10.3390/molecules27227726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/30/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022]
Abstract
The growing problem of antibiotic resistance among bacteria requires searching for new therapeutic agents with bacteriostatic and/or bactericidal properties. Crotoxin is a β-neurotoxin from the venom of the Crotalus durissus terrificus. It is composed of two subunits: CA (non-active) and CB (with phospholipase A2 activity). It has already been shown that the isolated CB, but not the CA, subunit of crotoxin exhibits an antibacterial activity towards a variety of Gram-positive and Gram-negative bacterial species. However, no studies on the whole crotoxin complex have been carried out so far. We tested the antibacterial properties of crotoxin, as well as its isolated CB subunit, towards Staphylococcus aureus ATCC 25923, Staphylococcus aureus ATCC 6535, Micrococcus luteus ATCC 10240, Escherichia coli ATCC 25922, Escherichia coli ATCC 8739, and Pseudomonas aeruginosa ATCC 10145. Both toxins exhibited antibacterial properties only against Micrococcus luteus ATCC 10240. Crotoxin showed only bacteriostatic activity with a MIC of 46 µM, while the CB subunit acted as both a bacteriostatic and bactericidal agent with a MIC = MBC = 0.21 μM. The bacteriostatic effect of the toxins was independent of the enzymatic activity of the CB subunit. Bactericidal properties, however, require phospholipase A2 activity. Both toxins reduced bacteria viability at the MIC by 72% and 85% for crotoxin- and CB-treated bacteria, respectively. The membrane permeability increased approximately three times within the first hour of incubation with toxins; afterwards, either no significant changes or a decrease of membrane permeability, compared to the control cells, were observed. We isolated a single, approximately 30 kDa bacterial wall protein which belongs to the NlpC/P60 family that interacts with crotoxin leading to the inhibition of bacterial growth. Neither crotoxin nor the CB subunit showed any cytotoxic properties to human fibroblasts at the MIC during the three-day incubation.
Collapse
|
11
|
Roque-Borda CA, Gualque MWDL, da Fonseca FH, Pavan FR, Santos-Filho NA. Nanobiotechnology with Therapeutically Relevant Macromolecules from Animal Venoms: Venoms, Toxins, and Antimicrobial Peptides. Pharmaceutics 2022; 14:891. [PMID: 35631477 PMCID: PMC9146920 DOI: 10.3390/pharmaceutics14050891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 11/17/2022] Open
Abstract
Some diseases of uncontrolled proliferation such as cancer, as well as infectious diseases, are the main cause of death in the world, and their causative agents have rapidly developed resistance to the various existing treatments, making them even more dangerous. Thereby, the discovery of new therapeutic agents is a challenge promoted by the World Health Organization (WHO). Biomacromolecules, isolated or synthesized from a natural template, have therapeutic properties which have not yet been fully studied, and represent an unexplored potential in the search for new drugs. These substances, starting from conglomerates of proteins and other substances such as animal venoms, or from minor substances such as bioactive peptides, help fight diseases or counteract harmful effects. The high effectiveness of these biomacromolecules makes them promising substances for obtaining new drugs; however, their low bioavailability or stability in biological systems is a challenge to be overcome in the coming years with the help of nanotechnology. The objective of this review article is to describe the relationship between the structure and function of biomacromolecules of animal origin that have applications already described using nanotechnology and targeted delivery.
Collapse
Affiliation(s)
- Cesar Augusto Roque-Borda
- Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (C.A.R.-B.); (F.R.P.)
| | - Marcos William de Lima Gualque
- Proteomics Laboratory, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil;
| | - Fauller Henrique da Fonseca
- Department of Biochemistry and Organic Chemistry, Chemistry Institute, São Paulo State University (UNESP), Araraquara 14800-903, Brazil;
| | - Fernando Rogério Pavan
- Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (C.A.R.-B.); (F.R.P.)
| | - Norival Alves Santos-Filho
- Department of Biochemistry and Organic Chemistry, Chemistry Institute, São Paulo State University (UNESP), Araraquara 14800-903, Brazil;
| |
Collapse
|
12
|
Inflammasome NLRP3 activation induced by Convulxin, a C-type lectin-like isolated from Crotalus durissus terrificus snake venom. Sci Rep 2022; 12:4706. [PMID: 35304541 PMCID: PMC8933474 DOI: 10.1038/s41598-022-08735-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/21/2022] [Indexed: 12/14/2022] Open
Abstract
Convulxin (CVX), a C-type lectin-like protein isolated from the venom of the snake species, Crotalus durissus terrificus, stimulates platelet aggregation by acting as a collagen receptor agonist for glycoprotein VI found in the platelets. The effect of CVX on platelets has been studied, but its effect on human peripheral blood mononuclear cells (PBMCs) remains unclear. Given the significance of PBMCs in inflammation, this study explored the effect of CVX on PBMCs, specifically regarding NLRP3 inflammasome activation by assessing cell viability, ability to induce cell proliferation, reactive oxygen species (ROS) and nitric oxide production, interleukin (IL)-2 and IL-10 secretion, NLRP3 complex activation, and the role of C-type lectin-like receptors (CTLRs) in these. CVX was not toxic to PBMCs at the investigated concentrations and did not increase PBMC growth or IL-2 release; however, CVX induced IL-10 release and ROS generation via monocyte activation. It also activated the NLRP3 complex, resulting in IL-1β induction. Furthermore, the interaction between CVX and Dectin-2, a CTLR, induced IL-10 production. CVX interaction with CTLR has been demonstrated by laminarin therapy. Because of the involvement of residues near the Dectin-2 carbohydrate-recognition site, the generation of ROS resulted in inflammasome activation and IL-1β secretion. Overall, this work helps elucidate the function of CVX in immune system cells.
Collapse
|
13
|
Cavalcante JDS, Nogueira Júnior FA, Bezerra Jorge RJ, Almeida C. Pain modulated by Bothrops snake venoms: Mechanisms of nociceptive signaling and therapeutic perspectives. Toxicon 2021; 201:105-114. [PMID: 34425141 DOI: 10.1016/j.toxicon.2021.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 12/17/2022]
Abstract
Snake venoms are substances mostly composed by proteins and peptides with high biological activity. Local and systemic effects culminate in clinical manifestations induced by these substances. Pain is the most uncomfortable condition, but it has not been well investigated. This review discusses Bothrops snakebite-induced nociception, highlighting molecules involved in the mediation of this process and perspectives in treatment of pain induced by Bothrops snake venoms (B. alternatus, B. asper, B. atrox, B. insularis, B. jararaca, B. pirajai, B. jararacussu, B. lanceolatus, B. leucurus, B. mattogrossensis, B. moojeni). We highlight, the understanding of the nociceptive signaling, especially in snakebite, enables more efficient treatment approaches. Finally, future perspectives for pain treatment concerning snakebite patients are discussed.
Collapse
Affiliation(s)
- Joeliton Dos Santos Cavalcante
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University, Botucatu, São Paulo, Brazil.
| | - Francisco Assis Nogueira Júnior
- Department of Physiology and Pharmacology and Drug Research and Development Center Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Roberta Jeane Bezerra Jorge
- Department of Physiology and Pharmacology and Drug Research and Development Center Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Cayo Almeida
- Center of Mathematics, Computing Sciences and Cognition, Federal University of ABC, São Paulo, Brazil.
| |
Collapse
|
14
|
Freitas AP, Clissa PB, Soto DR, Câmara NOS, Faquim-Mauro EL. The modulatory effect of crotoxin and its phospholipase A 2 subunit from Crotalus durissus terrificus venom on dendritic cells interferes with the generation of effector CD4 + T lymphocytes. Immunol Lett 2021; 240:56-70. [PMID: 34626682 DOI: 10.1016/j.imlet.2021.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 01/02/2023]
Abstract
Dendritic Cells (DCs) direct either cellular immune response or tolerance. The crotoxin (CTX) and its CB subunit (phospholipase A2) isolated from Crotalus durissus terrificus rattlesnake venom modulate the DC maturation induced by a TLR4 agonist. Here, we analyzed the potential effect of CTX and CB subunit on the functional ability of DCs to induce anti-ovalbumin (OVA) immune response. Thus, CTX and CB inhibited the maturation of OVA/LPS-stimulated BM-DCs from BALB/c mice, which means inhibition of costimulatory and MHC-II molecule expression and proinflammatory cytokine secretion, accompanied by high expression of ICOSL, PD-L1/2, IL-10 and TGF-β mRNA expression. The addition of CTX and CB in cultures of BM-DCs incubated with ConA or OVA/LPS inhibited the proliferation of CD3+ or CD4+T cells from OVA-immunized mice. In in vitro experiment of co-cultures of purified CD4+T cells of DO11.10 mice with OVA/LPS-stimulated BM-DCs, the CTX or CB induced lowest percentage of Th1 and Th2 and CTX induced increase of Treg cells. In in vivo, CTX and CB induced lower percentage of CD4+IFNγ+ and CD4+IL-4+ cells, as well as promoted CD4+CD25+IL-10+ population in OVA/LPS-immunized mice. CTX in vivo also inhibited the maturation of DCs. Our findings demonstrate that the modulatory action of CTX and CB on DCs interferes with the generation of adaptive immunity and, therefore contribute for the understanding of the mechanisms involved in the generation of cellular immunity, which can be useful for new therapeutic approaches for immune disorders.
Collapse
Affiliation(s)
- Amanda P Freitas
- Laboratory of Immunopathology, Butantan Institute, São Paulo, SP, Brazil; Department of Immunology, Institute of Biomedical Science, University of São Paulo, SP, Brazil
| | - Patricia B Clissa
- Laboratory of Immunopathology, Butantan Institute, São Paulo, SP, Brazil
| | - Dunia R Soto
- Laboratory of Biotechnology, Butantan Institute, São Paulo, Brazil
| | - Niels O S Câmara
- Department of Immunology, Institute of Biomedical Science, University of São Paulo, SP, Brazil
| | - Eliana L Faquim-Mauro
- Laboratory of Immunopathology, Butantan Institute, São Paulo, SP, Brazil; Department of Immunology, Institute of Biomedical Science, University of São Paulo, SP, Brazil.
| |
Collapse
|
15
|
Kato EE, Pimenta LA, de Almeida MES, Zambelli VO, Dos Santos MF, Sampaio SC. Crotoxin Inhibits Endothelial Cell Functions in Two- and Three-dimensional Tumor Microenvironment. Front Pharmacol 2021; 12:713332. [PMID: 34421610 PMCID: PMC8371242 DOI: 10.3389/fphar.2021.713332] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/22/2021] [Indexed: 01/13/2023] Open
Abstract
Antitumor property of Crotoxin (CTX), the major toxin from Crotalus durissus terrificus snake venom, has been demonstrated in experimental animal models and clinical trials. However, the direct action of this toxin on the significant events involved in neovascularization, which are essential for tumor growth and survival, has not been confirmed. This study investigated the effects of CTX on the key parameters of neovascularization in two- and three-dimensional culture models. Murine endothelial cell lines derived from thymus hemangioma (t.End.1) were treated at different concentrations of CTX (6.25–200 nM). Endothelial cell proliferation, cell adhesion, and actin cytoskeletal dynamics on laminin (10 µg/ml), type I collagen (10 µg/ml), and fibronectin (3 µg/ml) were evaluated along with the endothelial cell migration and formation of capillary-like tubes in 3D Matrigel. CTX concentration of 50 nM inhibited tube formation on 3D Matrigel and impaired cell adhesion, proliferation, and migration under both culture medium and tumor-conditioned medium. These actions were not accountable for the loss of cell viability. Inhibition of cell adhesion to different extracellular matrix components was related to the reduction of αv and α2 integrin distribution and cytoskeletal actin polymerization (F-actin), accompanied by inhibition of focal adhesion kinase (FAK), Rac1 (GTPase) signaling proteins, and actin-related protein 2/3 (Arp 2/3) complex. This study proved that CTX inhibits the major events involved in angiogenesis, particularly against tumor stimuli, highlighting the importance of the anti-angiogenic action of CTX in inhibition of tumor progression.
Collapse
Affiliation(s)
- Ellen Emi Kato
- Laboratory of Pathophysiology, Butantan Institute, São Paulo, Brazil
| | | | | | | | - Marinilce Fagundes Dos Santos
- Institute of Biomedical Sciences, Department of Cell and Developmental Biology, University of São Paulo, São Paulo, Brazil
| | - Sandra Coccuzzo Sampaio
- Laboratory of Pathophysiology, Butantan Institute, São Paulo, Brazil.,Institute of Biomedical Sciences, Department of Pharmacology, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
16
|
Pucca MB, Bernarde PS, Rocha AM, Viana PF, Farias RES, Cerni FA, Oliveira IS, Ferreira IG, Sandri EA, Sachett J, Wen FH, Sampaio V, Laustsen AH, Sartim MA, Monteiro WM. Crotalus Durissus Ruruima: Current Knowledge on Natural History, Medical Importance, and Clinical Toxinology. Front Immunol 2021; 12:659515. [PMID: 34168642 PMCID: PMC8219050 DOI: 10.3389/fimmu.2021.659515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
Crotalus durissus ruruima is a rattlesnake subspecies mainly found in Roraima, the northernmost state of Brazil. Envenomings caused by this subspecies lead to severe clinical manifestations (e.g. respiratory muscle paralysis, rhabdomyolysis, and acute renal failure) that can lead to the victim’s death. In this review, we comprehensively describe C. d. ruruima biology and the challenges this subspecies poses for human health, including morphology, distribution, epidemiology, venom cocktail, clinical envenoming, and the current and future specific treatment of envenomings by this snake. Moreover, this review presents maps of the distribution of the snake subspecies and evidence that this species is responsible for some of the most severe envenomings in the country and causes the highest lethality rates. Finally, we also discuss the efficacy of the Brazilian horse-derived antivenoms to treat C. d. ruruima envenomings in Roraima state.
Collapse
Affiliation(s)
- Manuela B Pucca
- Medical School, Federal University of Roraima, Boa Vista, Brazil
| | - Paulo Sérgio Bernarde
- Laboratório de Herpetologia, Centro Multidisciplinar, Universidade Federal do Acre, Cruzeiro do Sul, Brazil
| | | | - Patrik F Viana
- National Institute of Amazonian Research, Biodiversity Coordination, Laboratory of Animal Genetics, Manaus, Brazil
| | - Raimundo Erasmo Souza Farias
- National Institute of Amazonian Research, Biodiversity Coordination, Laboratory of Animal Genetics, Manaus, Brazil
| | - Felipe A Cerni
- Medical School, Federal University of Roraima, Boa Vista, Brazil.,Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Isadora S Oliveira
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Isabela G Ferreira
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Eliseu A Sandri
- Insikiram Institute of Indigenous Higher Studies, Federal University of Roraima, Boa Vista, Brazil
| | - Jacqueline Sachett
- Department of Medicine and Nursing, School of Health Sciences, Amazonas State University, Manaus, Brazil.,Department of Teaching and Research, Alfredo da Matta Foundation, Manaus, Brazil
| | - Fan Hui Wen
- Antivenom Production Section, Butantan Institute, São Paulo, Brazil
| | - Vanderson Sampaio
- Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil
| | - Andreas H Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Marco A Sartim
- Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil.,Institute of Biological Sciences, Amazonas Federal University, Manaus, Brazil
| | - Wuelton M Monteiro
- Department of Medicine and Nursing, School of Health Sciences, Amazonas State University, Manaus, Brazil.,Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil
| |
Collapse
|
17
|
Minutti-Zanella C, Gil-Leyva EJ, Vergara I. Immunomodulatory properties of molecules from animal venoms. Toxicon 2021; 191:54-68. [PMID: 33417946 DOI: 10.1016/j.toxicon.2020.12.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/02/2020] [Accepted: 12/30/2020] [Indexed: 10/22/2022]
Abstract
The immune system can amplify or decrease the strength of its response when it is stimulated by chemical or biological substances that act as immunostimulators, immunosuppressants, or immunoadjuvants. Immunomodulation is a progressive approach to treat a diversity of pathologies with promising results, including autoimmune disorders and cancer. Animal venoms are a mixture of chemical compounds that include proteins, peptides, amines, salts, polypeptides, enzymes, among others, which produce the toxic effect. Since the discovery of captopril in the early 1980s, other components from snakes, spiders, scorpions, and marine animal venoms have been demonstrated to be useful for treating several human diseases. The valuable progress in fields such as venomics, molecular biology, biotechnology, immunology, and others has been crucial to understanding the interaction of toxins with the immune system and its application on immune pathologies. More in-depth knowledge of venoms' components and multi-disciplinary studies could facilitate their transformation into effective novel immunotherapies. This review addresses advances and research of molecules from venoms that have immunomodulatory properties.
Collapse
Affiliation(s)
- C Minutti-Zanella
- Departamento de Ciencias Químico-Biológicas, Universidad de Las Américas Puebla, ExHda. Sta. Catarina Mártir s/n, San Andrés Cholula, 72820, Puebla, Mexico
| | - E J Gil-Leyva
- Departamento de Ciencias Químico-Biológicas, Universidad de Las Américas Puebla, ExHda. Sta. Catarina Mártir s/n, San Andrés Cholula, 72820, Puebla, Mexico
| | - I Vergara
- Departamento de Ciencias Químico-Biológicas, Universidad de Las Américas Puebla, ExHda. Sta. Catarina Mártir s/n, San Andrés Cholula, 72820, Puebla, Mexico.
| |
Collapse
|
18
|
Gimenez BT, Cezarette GN, Bomfim ADS, Monteiro WM, Russo EMDS, Frantz FG, Sampaio SV, Sartim MA. Role of crotoxin in coagulation: novel insights into anticoagulant mechanisms and impairment of inflammation-induced coagulation. J Venom Anim Toxins Incl Trop Dis 2020; 26:e20200076. [PMID: 33293940 PMCID: PMC7702976 DOI: 10.1590/1678-9199-jvatitd-2020-0076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 11/04/2020] [Indexed: 12/24/2022] Open
Abstract
Background: Snake venom phospholipases A2 (svPLA2) are
biologically active toxins, capable of triggering and modulating a wide
range of biological functions. Among the svPLA2s, crotoxin (CTX)
has been in the spotlight of bioprospecting research due to its role in
modulating immune response and hemostasis. In the present study, novel
anticoagulant mechanisms of CTX, and the modulation of inflammation-induced
coagulation were investigated. Methods: CTX anticoagulant activity was evaluated using platelet poor plasma (PPP)
and whole blood (WB), and also using isolated coagulation factors and
complexes. The toxin modulation of procoagulant and pro-inflammatory effects
was evaluated using the expression of tissue factor (TF) and cytokines in
lipopolysaccharide (LPS)-treated peripheral blood mononuclear cells (PBMC)
and in WB. Results: The results showed that CTX impaired clot formation in both PPP and WB, and
was responsible for the inhibition of both intrinsic (TF/factor VIIa) and
extrinsic (factor IXa/factor VIIIa) tenase complexes, but not for factor Xa
and thrombin alone. In addition, the PLA2 mitigated the
prothrombinase complex by modulating the coagulation phospholipid role in
the complex. In regards to the inflammation-coagulation cross talk, the
toxin was capable of reducing the production of the pro-inflammatory
cytokines IL-1β, IL-6 and TNF-α, and was followed by decreased levels of TF
and procoagulant activity from LPS-treated PBMC either isolated or in
WB. Conclusion: The results obtained in the present study recognize the toxin as a novel
medicinal candidate to be applied in inflammatory diseases with coagulation
disorders.
Collapse
Affiliation(s)
- Bruna Terada Gimenez
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Gabriel Neves Cezarette
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Aline de Sousa Bomfim
- Center for Cell-Based Therapy and Regional Blood Center of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Wuelton Marcelo Monteiro
- Tropical Medicine Graduate Program, Amazonas State University, Manaus, AM, Brazil.,Carlos Borborema Clinical Research Institute, Doutor Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, AM, Brazil
| | - Elisa Maria de Sousa Russo
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil.,Center for Cell-Based Therapy and Regional Blood Center of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Fabiani Gai Frantz
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Suely Vilela Sampaio
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Marco Aurelio Sartim
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil.,Basic and Applied Immunology Graduate Program, Institute of Biological Sciences, Federal University of Amazonas, Manaus, AM, Brazil
| |
Collapse
|
19
|
Ryan RYM, Lutzky VP, Herzig V, Smallwood TB, Potriquet J, Wong Y, Masci P, Lavin MF, King GF, Lopez JA, Ikonomopoulou MP, Miles JJ. Venom of the Red-Bellied Black Snake Pseudechis porphyriacus Shows Immunosuppressive Potential. Toxins (Basel) 2020; 12:toxins12110674. [PMID: 33114591 PMCID: PMC7693913 DOI: 10.3390/toxins12110674] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023] Open
Abstract
Venoms act with remarkable specificity upon a broad diversity of physiological targets. Venoms are composed of proteins, peptides, and small molecules, providing the foundation for the development of novel therapeutics. This study assessed the effect of venom from the red-bellied black snake (Pseudechis porphyriacus) on human primary leukocytes using bead-based flow cytometry, mixed lymphocyte reaction, and cell viability assays. We show that venom treatment had a significant immunosuppressive effect, inhibiting the secretion of interleukin (IL)-2 and tumor necrosis factor (TNF) from purified human T cells by 90% or greater following stimulation with mitogen (phorbol 12-myristate 13-acetate and ionomycin) or via cluster of differentiation (CD) receptors, CD3/CD28. In contrast, venom treatment did not inhibit TNF or IL-6 release from antigen-presenting cells stimulated with lipopolysaccharide. The reduced cytokine release from T cells was not associated with inhibition of T cell proliferation or reduction of cell viability, consistent with an anti-inflammatory mechanism unrelated to the cell cycle. Deconvolution of the venom using reverse-phase HPLC identified four fractions responsible for the observed immunosuppressive activity. These data suggest that compounds from P. porphyriacus venom may be potential drug leads for T cell-associated conditions such as graft versus host disease, rheumatoid arthritis, and inflammatory bowel disease.
Collapse
Affiliation(s)
- Rachael Y. M. Ryan
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia;
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD 4870, Australia
- School of Environment and Sciences, Griffith University, Nathan, QLD 4111, Australia;
- QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (V.P.L.); (T.B.S.); (M.P.I.)
- Correspondence: (R.Y.M.R.); (J.J.M.)
| | - Viviana P. Lutzky
- QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (V.P.L.); (T.B.S.); (M.P.I.)
| | - Volker Herzig
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; (V.H.); (G.F.K.)
- GeneCology Research Centre, School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
| | - Taylor B. Smallwood
- QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (V.P.L.); (T.B.S.); (M.P.I.)
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | | | - Yide Wong
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia;
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD 4870, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, QLD 4878, Australia
| | - Paul Masci
- Translational Research Institute, Brisbane, QLD 4102, Australia;
| | - Martin F. Lavin
- Centre for Clinical Research, The University of Queensland, Brisbane, QLD 4029, Australia;
| | - Glenn F. King
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; (V.H.); (G.F.K.)
| | - J. Alejandro Lopez
- School of Environment and Sciences, Griffith University, Nathan, QLD 4111, Australia;
- QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (V.P.L.); (T.B.S.); (M.P.I.)
| | - Maria P. Ikonomopoulou
- QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (V.P.L.); (T.B.S.); (M.P.I.)
- Madrid Institute for Advanced Studies (IMDEA) in Food, CEI UAM+CSIC, 28049 Madrid, Spain
| | - John J. Miles
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia;
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD 4870, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, QLD 4878, Australia
- Correspondence: (R.Y.M.R.); (J.J.M.)
| |
Collapse
|
20
|
Evaluation of the Effectiveness of Crotoxin as an Antiseptic against Candida spp. Biofilms. Toxins (Basel) 2020; 12:toxins12090532. [PMID: 32825220 PMCID: PMC7551583 DOI: 10.3390/toxins12090532] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/08/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023] Open
Abstract
The growing number of oral infections caused by the Candida species are becoming harder to treat as the commonly used antibiotics become less effective. This drawback has led to the search for alternative strategies of treatment, which include the use of antifungal molecules derived from natural products. Herein, crotoxin (CTX), the main toxin of Crotalus durissus terrificus venom, was challenged against Candida tropicalis (CBS94) and Candida dubliniensis (CBS7987) strains by in vitro antimicrobial susceptibility tests. Minimum inhibitory concentration (MIC), minimum fungicidal concentration (MFC), and inhibition of biofilm formation were evaluated after CTX treatment. In addition, CTX-induced cytotoxicity in HaCaT cells was assessed by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) colorimetric assay. Native CTX showed a higher antimicrobial activity (MIC = 47 μg/mL) when compared to CTX-containing mouthwash (MIC = 750 μg/mL) and nystatin (MIC = 375 μg/mL). Candida spp biofilm formation was more sensitive to both CTX and CTX-containing mouthwash (IC100 = 12 μg/mL) when compared to nystatin (IC100 > 47 μg/mL). Moreover, significant membrane permeabilization at concentrations of 1.5 and 47 µg/mL was observed. Native CTX was less cytotoxic to HaCaT cells than CTX-containing mouthwash or nystatin between 24 and 48 h. These preliminary findings highlight the potential use of CTX in the treatment of oral candidiasis caused by resistant strains.
Collapse
|
21
|
Crotoxin-Induced Mice Lung Impairment: Role of Nicotinic Acetylcholine Receptors and COX-Derived Prostanoids. Biomolecules 2020; 10:biom10050794. [PMID: 32443924 PMCID: PMC7277605 DOI: 10.3390/biom10050794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/13/2020] [Accepted: 03/14/2020] [Indexed: 12/12/2022] Open
Abstract
Respiratory compromise in Crotalus durissus terrificus (C.d.t.) snakebite is an important pathological condition. Considering that crotoxin (CTX), a phospholipase A2 from C.d.t. venom, is the main component of the venom, the present work investigated the toxin effects on respiratory failure. Lung mechanics, morphology and soluble markers were evaluated from Swiss male mice, and mechanism determined using drugs/inhibitors of eicosanoids biosynthesis pathway and autonomic nervous system. Acute respiratory failure was observed, with an early phase (within 2 h) characterized by enhanced presence of eicosanoids, including prostaglandin E2, that accounted for the increased vascular permeability in the lung. The alterations of early phase were inhibited by indomethacin. The late phase (peaked 12 h) was marked by neutrophil infiltration, presence of pro-inflammatory cytokines/chemokines, and morphological alterations characterized by alveolar septal thickening and bronchoconstriction. In addition, lung mechanical function was impaired, with decreased lung compliance and inspiratory capacity. Hexamethonium, a nicotinic acetylcholine receptor antagonist, hampered late phase damages indicating that CTX-induced lung impairment could be associated with cholinergic transmission. The findings reported herein highlight the impact of CTX on respiratory compromise, and introduce the use of nicotinic blockers and prostanoids biosynthesis inhibitors as possible symptomatic therapy to Crotalus durissus terrificus snakebite.
Collapse
|
22
|
Conlon JM, Attoub S, Musale V, Leprince J, Casewell NR, Sanz L, Calvete JJ. Isolation and characterization of cytotoxic and insulin-releasing components from the venom of the black-necked spitting cobra Naja nigricollis (Elapidae). Toxicon X 2020; 6:100030. [PMID: 32550585 PMCID: PMC7285909 DOI: 10.1016/j.toxcx.2020.100030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/18/2020] [Accepted: 03/09/2020] [Indexed: 01/09/2023] Open
Abstract
Four peptides with cytotoxic activity against BRIN-BD11 rat clonal β-cells were purified from the venom of the black-necked spitting cobra Naja nigricollis using reversed-phase HPLC. The peptides were identified as members of the three-finger superfamily of snake toxins by ESI-MS/MS sequencing of tryptic peptides. The most potent peptide (cytotoxin-1N) showed strong cytotoxic activity against three human tumor-derived cell lines (LC50 = 0.8 ± 0.2 μM for A549 non-small cell lung adenocarcinoma cells; LC50 = 7 ± 1 μM for MDA-MB-231 breast adenocarcinoma cells; and LC50 = 9 ± 1 μM for HT-29 colorectal adenocarcinoma cells). However, all the peptides were to varying degrees cytotoxic against HUVEC human umbilical vein endothelial cells (LC50 in the range 2–22 μM) and cytotoxin-2N was moderately hemolytic (LC50 = 45 ± 3 μM against mouse erythrocytes). The lack of differential activity against cells derived from non-neoplastic tissue limits their potential for development into anti-cancer agents. In addition, two proteins in the venom, identified as isoforms of phospholipase A2, effectively stimulated insulin release from BRIN-BD11 cells (an approximately 6-fold increase in rate compared with 5.6 mM glucose alone) at a concentration (1 μM) that was not cytotoxic to the cells suggesting possible application in therapy for Type 2 diabetes. Four members of the three-finger superfamily of toxins were isolated from N. nigricollis venom. All peptides were cytotoxic to human tumor-derived cells. The peptides were also cytotoxic to non-neoplastic HUVEC cells. Two isoforms of phospholipase A2 effectively stimulated insulin release from rat clonal β-cells.
Collapse
Affiliation(s)
- J M Conlon
- Diabetes Research Group, School of Biomedical Sciences, Ulster University, Coleraine, Ireland
| | - Samir Attoub
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Vishal Musale
- Diabetes Research Group, School of Biomedical Sciences, Ulster University, Coleraine, Ireland
| | - Jérôme Leprince
- Inserm U1239, PRIMACEN, Institute for Research and Innovation in Biomedicine (IRIB), Normandy University, 76000, Rouen, France
| | - Nicholas R Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, Merseyside, UK
| | - Libia Sanz
- Laboratorio de Venómica Evolutiva y Traslacional, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Juan J Calvete
- Laboratorio de Venómica Evolutiva y Traslacional, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| |
Collapse
|
23
|
Menaldo DL, Costa TR, Ribeiro DL, Zambuzi FA, Antunes LM, Castro FA, Frantz FG, Sampaio SV. Immunomodulatory actions and epigenetic alterations induced by proteases from Bothrops snake venoms in human immune cells. Toxicol In Vitro 2019; 61:104586. [DOI: 10.1016/j.tiv.2019.06.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 12/25/2022]
|