1
|
Wang V, Savoldo B, Guimaraes JA, Dotti G, Reppel L, Bensoussan D. Alloreactive-free CAR-VST therapy: a step forward in long-term tumor control in viral context. Front Immunol 2025; 15:1527648. [PMID: 39882248 PMCID: PMC11774747 DOI: 10.3389/fimmu.2024.1527648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 12/30/2024] [Indexed: 01/31/2025] Open
Abstract
CAR-T cell therapy has revolutionized immunotherapy but its allogeneic application, using various strategies, faces significant challenges including graft-versus-host disease and graft rejection. Recent advances using Virus Specific T cells to generate CAR-VST have demonstrated potential for enhanced persistence and antitumor efficacy, positioning CAR-VSTs as a promising alternative to conventional CAR-T cells in an allogeneic setting. This review provides a comprehensive overview of CAR-VST development, emphasizing strategies to mitigate immunogenicity, such as using a specialized TCR, and approaches to improve therapeutic persistence against host immune responses. In this review, we discuss the production methods of CAR-VSTs and explore optimization strategies to enhance their functionality, activation profiles, memory persistence, and exhaustion resistance. Emphasis is placed on their unique dual specificity for both antitumor and antiviral responses, along with an in-depth examination of preclinical and clinical outcomes. We highlight how these advances contribute to the efficacy and durability of CAR-VSTs in therapeutic settings, offering new perspectives for broad clinical applications. By focusing on the key mechanisms that enable CAR-VSTs to address autologous CAR-T cell challenges, this review highlights their potential as a promising strategy for developing effective allogeneic CAR-T therapies.
Collapse
Affiliation(s)
- Valentine Wang
- Unité Mixte de Recherche (UMR) 7365 Centre National de la Recherche Scientifique (CNRS), Ingénierie Moléculaire, Cellulaire et Physiopathologie (IMoPA), Université de Lorraine, Nancy, France
| | - Barbara Savoldo
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States
| | - José-Arthur Guimaraes
- Unité Mixte de Recherche (UMR) 7365 Centre National de la Recherche Scientifique (CNRS), Ingénierie Moléculaire, Cellulaire et Physiopathologie (IMoPA), Université de Lorraine, Nancy, France
| | - Gianpietro Dotti
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States
| | - Loïc Reppel
- Unité Mixte de Recherche (UMR) 7365 Centre National de la Recherche Scientifique (CNRS), Ingénierie Moléculaire, Cellulaire et Physiopathologie (IMoPA), Université de Lorraine, Nancy, France
- Centre Hospitalier Régional Universitaire (CHRU) Nancy, Cell Therapy and Tissue Bank Unit, MTInov Bioproduction and Biotherapy Integrator, Nancy, France
| | - Danièle Bensoussan
- Unité Mixte de Recherche (UMR) 7365 Centre National de la Recherche Scientifique (CNRS), Ingénierie Moléculaire, Cellulaire et Physiopathologie (IMoPA), Université de Lorraine, Nancy, France
- Centre Hospitalier Régional Universitaire (CHRU) Nancy, Cell Therapy and Tissue Bank Unit, MTInov Bioproduction and Biotherapy Integrator, Nancy, France
| |
Collapse
|
2
|
Canciani G, Fabozzi F, Pinacchio C, Ceccarelli M, Del Bufalo F. Developing CAR T-Cell Therapies for Pediatric Solid Tumors. Paediatr Drugs 2025; 27:5-18. [PMID: 39382819 DOI: 10.1007/s40272-024-00653-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/23/2024] [Indexed: 10/10/2024]
Abstract
Chimeric antigen receptor (CAR) T cells have revolutionized the treatment of hematological malignancies, inducing notable and durable clinical responses. However, for solid tumors, including but not limited to pediatric tumors, several peculiar biological features posed substantial challenges for achieving comparable results. Despite sound pre-clinical evidence of the ability of CAR T cells to eradicate solid malignancies, their activity remains suboptimal when facing the in vivo complexity of solid tumors, characterized by antigen heterogeneity, scarce T-cell infiltration, and an immunosuppressive microenvironment. Neuroblastoma was amongst the first tumors to be evaluated as a potential candidate for GD2-targeting CAR T cells, which recently documented promising results in high-risk, heavily pre-treated patients. Moreover, innovative engineering strategies for generating more potent and persistent CAR T cells suggest the possibility to reproduce, and potentially improve, these promising results on a larger scale. In the next years, harnessing the full therapeutic potential of CAR T cells and other immunotherapeutic strategies may open new possibilities for effectively treating the most aggressive forms of pediatric tumors.
Collapse
Affiliation(s)
- Gabriele Canciani
- Department of Hematology, Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Residency School of Pediatrics, University of Rome Tor Vergata, Rome, Italy
| | - Francesco Fabozzi
- Department of Hematology, Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Claudia Pinacchio
- Department of Hematology, Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Manuela Ceccarelli
- Department of Hematology, Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Francesca Del Bufalo
- Department of Hematology, Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy.
| |
Collapse
|
3
|
Lin FY, Stuckert A, Tat C, White M, Ruggieri L, Zhang H, Mehta B, Lapteva N, Mei Z, Major A, Thakkar S, Shum T, Parikh K, Wu MF, Lindsay HB, Scherer L, Shekar M, Baxter P, Wang T, Grilley B, Moeller K, Hicks J, Roy A, Anastas J, Malbari F, Aldave G, Chintagumpala M, Blaney S, Parsons DW, Brenner MK, Heslop HE, Rooney CM, Omer B. Phase I Trial of GD2.CART Cells Augmented With Constitutive Interleukin-7 Receptor for Treatment of High-Grade Pediatric CNS Tumors. J Clin Oncol 2024; 42:2769-2779. [PMID: 38771986 PMCID: PMC11305939 DOI: 10.1200/jco.23.02019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/26/2023] [Accepted: 02/12/2024] [Indexed: 05/23/2024] Open
Abstract
PURPOSE T cells modified with chimeric antigen receptors (CARTs) have demonstrated efficacy for hematologic malignancies; however, benefit for patients with CNS tumors has been limited. To enhance T cell activity against GD2+ CNS malignancies, we modified GD2-directed CART cells (GD2.CARTs) with a constitutively active interleukin (IL)-7 receptor (C7R-GD2.CARTs). METHODS Patients age 1-21 years with H3K27-altered diffuse midline glioma (DMG) or other recurrent GD2-expressing CNS tumors were eligible for this phase I trial (ClinicalTrials.gov identifier: NCT04099797). All subjects received standard-of-care adjuvant radiation therapy or chemotherapy before study enrollment. The first treatment cohort received GD2.CARTs alone (1 × 107 cells/m2), and subsequent cohorts received C7R-GD2.CARTs at two dose levels (1 × 107 cells/m2; 3 × 107 cells/m2). Standard lymphodepletion with cyclophosphamide and fludarabine was included at all dose levels. RESULTS Eleven patients (age 4-18 years) received therapy without dose-limiting toxicity. The GD2.CART cohort did not experience toxicity, but had disease progression after brief improvement of residual neurologic deficits (≤3 weeks). The C7R-GD2.CART cohort developed grade 1 tumor inflammation-associated neurotoxicity in seven of eight (88%) cases, controllable with anakinra. Cytokine release syndrome was observed in six of eight (75%, grade 1 in all but one patient) and associated with increased circulating IL-6 and IP-10 (P < .05). Patients receiving C7R-GD2.CARTs experienced temporary improvement from baseline neurologic deficits (range, 2 to >12 months), and seven of eight (88%) remained eligible for additional treatment cycles (range 2-4 cycles). Partial responses by iRANO criteria were observed in two of seven (29%) patients with DMG treated by C7R-GD2.CARTs. CONCLUSION Intravenous GD2.CARTs with and without C7R were well tolerated. Patients treated with C7R-GD2.CARTs exhibited transient improvement of neurologic deficits and increased circulating cytokines/chemokines. Treatment with C7R-GD2.CARTs represents a novel approach warranting further investigation for children with these incurable CNS cancers.
Collapse
Affiliation(s)
- Frank Y. Lin
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX
- Dan L Duncan Comprehensive Cancer Center, Houston, TX
| | - Austin Stuckert
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX
| | - Candise Tat
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX
| | - Mark White
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX
| | - Lucia Ruggieri
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX
| | - Huimin Zhang
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Birju Mehta
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Natalia Lapteva
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Zhuyong Mei
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Angela Major
- Department of Pathology, Baylor College of Medicine, Houston, TX
| | - Sachin Thakkar
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Thomas Shum
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
- Department of Radiology, Brigham and Women's Hospital, Boston, MA
| | - Kathan Parikh
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Meng-Fen Wu
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
- Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Holly B. Lindsay
- Department of Pediatrics Heme-Onc and Bone Marrow Transplantation, Children's Hospital Colorado Center for Cancer and Blood Disorders, University of Colorado Anschutz Medical Campus, Denver, CO
| | - Lauren Scherer
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX
| | - Meghan Shekar
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX
| | - Patricia Baxter
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX
- Dan L Duncan Comprehensive Cancer Center, Houston, TX
| | - Tao Wang
- Dan L Duncan Comprehensive Cancer Center, Houston, TX
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
- Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Bambi Grilley
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Karen Moeller
- Department of Radiology, Baylor College of Medicine, Houston, TX
| | - John Hicks
- Department of Pathology, Baylor College of Medicine, Houston, TX
| | - Angshumoy Roy
- Dan L Duncan Comprehensive Cancer Center, Houston, TX
- Department of Pathology, Baylor College of Medicine, Houston, TX
| | - Jamie Anastas
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX
| | - Fatema Malbari
- Department of Neurology, Baylor College of Medicine, Houston, TX
| | - Guillermo Aldave
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX
| | - Murali Chintagumpala
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX
- Dan L Duncan Comprehensive Cancer Center, Houston, TX
| | - Susan Blaney
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX
- Dan L Duncan Comprehensive Cancer Center, Houston, TX
| | - D. Williams Parsons
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX
- Dan L Duncan Comprehensive Cancer Center, Houston, TX
| | - Malcolm K. Brenner
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX
- Dan L Duncan Comprehensive Cancer Center, Houston, TX
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
- Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Helen E. Heslop
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX
- Dan L Duncan Comprehensive Cancer Center, Houston, TX
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
- Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Cliona M. Rooney
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX
- Dan L Duncan Comprehensive Cancer Center, Houston, TX
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Bilal Omer
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX
- Dan L Duncan Comprehensive Cancer Center, Houston, TX
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| |
Collapse
|
4
|
Pathogen-specific T Cells: Targeting Old Enemies and New Invaders in Transplantation and Beyond. Hemasphere 2023; 7:e809. [PMID: 36698615 PMCID: PMC9831191 DOI: 10.1097/hs9.0000000000000809] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/07/2022] [Indexed: 01/27/2023] Open
Abstract
Adoptive immunotherapy with virus-specific cytotoxic T cells (VSTs) has evolved over the last three decades as a strategy to rapidly restore virus-specific immunity to prevent or treat viral diseases after solid organ or allogeneic hematopoietic cell-transplantation (allo-HCT). Since the early proof-of-principle studies demonstrating that seropositive donor-derived T cells, specific for the commonest pathogens post transplantation, namely cytomegalovirus or Epstein-Barr virus (EBV) and generated by time- and labor-intensive protocols, could effectively control viral infections, major breakthroughs have then streamlined the manufacturing process of pathogen-specific T cells (pSTs), broadened the breadth of target recognition to even include novel emerging pathogens and enabled off-the-shelf administration or pathogen-naive donor pST production. We herein review the journey of evolution of adoptive immunotherapy with nonengineered, natural pSTs against infections and virus-associated malignancies in the transplant setting and briefly touch upon recent achievements using pSTs outside this context.
Collapse
|
5
|
Omer B, Cardenas MG, Pfeiffer T, Daum R, Huynh M, Sharma S, Nouraee N, Xie C, Tat C, Perconti S, Van Pelt S, Scherer L, DeRenzo C, Shum T, Gottschalk S, Arber C, Rooney CM. A Costimulatory CAR Improves TCR-based Cancer Immunotherapy. Cancer Immunol Res 2022; 10:512-524. [PMID: 35176142 DOI: 10.1158/2326-6066.cir-21-0307] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 11/11/2021] [Accepted: 02/11/2022] [Indexed: 11/16/2022]
Abstract
T-cell receptors (TCR) recognize intracellular and extracellular cancer antigens, allowing T cells to target many tumor antigens. To sustain proliferation and persistence, T cells require not only signaling through the TCR (signal 1), but also costimulatory (signal 2) and cytokine (signal 3) signaling. Because most cancer cells lack costimulatory molecules, TCR engagement at the tumor site results in incomplete T-cell activation and transient antitumor effects. To overcome this lack of signal 2, we genetically modified tumor-specific T cells with a costimulatory chimeric antigen receptor (CoCAR). Like classical CARs, CoCARs combine the antigen-binding domain of an antibody with costimulatory endodomains to trigger T-cell proliferation, but CoCARs lack the cytotoxic CD3ζ chain to avoid toxicity to normal tissues. We first tested a CD19-targeting CoCAR in combination with an HLA-A*02:01-restricted, survivin-specific transgenic TCR (sTCR) in serial cocultures with leukemia cells coexpressing the cognate peptide-HLA complex (signal 1) and CD19 (signal 2). The CoCAR enabled sTCR+ T cells to kill tumors over a median of four additional tumor challenges. CoCAR activity depended on CD19 but was maintained in tumors with heterogeneous CD19 expression. In a murine tumor model, sTCR+CoCAR+ T cells improved tumor control and prolonged survival compared with sTCR+ T cells. We further evaluated the CoCAR in Epstein-Barr virus-specific T cells (EBVST). CoCAR-expressing EBVSTs expanded more rapidly than nontransduced EBVSTs and delayed tumor progression in an EBV+ murine lymphoma model. Overall, we demonstrated that the CoCAR can increase the activity of T cells expressing both native and transgenic TCRs and enhance antitumor responses.
Collapse
Affiliation(s)
- Bilal Omer
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas.,Texas Children's Cancer and Hematology Centers, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Mara G Cardenas
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas
| | - Thomas Pfeiffer
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas.,Texas Children's Cancer and Hematology Centers, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Rachel Daum
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas
| | - Mai Huynh
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas
| | - Sandhya Sharma
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas
| | - Nazila Nouraee
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas
| | - Cicilyn Xie
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas
| | - Candise Tat
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas
| | - Silvana Perconti
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas
| | - Stacey Van Pelt
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas
| | - Lauren Scherer
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas.,Texas Children's Cancer and Hematology Centers, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Chris DeRenzo
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas.,Texas Children's Cancer and Hematology Centers, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas.,Department of Bone Marrow Transplant and Cellular Therapy, St. Jude's Children's Research Hospital, Memphis, Tennessee
| | - Thomas Shum
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas.,Texas Children's Cancer and Hematology Centers, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Stephen Gottschalk
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas.,Texas Children's Cancer and Hematology Centers, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas.,Department of Bone Marrow Transplant and Cellular Therapy, St. Jude's Children's Research Hospital, Memphis, Tennessee
| | - Caroline Arber
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas.,Department of Oncology UNIL-CHUV, Lausanne University Hospital, University of Lausanne and Ludwig Institute for Cancer Research Lausanne, Epalinges, Switzerland
| | - Cliona M Rooney
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
6
|
CRISPR/Cas9 genome-edited universal CAR T cells in patients with relapsed and refractory lymphoma. Blood Adv 2022; 6:2695-2699. [PMID: 35008103 PMCID: PMC9043938 DOI: 10.1182/bloodadvances.2021006232] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/27/2021] [Indexed: 11/20/2022] Open
|
7
|
Fabrizio VA, Curran KJ. Clinical experience of CAR T cells for B cell acute lymphoblastic leukemia. Best Pract Res Clin Haematol 2021; 34:101305. [PMID: 34625231 DOI: 10.1016/j.beha.2021.101305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 08/16/2021] [Indexed: 10/20/2022]
Abstract
Chimeric antigen receptor (CAR) T cell therapy has transformed the treatment for both pediatric and adult patients with relapsed or refractory (R/R) B cell acute lymphoblastic leukemia (B-ALL). Clinical trial results across multiple institutions with different CAR constructs report significant response rates in treated patients. One product (tisagenlecleucel) is currently FDA approved for the treatment of R/R B-ALL in patients <26 y/o. Successful application of this therapy is limited by high relapse rates, potential for significant toxicity, and logistical issues surrounding collection/production. Herein, we review published data on the use of CAR T cells for B-ALL, including results from early pivotal clinical trials, relapse data, incidence of toxicity, and mechanisms to optimize CAR T cell therapy.
Collapse
Affiliation(s)
- Vanessa A Fabrizio
- Duke University, Department of Pediatrics, Division of Pediatric Transplant and Cellular Therapy, 2400 Pratt Road, Durham, NC, 27705, USA.
| | - Kevin J Curran
- Memorial Sloan Kettering Cancer Center, Department of Pediatrics, 1275 York Avenue, New York, NY, 10065, USA; Weill Cornell Medical College, Department of Pediatrics, 1275 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
8
|
Mazzi MT, Hajdu KL, Ribeiro PR, Bonamino MH. CAR-T cells leave the comfort zone: current and future applications beyond cancer. IMMUNOTHERAPY ADVANCES 2021; 1:ltaa006. [PMID: 36284896 PMCID: PMC9585679 DOI: 10.1093/immadv/ltaa006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/12/2020] [Accepted: 11/23/2020] [Indexed: 12/28/2022] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy represents a breakthrough in the immunotherapy field and has achieved great success following its approval in 2017 for the treatment of B cell malignancies. While CAR-T cells are mostly applied as anti-tumor therapy in the present, their initial concept was aimed at a more general purpose of targeting membrane antigens, thus translating in many potential applications. Since then, several studies have assessed the use of CAR-T cells toward non-malignant pathologies such as autoimmune diseases, infectious diseases and, more recently, cardiac fibrosis, and cellular senescence. In this review, we present the main findings and implications of CAR-based therapies for non-malignant conditions.
Collapse
Affiliation(s)
- Mariana Torres Mazzi
- Immunology and Tumor Biology Program - Research Coordination, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Karina Lôbo Hajdu
- Immunology and Tumor Biology Program - Research Coordination, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Priscila Rafaela Ribeiro
- Immunology and Tumor Biology Program - Research Coordination, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Martín Hernán Bonamino
- Immunology and Tumor Biology Program - Research Coordination, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
- Vice - Presidency of Research and Biological Collections (VPPCB), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Sawaisorn P, Atjanasuppat K, Anurathapan U, Chutipongtanate S, Hongeng S. Strategies to Improve Chimeric Antigen Receptor Therapies for Neuroblastoma. Vaccines (Basel) 2020; 8:vaccines8040753. [PMID: 33322408 PMCID: PMC7768386 DOI: 10.3390/vaccines8040753] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/04/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
Chimeric antigen receptors (CARs) are among the curative immunotherapeutic approaches that exploit the antigen specificity and cytotoxicity function of potent immune cells against cancers. Neuroblastomas, the most common extracranial pediatric solid tumors with diverse characteristics, could be a promising candidate for using CAR therapies. Several methods harness CAR-modified cells in neuroblastoma to increase therapeutic efficiency, although the assessment has been less successful. Regarding the improvement of CARs, various trials have been launched to overcome insufficient capacity. However, the reasons behind the inadequate response against neuroblastoma of CAR-modified cells are still not well understood. It is essential to update the present state of comprehension of CARs to improve the efficiency of CAR therapies. This review summarizes the crucial features of CARs and their design for neuroblastoma, discusses challenges that impact the outcomes of the immunotherapeutic competence, and focuses on devising strategies currently being investigated to improve the efficacy of CARs for neuroblastoma immunotherapy.
Collapse
Affiliation(s)
- Piamsiri Sawaisorn
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (P.S.); (K.A.); (U.A.)
| | - Korakot Atjanasuppat
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (P.S.); (K.A.); (U.A.)
| | - Usanarat Anurathapan
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (P.S.); (K.A.); (U.A.)
| | - Somchai Chutipongtanate
- Pediatric Translational Research Unit, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
- Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan 10540, Thailand
- Correspondence: (S.C.); (S.H.)
| | - Suradej Hongeng
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (P.S.); (K.A.); (U.A.)
- Correspondence: (S.C.); (S.H.)
| |
Collapse
|
10
|
Lapteva N, Gilbert M, Diaconu I, Rollins LA, Al-Sabbagh M, Naik S, Krance RA, Tripic T, Hiregange M, Raghavan D, Dakhova O, Rouce RH, Liu H, Omer B, Savoldo B, Dotti G, Cruz CR, Sharpe K, Gates M, Orozco A, Durett A, Pacheco E, Gee AP, Ramos CA, Heslop HE, Brenner MK, Rooney CM. T-Cell Receptor Stimulation Enhances the Expansion and Function of CD19 Chimeric Antigen Receptor-Expressing T Cells. Clin Cancer Res 2019; 25:7340-7350. [PMID: 31558475 DOI: 10.1158/1078-0432.ccr-18-3199] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 04/29/2019] [Accepted: 09/17/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Current protocols for CD19 chimeric antigen receptor-expressing T cells (CD19.CAR-T cells) require recipients to tolerate preinfusion cytoreductive chemotherapy, and the presence of sufficient target antigen on normal or malignant B cells. PATIENTS AND METHODS We investigated whether additional stimulation of CD19.CAR-T cells through their native receptors can substitute for cytoreductive chemotherapy, inducing expansion and functional persistence of CD19.CAR-T even in patients in remission of B-cell acute lymphocytic leukemia. We infused a low dose of CD19.CAR-modified virus-specific T cells (CD19.CAR-VST) without prior cytoreductive chemotherapy into 8 patients after allogeneic stem cell transplant. RESULTS Absent virus reactivation, we saw no CD19.CAR-VST expansion. In contrast, in patients with viral reactivation, up to 30,000-fold expansion of CD19.CAR-VSTs was observed, with depletion of CD19+ B cells. Five patients remain in remission at 42-60+ months. CONCLUSIONS Dual T-cell receptor and CAR stimulation can thus potentiate effector cell expansion and CAR-target cell killing, even when infusing low numbers of effector cells without cytoreduction.
Collapse
Affiliation(s)
- Natalia Lapteva
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, Texas.,Division of Immunology, Department of Pathology, Baylor College of Medicine, Houston, Texas
| | - Margaret Gilbert
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, Texas
| | - Iulia Diaconu
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, Texas
| | - Lisa A Rollins
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, Texas
| | - Mina Al-Sabbagh
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, Texas
| | - Swati Naik
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, Texas.,Division of Hematology and Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas.,Texas Children's Hospital, Houston, Texas
| | - Robert A Krance
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, Texas.,Division of Hematology and Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas.,Texas Children's Hospital, Houston, Texas
| | - Tamara Tripic
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, Texas
| | - Manasa Hiregange
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, Texas
| | - Darshana Raghavan
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, Texas
| | - Olga Dakhova
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, Texas
| | - Rayne H Rouce
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, Texas.,Division of Hematology and Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas.,Texas Children's Hospital, Houston, Texas
| | - Hao Liu
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, Texas.,Division of Biostatistics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Bilal Omer
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, Texas.,Division of Hematology and Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas.,Texas Children's Hospital, Houston, Texas
| | - Barbara Savoldo
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, Texas.,Division of Hematology and Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Gianpietro Dotti
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, Texas.,Division of Immunology, Department of Pathology, Baylor College of Medicine, Houston, Texas.,Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Conrad Russel Cruz
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, Texas
| | - Keli Sharpe
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, Texas
| | - Melissa Gates
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, Texas
| | - Aaron Orozco
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, Texas
| | - April Durett
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, Texas
| | - Elizabeth Pacheco
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, Texas
| | - Adrian P Gee
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, Texas.,Division of Hematology and Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Carlos A Ramos
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, Texas.,Department of Medicine, Baylor College of Medicine, Houston, Texas.,Houston Methodist Hospital, Houston, Texas
| | - Helen E Heslop
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, Texas.,Division of Hematology and Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas.,Texas Children's Hospital, Houston, Texas.,Department of Medicine, Baylor College of Medicine, Houston, Texas.,Houston Methodist Hospital, Houston, Texas
| | - Malcolm K Brenner
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, Texas.,Division of Hematology and Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas.,Texas Children's Hospital, Houston, Texas.,Department of Medicine, Baylor College of Medicine, Houston, Texas.,Houston Methodist Hospital, Houston, Texas
| | - Cliona M Rooney
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, Texas. .,Division of Immunology, Department of Pathology, Baylor College of Medicine, Houston, Texas.,Division of Hematology and Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas.,Texas Children's Hospital, Houston, Texas.,Program of Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas.,Department of Molecular Virology and Microbiology of Baylor College of Medicine, Houston, Texas
| |
Collapse
|
11
|
Abstract
Chimeric antigen receptors (CARs) have shown remarkable ability to re-direct T cells to target CD19-expressing tumours, resulting in remission rates of up to 90% in individuals with paediatric acute lymphoblastic lymphoma. Lessons learned from these clinical trials of adoptive T cell therapy for cancer, as well as investments made in manufacturing T cells at commercial scale, have inspired researchers to develop CARs for additional applications. Here, we explore the challenges and opportunities of using this technology to target infectious diseases such as with HIV and undesired immune responses such as autoimmunity and transplant rejection. Despite substantial obstacles, the potential of CAR T cells to enable cures for a wide array of disease settings could be transformational for the medical field.
Collapse
|
12
|
Omer B, Castillo PA, Tashiro H, Shum T, Huynh MTA, Cardenas M, Tanaka M, Lewis A, Sauer T, Parihar R, Lapteva N, Schmueck-Henneresse M, Mukherjee M, Gottschalk S, Rooney CM. Chimeric Antigen Receptor Signaling Domains Differentially Regulate Proliferation and Native T Cell Receptor Function in Virus-Specific T Cells. Front Med (Lausanne) 2018; 5:343. [PMID: 30619856 PMCID: PMC6297364 DOI: 10.3389/fmed.2018.00343] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/22/2018] [Indexed: 11/16/2022] Open
Abstract
The efficacy of T cells expressing chimeric antigen receptors (CARs) for solid tumors has been limited by insufficient CAR T cell expansion and persistence. The use of virus-specific T cells (VSTs) as carriers for CARs may overcome this limitation since CAR-VSTs can be boosted by viral vaccines or oncolytic viruses. However, there is limited understanding of the optimal combination of endodomains and their influence on the native T cell receptor (TCR) in VSTs. We therefore compared the function of GD2.CARs expressing the TCR zeta chain (ζ) alone or combined with endodomains from CD28 and 4-1BB in varicella zoster virus-specific (VZV) T cells. VZVSTs expressing GD2-CARs recognized VZV-derived peptides and killed GD2-expressing tumor cells. However, after repeated stimulation through their native TCR, the expansion of GD2-CAR.CD28ζ-VZVSTs was 3.3-fold greater (p < 0.001) than non-transduced VZVSTs, whereas GD2-CARζ- and GD2-CAR.41BBζ inhibited VZVST expansion (p < 0.01). Compared to control VZVSTs, GD2-CAR.ζ VZVSTs showed a greater frequency of apoptotic (p < 0.01) T cells, whereas prolonged downregulation of the native αβ TCR was observed in GD2-CAR.41BBζ VZVSTs (p < 0.001). We confirmed that CD28ζ can best maintain TCR function by expressing GD2.CARs in Epstein-Barr virus-specific T cells and CD19-CARs in VZVSTs. In response to CAR stimulation VSTs with CD28ζ endodomains also showed the greatest expansion (6 fold > GD2-CAR.41BBζ VZVSTs (p < 0.001), however anti-tumor efficacy was superior in GD2-CAR.41BBζ-VZVSTs. These findings demonstrate that CAR signaling domains can enhance or diminish the function of the native TCR and indicate that only CD28ζ may preserve the function of the native TCR in tonically signaling CAR-VSTs.
Collapse
Affiliation(s)
- Bilal Omer
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, TX, United States.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Paul A Castillo
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, TX, United States
| | - Haruko Tashiro
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, TX, United States
| | - Thomas Shum
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, TX, United States
| | - Mai T A Huynh
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, TX, United States
| | - Mara Cardenas
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, TX, United States
| | - Miyuki Tanaka
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, TX, United States
| | - Andrew Lewis
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, TX, United States
| | - Tim Sauer
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, TX, United States
| | - Robin Parihar
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, TX, United States.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Natalia Lapteva
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, TX, United States
| | - Michael Schmueck-Henneresse
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, TX, United States
| | - Malini Mukherjee
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, TX, United States
| | - Stephen Gottschalk
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, TX, United States.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States.,Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Cliona M Rooney
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, TX, United States.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States.,Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States.,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
13
|
Fernandes Q, Merhi M, Raza A, Inchakalody VP, Abdelouahab N, Zar Gul AR, Uddin S, Dermime S. Role of Epstein-Barr Virus in the Pathogenesis of Head and Neck Cancers and Its Potential as an Immunotherapeutic Target. Front Oncol 2018; 8:257. [PMID: 30035101 PMCID: PMC6043647 DOI: 10.3389/fonc.2018.00257] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 06/22/2018] [Indexed: 12/18/2022] Open
Abstract
The role of Epstein-Barr virus (EBV) infection in the development and progression of tumor cells has been described in various cancers. Etiologically, EBV is a causative agent in certain variants of head and neck cancers such as nasopharyngeal cancer. Proteins expressed by the EVB genome are involved in invoking and perpetuating the oncogenic properties of the virus. However, these protein products were also identified as important targets for therapeutic research in the past decades, particularly within the context of immunotherapy. The adoptive transfer of EBV-targeted T-cells as well as the development of EBV vaccines has opened newer lines of research to conceptualize novel therapeutic approaches toward the disease. This review addresses the most important aspects of the association of EBV with head and neck cancers from an immunological perspective. It also aims to highlight the current and future prospects of enhanced EBV-targeted immunotherapies.
Collapse
Affiliation(s)
- Queenie Fernandes
- Translational Cancer Research Facility, Hamad Medical Corporation, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Maysaloun Merhi
- Translational Cancer Research Facility, Hamad Medical Corporation, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Afsheen Raza
- Translational Cancer Research Facility, Hamad Medical Corporation, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Varghese Philipose Inchakalody
- Translational Cancer Research Facility, Hamad Medical Corporation, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Nassima Abdelouahab
- Translational Cancer Research Facility, Hamad Medical Corporation, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Abdul Rehman Zar Gul
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Interim Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Said Dermime
- Translational Cancer Research Facility, Hamad Medical Corporation, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
14
|
Guo Y, Feng K, Liu Y, Wu Z, Dai H, Yang Q, Wang Y, Jia H, Han W. Phase I Study of Chimeric Antigen Receptor-Modified T Cells in Patients with EGFR-Positive Advanced Biliary Tract Cancers. Clin Cancer Res 2017; 24:1277-1286. [PMID: 29138340 DOI: 10.1158/1078-0432.ccr-17-0432] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 06/15/2017] [Accepted: 11/09/2017] [Indexed: 11/16/2022]
Abstract
Purpose: This study is an expanded and parallel clinical trial of EGFR-specific chimeric antigen receptor-engineered autologous T (CART) cell immunotherapy (NCT01869166) to assess the safety and activity of CART-EGFR cell therapy in EGFR-positive advanced unresectable, relapsed/metastatic biliary tract cancers (BTC).Experimental Design: Patients with EGFR-positive (>50%) advanced unresectable, relapsed/metastatic BTCs were enrolled. Well-produced CART-EGFR cells were infused in a manner of dose escalation after the conditioning treatment with nab-paclitaxel (100-250 mg/m2) and cyclophosphamide (15-35 mg/kg).Results: A total of 19 patients (14 cholangiocarcinomas and 5 gallbladder carcinomas) received one to three cycles of CART-EGFR cell infusion (median CART cell dose, 2.65 × 106/kg; range, 0.8-4.1 × 106/kg) within 6 months. The CART-EGFR cell infusion was tolerated, but 3 patients suffered grade ≥3 acute fever/chill. Grade 1/2 target-mediated toxicities including mucosal/cutaneous toxicities and acute pulmonary edema and grade ≥3 lymphopenia and thrombocytopenia related to the conditioning treatment were observed. Of 17 evaluable patients, 1 achieved complete response and 10 achieved stable disease. The median progression-free survival was 4 months (range, 2.5-22 months) from the first cycle of treatment. Analysis of data indicated that the enrichment of central memory T cells (Tcm) in the infused CART-EGFR cells improved the clinical outcome.Conclusions: The CART-EGFR cell immunotherapy was a safe and active strategy for EGFR-positive advanced BTCs. The enrichment of Tcm in the infused CART-EGFR cells could predict clinical response. Clin Cancer Res; 24(6); 1277-86. ©2017 AACRSee related commentary by Kalos, p. 1246.
Collapse
Affiliation(s)
- Yelei Guo
- Department of Molecular and Immunology, Chinese PLA General Hospital, Beijing, China
| | - Kaichao Feng
- Department of Bio-therapeutic, Chinese PLA General Hospital, Beijing, China
| | - Yang Liu
- Department of Geriatric Hematology, Chinese PLA General Hospital, Beijing, China
| | - Zhiqiang Wu
- Department of Molecular and Immunology, Chinese PLA General Hospital, Beijing, China
| | - Hanren Dai
- Department of Molecular and Immunology, Chinese PLA General Hospital, Beijing, China
| | - Qingming Yang
- Department of Bio-therapeutic, Chinese PLA General Hospital, Beijing, China
| | - Yao Wang
- Department of Molecular and Immunology, Chinese PLA General Hospital, Beijing, China
| | - Hejin Jia
- Department of Bio-therapeutic, Chinese PLA General Hospital, Beijing, China
| | - Weidong Han
- Department of Molecular and Immunology, Chinese PLA General Hospital, Beijing, China. .,Department of Bio-therapeutic, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
15
|
Chimeric Antigen Receptor T cells for B Cell Neoplasms: Choose the Right CAR for You. Curr Hematol Malig Rep 2017; 11:368-84. [PMID: 27475429 DOI: 10.1007/s11899-016-0336-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Genetic redirection of T lymphocytes allows us to unleash these potent cellular immune effectors against cancer. Chimeric antigen receptor (CAR) T cells are the best-in-class example that genetic engineering of T cells can lead to deep and durable responses, as has been shown in several clinical trials for CD19+ B cell malignancies. As a consequence, in the last few years, several academic institutions and commercial partners have started developing anti-CD19 CAR T cell products. Although most of these T cell products are highly effective in vivo, basic differences among them can generate different performance characteristics and thereby impact their long-term clinical outcome. Several strategies are being implemented in order to solve the current open issues of CART19 therapy: (i) increasing efficacy against indolent B cell leukemias and lymphomas, (ii) avoiding or preventing antigen-loss relapses, (iii) reducing and managing toxicity, and (iv) bringing this CART therapy to routine clinical practice. The field of CART therapies is thriving, and exciting new avenues are opening for both scientists and patients.
Collapse
|
16
|
Fernández L, Metais JY, Escudero A, Vela M, Valentín J, Vallcorba I, Leivas A, Torres J, Valeri A, Patiño-García A, Martínez J, Leung W, Pérez-Martínez A. Memory T Cells Expressing an NKG2D-CAR Efficiently Target Osteosarcoma Cells. Clin Cancer Res 2017; 23:5824-5835. [DOI: 10.1158/1078-0432.ccr-17-0075] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/27/2017] [Accepted: 06/21/2017] [Indexed: 11/16/2022]
|
17
|
Kravets VG, Zhang Y, Sun H. Chimeric-Antigen-Receptor (CAR) T Cells and the Factors Influencing their Therapeutic Efficacy. JOURNAL OF IMMUNOLOGY RESEARCH AND THERAPY 2017; 2:100-113. [PMID: 30443604 PMCID: PMC6233887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Immunotherapeutic treatments for malignant cancers have revolutionized the medical and scientific fields. Lymphocytes engineered to display chimeric antigen receptor (CAR) molecules contribute to the exciting advancements that have stemmed from a greater understanding of cell structure and function, biological interactions, and the unique tumor microenvironment. CAR T cells circumvent the unique immune evasion capability of tumors by acting in a major histocompatibility complex (MHC) independent manner. Various factors contribute to the efficacy of CAR therapy, including CAR structure, gene transfer strategies, in vitro culture system, target selection, and preconditioning regimens. While recent clinical trials have shown promising success, cytotoxicity and other various challenges need to be addressed before CAR therapy can reach its full clinical potency. This review will discuss factors associated with CAR therapeutic success and the difficulties that continue to be a focus of research around the world.
Collapse
Affiliation(s)
- Victoria G Kravets
- The Wallace H. Coulter Department of Biomedical Engineering at the Georgia Institute of Technology & Emory University School of Medicine, Atlanta, GA, 30332, USA,Department of Microbiology and Immunology, Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA 19104, USA
| | - Yi Zhang
- Department of Microbiology and Immunology, Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA 19104, USA
| | - Hongxing Sun
- Department of Microbiology and Immunology, Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA 19104, USA
| |
Collapse
|
18
|
Tanaka M, Tashiro H, Omer B, Lapteva N, Ando J, Ngo M, Mehta B, Dotti G, Kinchington PR, Leen AM, Rossig C, Rooney CM. Vaccination Targeting Native Receptors to Enhance the Function and Proliferation of Chimeric Antigen Receptor (CAR)-Modified T Cells. Clin Cancer Res 2017; 23:3499-3509. [PMID: 28183713 DOI: 10.1158/1078-0432.ccr-16-2138] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 01/01/2017] [Accepted: 01/13/2017] [Indexed: 11/16/2022]
Abstract
Purpose: The multiple mechanisms used by solid tumors to suppress tumor-specific immune responses are a major barrier to the success of adoptively transferred tumor-specific T cells. As viruses induce potent innate and adaptive immune responses, we hypothesized that the immunogenicity of viruses could be harnessed for the treatment of solid tumors if virus-specific T cells (VST) were modified with tumor-specific chimeric antigen receptors (CAR). We tested this hypothesis using VZV-specific T cells (VZVST) expressing a CAR for GD2, a disialoganglioside expressed on neuroblastoma and certain other tumors, so that the live-attenuated VZV vaccine could be used for in vivo stimulation.Experimental Design: We generated GMP-compliant, GD2.CAR-modified VZVSTs from healthy donors and cancer patients by stimulation of peripheral blood mononuclear cells with overlapping peptide libraries spanning selected VZV antigens, then tested their ability to recognize and kill GD2- and VZV antigen-expressing target cells.Results: Our choice of VZV antigens was validated by the observation that T cells specific for these antigens expanded in vivo after VZV vaccination. VZVSTs secreted cytokines in response to VZV antigens, killed VZV-infected target cells and limited infectious virus spread in autologous fibroblasts. However, while GD2.CAR-modified VZVSTs killed neuroblastoma cell lines on their first encounter, they failed to control tumor cells in subsequent cocultures. Despite this CAR-specific dysfunction, CAR-VZVSTs retained functional specificity for VZV antigens via their TCRs and GD2.CAR function was partially rescued by stimulation through the TCR or exposure to dendritic cell supernatants.Conclusions: Vaccination via the TCR may provide a means to reactivate CAR-T cells rendered dysfunctional by the tumor microenvironment (NCT01953900). Clin Cancer Res; 23(14); 3499-509. ©2017 AACR.
Collapse
Affiliation(s)
- Miyuki Tanaka
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital
| | - Haruko Tashiro
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital
| | - Bilal Omer
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital.,Department of Pediatrics, Division of Hematology and Oncology, Baylor College of Medicine, Houston, Texas
| | - Natasha Lapteva
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital
| | - Jun Ando
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital
| | - Minhtran Ngo
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital.,Program of Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas
| | - Birju Mehta
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital
| | - Gianpietro Dotti
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital.,Department of Pediatrics, Division of Hematology and Oncology, Baylor College of Medicine, Houston, Texas.,Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Paul R Kinchington
- Departments of Ophthalmology, and Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ann M Leen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital.,Department of Pediatrics, Division of Hematology and Oncology, Baylor College of Medicine, Houston, Texas.,Department of Pathology, Division of Immunology, Baylor College of Medicine, Houston, Texas
| | - Claudia Rossig
- University Children's Hospital Muenster, Pediatric Hematology and Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Cliona M Rooney
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital. .,Department of Pediatrics, Division of Hematology and Oncology, Baylor College of Medicine, Houston, Texas.,Program of Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas.,Department of Pathology, Division of Immunology, Baylor College of Medicine, Houston, Texas.,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
19
|
Maus MV, June CH. Making Better Chimeric Antigen Receptors for Adoptive T-cell Therapy. Clin Cancer Res 2016; 22:1875-84. [PMID: 27084741 DOI: 10.1158/1078-0432.ccr-15-1433] [Citation(s) in RCA: 207] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/16/2016] [Indexed: 12/21/2022]
Abstract
Chimeric antigen receptors (CAR) are engineered fusion proteins constructed from antigen recognition, signaling, and costimulatory domains that can be expressed in cytotoxic T cells with the purpose of reprograming the T cells to specifically target tumor cells. CAR T-cell therapy uses gene transfer technology to reprogram a patient's own T cells to stably express CARs, thereby combining the specificity of an antibody with the potent cytotoxic and memory functions of a T cell. In early-phase clinical trials, CAR T cells targeting CD19 have resulted in sustained complete responses within a population of otherwise refractory patients with B-cell malignancies and, more specifically, have shown complete response rates of approximately 90% in patients with relapsed or refractory acute lymphoblastic leukemia. Given this clinical efficacy, preclinical development of CAR T-cell therapy for a number of cancer indications has been actively investigated, and the future of the CAR T-cell field is extensive and dynamic. Several approaches to increase the feasibility and safety of CAR T cells are currently being explored, including investigation into the mechanisms regulating the persistence of CAR T cells. In addition, numerous early-phase clinical trials are now investigating CAR T-cell therapy beyond targeting CD19, especially in solid tumors. Trials investigating combinations of CAR T cells with immune checkpoint blockade therapies are now beginning and results are eagerly awaited. This review evaluates several of the ongoing and future directions of CAR T-cell therapy.
Collapse
Affiliation(s)
- Marcela V Maus
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts.
| | - Carl H June
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
20
|
Redirecting T cells to eradicate B-cell acute lymphoblastic leukemia: bispecific T-cell engagers and chimeric antigen receptors. Leukemia 2016; 31:777-787. [PMID: 28028314 DOI: 10.1038/leu.2016.391] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/30/2016] [Accepted: 12/05/2016] [Indexed: 12/15/2022]
Abstract
Recent advances in antibody technology to harness T cells for cancer immunotherapy, particularly in the difficult-to-treat setting of relapsed/refractory acute lymphoblastic leukemia (r/r ALL), have led to innovative methods for directing cytotoxic T cells to specific surface antigens on cancer cells. One approach involves administration of soluble bispecific (or dual-affinity) antibody-based constructs that temporarily bridge T cells and cancer cells. Another approach infuses ex vivo-engineered T cells that express a surface plasma membrane-inserted antibody construct called a chimeric antigen receptor (CAR). Both bispecific antibodies and CARs circumvent natural target cell recognition by creating a physical connection between cytotoxic T cells and target cancer cells to activate a cytolysis signaling pathway; this connection allows essentially all cytotoxic T cells in a patient to be engaged because typical tumor cell resistance mechanisms (such as T-cell receptor specificity, antigen processing and presentation, and major histocompatibility complex context) are bypassed. Both the bispecific T-cell engager (BiTE) antibody construct blinatumomab and CD19-CARs are immunotherapies that have yielded encouraging remission rates in CD19-positive r/r ALL, suggesting that they might serve as definitive treatments or bridging therapies to allogeneic hematopoietic cell transplantation. With the introduction of these immunotherapies, new challenges arise related to unique toxicities and distinctive pathways of resistance. An increasing body of knowledge is being accumulated on how to predict, prevent, and manage such toxicities, which will help to better stratify patient risk and tailor treatments to minimize severe adverse events. A deeper understanding of the precise mechanisms of action and immune resistance, interaction with other novel agents in potential combinations, and optimization in the manufacturing process will help to advance immunotherapy outcomes in the r/r ALL setting.
Collapse
|
21
|
Luksch R, Castellani MR, Collini P, De Bernardi B, Conte M, Gambini C, Gandola L, Garaventa A, Biasoni D, Podda M, Sementa AR, Gatta G, Tonini GP. Neuroblastoma (Peripheral neuroblastic tumours). Crit Rev Oncol Hematol 2016; 107:163-181. [PMID: 27823645 DOI: 10.1016/j.critrevonc.2016.10.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 09/05/2016] [Accepted: 10/03/2016] [Indexed: 02/07/2023] Open
Abstract
Peripheral neuroblastic tumours (PNTs), a family of tumours arising in the embryonal remnants of the sympathetic nervous system, account for 7-10% of all tumours in children. In two-thirds of cases, PNTs originate in the adrenal glands or the retroperitoneal ganglia. At least one third present metastases at onset, with bone and bone marrow being the most frequent metastatic sites. Disease extension, MYCN oncogene status and age are the most relevant prognostic factors, and their influence on outcome have been considered in the design of the recent treatment protocols. Consequently, the probability of cure has increased significantly in the last two decades. In children with localised operable disease, surgical resection alone is usually a sufficient treatment, with 3-year event-free survival (EFS) being greater than 85%. For locally advanced disease, primary chemotherapy followed by surgery and/or radiotherapy yields an EFS of around 75%. The greatest problem is posed by children with metastatic disease or amplified MYCN gene, who continue to do badly despite intensive treatments. Ongoing trials are exploring the efficacy of new drugs and novel immunological approaches in order to save a greater number of these patients.
Collapse
Affiliation(s)
- Roberto Luksch
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| | | | - Paola Collini
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Massimo Conte
- Giannina Gaslini Children's Research Hospital, Genoa, Italy
| | | | - Lorenza Gandola
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Davide Biasoni
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marta Podda
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Gemma Gatta
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Gian Paolo Tonini
- Neuroblastoma Laboratory, Paediatric Research Institute, Padua, Italy
| |
Collapse
|
22
|
Jin X, Wu RM, Zhao MF. [Donor- derived CD19 chimeric antigen receptor T cells for relapsed B cell malignancies after allogeneic hematopoietic stem cell transplantations]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2016; 37:725-8. [PMID: 27587261 PMCID: PMC7348526 DOI: 10.3760/cma.j.issn.0253-2727.2016.08.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
Abstract
PURPOSE OF REVIEW As T cells engineered with chimeric antigen receptors (CARs) are entering advanced phases of clinical trial testing with promising results, the potential implications of use in an allogeneic environment are emerging as an important consideration. This review discusses the use of allogeneic CAR therapy, the potential effects of T-cell receptor (TCR) signaling on CAR T-cell efficacy, and the potential for TCR elimination to generate an off-the-shelf product. RECENT FINDINGS The majority of preclinical and clinical data regarding allogeneic T cells are focused on safety of their use given the potential for graft-versus-host disease (GVHD) mediated by the T-cell receptor expressed with the introduced CAR. Recent clinical trials using donor-derived CAR T cells are using either rigorous patient selection or T-cell selection (such as enrichment for virus-specific T cells). Although no GVHD has been reported, the efficacy of the allogeneic CAR treatment needs to be optimized. Several preclinical models limit allogeneic CAR-driven GVHD by utilizing memory T-cell selection, virus-specific T cells, gene-editing techniques, or suicide gene engineering. SUMMARY In the allogeneic environment, the potential effects of TCR signaling on the efficacy of CAR could affect the clinical responses with the use of donor-derived CAR T cells. Better understanding of the functionality of donor-derived T cells for therapy is essential for the development of universal effector cells for CAR therapy.
Collapse
|
24
|
CAR T Cell Therapy: A Game Changer in Cancer Treatment. J Immunol Res 2016; 2016:5474602. [PMID: 27298832 PMCID: PMC4889848 DOI: 10.1155/2016/5474602] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/28/2016] [Accepted: 05/04/2016] [Indexed: 01/13/2023] Open
Abstract
The development of novel targeted therapies with acceptable safety profiles is critical to successful cancer outcomes with better survival rates. Immunotherapy offers promising opportunities with the potential to induce sustained remissions in patients with refractory disease. Recent dramatic clinical responses in trials with gene modified T cells expressing chimeric antigen receptors (CARs) in B-cell malignancies have generated great enthusiasm. This therapy might pave the way for a potential paradigm shift in the way we treat refractory or relapsed cancers. CARs are genetically engineered receptors that combine the specific binding domains from a tumor targeting antibody with T cell signaling domains to allow specifically targeted antibody redirected T cell activation. Despite current successes in hematological cancers, we are only in the beginning of exploring the powerful potential of CAR redirected T cells in the control and elimination of resistant, metastatic, or recurrent nonhematological cancers. This review discusses the application of the CAR T cell therapy, its challenges, and strategies for successful clinical and commercial translation.
Collapse
|
25
|
Toxicity and management in CAR T-cell therapy. MOLECULAR THERAPY-ONCOLYTICS 2016; 3:16011. [PMID: 27626062 PMCID: PMC5008265 DOI: 10.1038/mto.2016.11] [Citation(s) in RCA: 643] [Impact Index Per Article: 71.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/20/2016] [Accepted: 02/23/2016] [Indexed: 12/14/2022]
Abstract
T cells can be genetically modified to target tumors through the expression of a chimeric antigen receptor (CAR). Most notably, CAR T cells have demonstrated clinical efficacy in hematologic malignancies with more modest responses when targeting solid tumors. However, CAR T cells also have the capacity to elicit expected and unexpected toxicities including: cytokine release syndrome, neurologic toxicity, “on target/off tumor” recognition, and anaphylaxis. Theoretical toxicities including clonal expansion secondary to insertional oncogenesis, graft versus host disease, and off-target antigen recognition have not been clinically evident. Abrogating toxicity has become a critical step in the successful application of this emerging technology. To this end, we review the reported and theoretical toxicities of CAR T cells and their management.
Collapse
|
26
|
Büchel G, Schulte JH, Harrison L, Batzke K, Schüller U, Hansen W, Schramm A. Immune response modulation by Galectin-1 in a transgenic model of neuroblastoma. Oncoimmunology 2016; 5:e1131378. [PMID: 27467948 DOI: 10.1080/2162402x.2015.1131378] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/01/2015] [Accepted: 12/08/2015] [Indexed: 01/11/2023] Open
Abstract
Galectin-1 (Gal-1) has been described to promote tumor growth by inducing angiogenesis and to contribute to tumor immune escape by promoting apoptosis of activated T cells. We had previously identified upregulation of Gal-1 in preclinical models of aggressive neuroblastoma (NB), a solid tumor of childhood. However, the clinical and biological relevance of Gal-1 in this tumor entity is unclear. Here, the effect of Gal-1 on the immune system and tumorigenesis was assessed using modulation of Gal-1 expression in immune effector cells and in a transgenic NB model, designated TH-MYCN. The fraction of CD4(+) T cells was decreased in tumor-bearing TH-MYCN mice compared to tumor-free littermates, while both CD4(+) T cells as well as CD8(+) T cells were less activated, compatible with a reduced immune response in tumor-bearing mice. Tumor incidence was not significantly altered by decreasing Gal-1/LGALS1 gene dosage in TH-MYCN mice, but TH-MYCN/Gal-1(-/-) double transgenic mice displayed impaired tumor angiogenesis, splenomegaly, and impaired T cell tumor-infiltration with no differences in T cell activation and apoptosis rate. Additionally, a lower migratory capacity of Gal-1 deficient CD4(+) T cells toward tumor cells was observed in vitro. Transplantation of TH-MYCN-derived tumor cells into syngeneic mice resulted in significantly reduced tumor growth and elevated immune cell infiltration when Gal-1 was downregulated by shRNA. We therefore conclude that T cell-derived Gal-1 mediates T cell tumor-infiltration, whereas NB-derived Gal-1 promotes tumor growth. This opposing effect of Gal-1 in NB should be considered in therapeutic targeting strategies, as currently being developed for other tumor entities.
Collapse
Affiliation(s)
- Gabriele Büchel
- Pediatric Oncology and Hematology, University Children's Hospital Essen, University of Duisburg-Essen , Essen, Germany
| | - Johannes H Schulte
- Pediatric Oncology and Hematology, Charité University Medicine , Berlin, Germany
| | - Luke Harrison
- Center for Neuropathology, Ludwig-Maximilians-University , Munich, Germany
| | - Katharina Batzke
- Pediatric Oncology and Hematology, University Children's Hospital Essen, University of Duisburg-Essen , Essen, Germany
| | - Ulrich Schüller
- Center for Neuropathology, Ludwig-Maximilians-University , Munich, Germany
| | - Wiebke Hansen
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen , Essen, Germany
| | - Alexander Schramm
- Pediatric Oncology and Hematology, University Children's Hospital Essen, University of Duisburg-Essen , Essen, Germany
| |
Collapse
|