1
|
Paprocki N, Conway CJ. The underlying causes of differential migration: assumptions, hypotheses, and predictions. Biol Rev Camb Philos Soc 2025; 100:764-789. [PMID: 39522953 DOI: 10.1111/brv.13160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Mechanisms governing the migratory decisions of birds have long fascinated ecologists and sparked considerable debate. Identifying factors responsible for variation in migration distance, also known as differential migration, has been a popular approach to understanding the mechanisms underlying migratory behaviour more generally. However, research progress has been slowed by the continued testing of overlapping, non-mechanistic, and circular predictions among a small set of historically entrenched hypotheses. We highlight the body size hypothesis and suggest that the predictions commonly tested have impeded progress because body size relationships with migration distance are predictions made by several distinct hypotheses with contrasting mechanisms. The cost of migration itself has not been adequately accounted for in most hypotheses, and we propose two flight efficiency hypotheses with time- and energy-minimizing mechanisms that allow individuals to mitigate the risks inherent to longer migrations. We also advance two conceptual versions of the social dominance hypothesis based on two distinct underlying mechanisms related to distance minimization and food maximization that will help clarify the role of competition in driving migratory decisions. Overall, we describe and refine 12 mechanistic hypotheses proposed to explain differential migration (along with several other special-case hypotheses), seven of which have underlying mechanisms related to food limitation as past research has identified this to be an important driver of differential migration. We also thoroughly reviewed 145 publications to assess the amount of support for 10 critical assumptions underlying alternative hypotheses for differential migration in birds. Our review reveals that surprisingly few studies explicitly evaluate assumptions within a differential migration context. Generating and testing strong predictions and critical assumptions underlying mechanisms of alternative hypotheses will improve our ability to differentiate among these explanations of differential migration. Additionally, future intraspecific progress will be greatest if investigators continue to focus on mechanisms underlying variation in migration distance within rather than among demographic classes, as previous research has found differing mechanisms to be responsible for differential migration among demographic classes. Interspecifically, a thorough comparative analysis that seeks to explain variation in migration distance among species would broaden both our understanding of the mechanisms regulating current differential migration patterns and those that led to the evolution of migration more generally. Collectively, we provide a framework that, together with advances in animal-borne tracking and other technology, can be used to advance our understanding of the causes of differential migration distance, and migratory decisions more generally.
Collapse
Affiliation(s)
- Neil Paprocki
- Idaho Cooperative Fish and Wildlife Research Unit, College of Natural Resources, University of Idaho, 875 Perimeter Drive, Moscow, ID, 83844, USA
| | - Courtney J Conway
- U.S. Geological Survey, Idaho Cooperative Fish and Wildlife Research Unit, University of Idaho, 875 Perimeter Drive, Moscow, ID, 83844, USA
| |
Collapse
|
2
|
Wang X, Somveille M, Dokter AM, Cao W, Cheng C, Liu J, Ma Z. Macro-scale relationship between body mass and timing of bird migration. Nat Commun 2024; 15:4111. [PMID: 38750018 PMCID: PMC11096376 DOI: 10.1038/s41467-024-48248-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
Clarifying migration timing and its link with underlying drivers is fundamental to understanding the evolution of bird migration. However, previous studies have focused mainly on environmental drivers such as the latitudes of seasonal distributions and migration distance, while the effect of intrinsic biological traits remains unclear. Here, we compile a global dataset on the annual cycle of migratory birds obtained by tracking 1531 individuals and 177 populations from 186 species, and investigate how body mass, a key intrinsic biological trait, influenced timings of the annual cycle using Bayesian structural equation models. We find that body mass has a strong direct effect on departure date from non-breeding and breeding sites, and indirect effects on arrival date at breeding and non-breeding sites, mainly through its effects on migration distance and a carry-over effect. Our results suggest that environmental factors strongly affect the timing of spring migration, while body mass affects the timing of both spring and autumn migration. Our study provides a new foundation for future research on the causes of species distribution and movement.
Collapse
Affiliation(s)
- Xiaodan Wang
- Shanghai Institute of Infectious Disease and Biosecurity, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Marius Somveille
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Adriaan M Dokter
- Cornell Lab of Ornithology, Cornell University, Ithaca, NY, 14850, USA
| | - Wenhua Cao
- Shanghai Institute of Infectious Disease and Biosecurity, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Chuyu Cheng
- Shanghai Institute of Infectious Disease and Biosecurity, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Jiajia Liu
- Shanghai Institute of Infectious Disease and Biosecurity, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Zhijun Ma
- Shanghai Institute of Infectious Disease and Biosecurity, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
3
|
Bell F, Ouwehand J, Both C, Briedis M, Lisovski S, Wang X, Bearhop S, Burgess M. Individuals departing non-breeding areas early achieve earlier breeding and higher breeding success. Sci Rep 2024; 14:4075. [PMID: 38374332 PMCID: PMC10876959 DOI: 10.1038/s41598-024-53575-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/02/2024] [Indexed: 02/21/2024] Open
Abstract
Conditions experienced by an individual during migration have the potential to shape migratory tactic and in turn fitness. For large birds, environmental conditions encountered during migration have been linked with survival and subsequent reproductive output, but this is less known for smaller birds, hindering our understanding of mechanisms driving population change. By combining breeding and tracking data from 62 pied flycatchers (Ficedula hypoleuca) representing two breeding populations collected over 2016-2020, we determine how variation in migration phenology and tactic among individuals affects subsequent breeding. Departure date from West African non-breeding areas to European breeding grounds was highly variable among individuals and had a strong influence on migration tactic. Early departing individuals had longer spring migrations which included longer staging duration yet arrived at breeding sites and initiated breeding earlier than later departing individuals. Individuals with longer duration spring migrations and early arrival at breeding sites had larger clutches, and for males higher fledging success. We suggest that for pied flycatchers, individual carry-over effects may act through departure phenology from West Africa, and the associated spring migration duration, to influence reproduction. While our results confirm that departure date from non-breeding areas can be associated with breeding success in migratory passerines, we identify spring staging duration as a key component of this process.
Collapse
Affiliation(s)
- Fraser Bell
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall, UK.
- Royal Society for the Protection of Birds, Centre for Conservation Science, The Lodge, Sandy, Bedfordshire, UK.
| | - Janne Ouwehand
- Conservation Ecology Group, University of Groningen, Groningen, The Netherlands
| | - Christiaan Both
- Conservation Ecology Group, University of Groningen, Groningen, The Netherlands
| | - Martins Briedis
- Department of Bird Migration, Swiss Ornithological Institute, Sempach, Switzerland
- Lab of Ornithology, Institute of Biology, University of Latvia, Rīga, Latvia
| | - Simeon Lisovski
- Alfred Wegener Institute for Polar and Marine Research, Telegrafenberg, Potsdam, Germany
| | - Xuelai Wang
- Conservation Ecology Group, University of Groningen, Groningen, The Netherlands
| | - Stuart Bearhop
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall, UK
| | - Malcolm Burgess
- Royal Society for the Protection of Birds, Centre for Conservation Science, The Lodge, Sandy, Bedfordshire, UK
- Centre for Research in Animal Behaviour, University of Exeter, Exeter, Devon, UK
- PiedFly.Net, Yarner Wood, Bovey Tracey, Devon, UK
| |
Collapse
|
4
|
Davies JG, Kirkland M, Miller MGR, Pearce-Higgins JW, Atkinson PW, Hewson CM. Spring arrival of the common cuckoo at breeding grounds is strongly determined by environmental conditions in tropical Africa. Proc Biol Sci 2023; 290:20230580. [PMID: 37339739 PMCID: PMC10281800 DOI: 10.1098/rspb.2023.0580] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 05/30/2023] [Indexed: 06/22/2023] Open
Abstract
Failure to adapt migration timing to changes in environmental conditions along migration routes and at breeding locations can result in mismatches across trophic levels, as occurs between the brood parasitic common cuckoo Cuculus canorus and its hosts. Using satellite tracking data from 87 male cuckoos across 11 years, we evaluate why the cuckoo has not advanced its arrival to the UK. Across years, breeding ground arrival was primarily determined by timing of departure from stopover in West Africa before northward crossing of the Sahara. Together with high population synchrony and low apparent endogenous control of this event, this suggests that a seasonal ecological constraint operating here limits overall variation in breeding grounds arrival, although this event was itself influenced by carry-over from timing of arrival into tropical Africa. Between-year variation within individuals was, in contrast, mostly determined by northward migration through Europe, probably due to weather conditions. We find evidence of increased mortality risk for (a) early birds following migration periods positively impacting breeding grounds arrival, and (b) late birds, possibly suffering energy limitation, after departure from the breeding grounds. These results help identify areas where demands of responding to global change can potentially be alleviated by improving stopover quality.
Collapse
Affiliation(s)
- Jacob G. Davies
- British Trust for Ornithology Scotland, Stirling University Innovation Park, Beta Centre (Unit 15), Stirling, FK9 4NF, UK
| | - Máire Kirkland
- British Trust for Ornithology, The Nunnery, Thetford, IP24 2PU, Norfolk, UK
| | - Mark G. R. Miller
- British Trust for Ornithology, The Nunnery, Thetford, IP24 2PU, Norfolk, UK
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | | | - Philip W. Atkinson
- British Trust for Ornithology, The Nunnery, Thetford, IP24 2PU, Norfolk, UK
| | - Chris M. Hewson
- British Trust for Ornithology, The Nunnery, Thetford, IP24 2PU, Norfolk, UK
| |
Collapse
|
5
|
Cooper NW, Dossman BC, Berrigan LE, Brown JM, Cormier DA, Bégin-Marchand C, Rodewald AD, Taylor PD, Tremblay JA, Marra PP. Atmospheric pressure predicts probability of departure for migratory songbirds. MOVEMENT ECOLOGY 2023; 11:23. [PMID: 37122025 PMCID: PMC10150475 DOI: 10.1186/s40462-022-00356-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/22/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND Weather can have both delayed and immediate impacts on animal populations, and species have evolved behavioral adaptions to respond to weather conditions. Weather has long been hypothesized to affect the timing and intensity of avian migration, and radar studies have demonstrated strong correlations between weather and broad-scale migration patterns. How weather affects individual decisions about the initiation of migratory flights, particularly at the beginning of migration, remains uncertain. METHODS Here, we combine automated radio telemetry data from four species of songbirds collected at five breeding and wintering sites in North America with hourly weather data from a global weather model. We use these data to determine how wind profit, atmospheric pressure, precipitation, and cloud cover affect probability of departure from breeding and wintering sites. RESULTS We found that the probability of departure was related to changes in atmospheric pressure, almost completely regardless of species, season, or location. Individuals were more likely to depart on nights when atmospheric pressure had been rising over the past 24 h, which is predictive of fair weather over the next several days. By contrast, wind profit, precipitation, and cloud cover were each only informative predictors of departure probability in a single species. CONCLUSIONS Our results suggest that individual birds actively use weather information to inform decision-making regarding the initiation of departure from the breeding and wintering grounds. We propose that birds likely choose which date to depart on migration in a hierarchical fashion with weather not influencing decision-making until after the departure window has already been narrowed down by other ultimate and proximate factors.
Collapse
Affiliation(s)
- Nathan W Cooper
- Migratory Bird Center, Smithsonian's National Zoo and Conservation Biology Institute, MRC 5503, 3001 Connecticut Ave. NW, Washington, DC, 20013, USA.
| | - Bryant C Dossman
- Department of Biology and McCourt School of Public Policy, Georgetown University, 37th and O Streets NW, Washington, DC, 20057, USA
- Cornell Lab of Ornithology and Department of Natural Resources and the Environment, Cornell University, 159 Sapsucker Woods Rd, Ithaca, NY, 14850, USA
| | - Lucas E Berrigan
- Department of Biology, Acadia University, 33 Westwood Avenue, Wolfville, NS, B4P 2R6, Canada
- Motus Wildlife Tracking System, Birds Canada, Port Rowan, ON, N0E 1M0, Canada
| | - J Morgan Brown
- Department of Biology, Acadia University, 33 Westwood Avenue, Wolfville, NS, B4P 2R6, Canada
- Wildlife Conservation Society Canada, 169 Titanium Way, Whitehorse, YT, Y1A 0E9, Canada
| | - Dominic A Cormier
- Department of Biology, Acadia University, 33 Westwood Avenue, Wolfville, NS, B4P 2R6, Canada
| | - Camille Bégin-Marchand
- Wildlife Research Division, Environment and Climate Change Canada, 1550 Av. D'Estimauville, Québec, QC, G1J 0C3, Canada
| | - Amanda D Rodewald
- Cornell Lab of Ornithology and Department of Natural Resources and the Environment, Cornell University, 159 Sapsucker Woods Rd, Ithaca, NY, 14850, USA
| | - Philip D Taylor
- Department of Biology, Acadia University, 33 Westwood Avenue, Wolfville, NS, B4P 2R6, Canada
| | - Junior A Tremblay
- Wildlife Research Division, Environment and Climate Change Canada, 1550 Av. D'Estimauville, Québec, QC, G1J 0C3, Canada
| | - Peter P Marra
- Department of Biology and McCourt School of Public Policy, Georgetown University, 37th and O Streets NW, Washington, DC, 20057, USA
| |
Collapse
|
6
|
Wellbrock AHJ, Witte K. No "carry-over" effects of tracking devices on return rate and parameters determining reproductive success in once and repeatedly tagged common swifts (Apus apus), a long-distance migratory bird. MOVEMENT ECOLOGY 2022; 10:58. [PMID: 36482483 PMCID: PMC9732977 DOI: 10.1186/s40462-022-00357-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND To understand life-history strategies in migratory bird species, we should focus on migration behaviour and possible carry-over effects on both population and individual level. Tracking devices are useful tools to directly investigate migration behaviour. With increased use of tracking devices, questions arise towards animal welfare and possible negative effects of logger on birds. Several studies were conducted to address this question in birds that were tagged and tracked for one complete non-breeding season including migration but with mixed results. To detect individual-based decisions regarding migration strategy, we need to track the same individuals several times. So far, there are no studies investigating effects of repeatedly tagging on reproduction and life-history traits in individual migratory birds, especially in small birds. METHODS We used long-term data of 85 tagged common swifts (Apus apus), a long-distance migratory bird, of a breeding colony in Germany to test whether carrying a geolocator or GPS logger once or repeatedly during non-breeding season affected return rate, apparent survival, and parameters determining reproductive success. Additionally, we checked for individual differences in arrival date and breeding parameters when the same individuals were tagged and when they were not tagged in different years. Further, we calculated the individual repeatability in arrival at the breeding colony and date of egg laying in repeatedly tagged swifts. RESULTS Once and repeatedly tagged birds returned to the colony at a similar rate as non-logger birds and arrived earlier than non-logger birds. We found no effect of logger-type on return rate in logger birds. We detected no differences in apparent survival, time lag to clutch initiation, date of clutch initiation, clutch size, number of chicks and fledglings between logger and non-logger birds. We found neither an effect of loggers nor of logger-types on the arrival date and breeding parameter on individual-level. Arrival date was highly repeatable and date of clutch initiation was moderately repeatable within repeatedly tagged individuals.
Collapse
Affiliation(s)
- Arndt H J Wellbrock
- Research Group of Ecology and Behavioural Biology, Institute of Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076, Siegen, Germany
- Institute of Avian Research "Vogelwarte Helgoland", Wilhelmshaven, Germany
| | - Klaudia Witte
- Research Group of Ecology and Behavioural Biology, Institute of Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076, Siegen, Germany.
| |
Collapse
|
7
|
Jakopak RP, Sawyer H, LaSharr TN, Randall J, Dwinnell SP, Fralick GL, Monteith KL. Diel timing of migration is not plastic in a migratory ungulate. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
8
|
Hegemann A, Birberg C, Hasselquist D, Nilsson JÅ. Early and Late Migrating Avian Individuals Differ in Constitutive Immune Function and Blood Parasite Infections – But Patterns Depend on the Migratory Strategy. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.880426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Billions of birds migrate every year. To conduct a successful migration, birds undergo a multitude of physiological adaptions. One such adaptation includes adjustments of immune function, however, little is known about intraspecies (between-individual) and interspecies (between-species) variation in immune modulations during migration. Here, we explore if early and late migrating individuals differ in their immune function, and if such patterns differ among species with short- vs. long-distance migration strategies. We quantified three parameters of baseline (constitutive) innate immune function and one parameter of baseline (constitutive) acquired immune function in 417 individuals of 10 species caught during autumn migration at Falsterbo (Sweden). Early and late migrating individuals differed in lysis and total immunoglobulins (IgY), but the patterns show different directions in long-distance migrants (LDMs) (wintering in Africa) as compared to short-distance migrants (SDMs) (wintering within Europe). Specifically, early migrating LDMs had lower lysis but higher immunoglobulin levels than late migrating individuals. In short distance migrants, there was no difference in lysis between early and late migrating individuals, but immunoglobulin levels were higher in late migrating individuals. We found no correlation between timing of migration and haptoglobin, but LDMs had lower levels of haptoglobin than SDMs. We also found that the prevalence of haemosporidian blood parasite infections decreased in LDMs, but increased in SDMs, as the autumn progressed. Taken together, our study suggests that the investment into immune function depends on the migratory strategy (short- vs. long-distance migrants), and that early and late migrating individuals of a migration strategy might invest differently in baseline immune function, potentially driven by differences in the trade-offs with timing and speed of migration. Our study highlights the potential adaptations of immune function that could help explain trade-offs with other physiological systems, and behavioural responses during migration.
Collapse
|
9
|
Schmaljohann H, Eikenaar C, Sapir N. Understanding the ecological and evolutionary function of stopover in migrating birds. Biol Rev Camb Philos Soc 2022; 97:1231-1252. [PMID: 35137518 DOI: 10.1111/brv.12839] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 12/14/2022]
Abstract
Global movement patterns of migratory birds illustrate their fascinating physical and physiological abilities to cross continents and oceans. During their voyages, most birds land multiple times to make so-called 'stopovers'. Our current knowledge on the functions of stopover is mainly based on the proximate study of departure decisions. However, such studies are insufficient to gauge fully the ecological and evolutionary functions of stopover. If we study how a focal trait, e.g. changes in energy stores, affects the decision to depart from a stopover without considering the trait(s) that actually caused the bird to land, e.g. unfavourable environmental conditions for flight, we misinterpret the function of the stopover. It is thus important to realise and acknowledge that stopovers have many different functions, and that not every migrant has the same (set of) reasons to stop-over. Additionally, we may obtain contradictory results because the significance of different traits to a migrant is context dependent. For instance, late spring migrants may be more prone to risk-taking and depart from a stopover with lower energy stores than early spring migrants. Thus, we neglect that departure decisions are subject to selection to minimise immediate (mortality risk) and/or delayed (low future reproductive output) fitness costs. To alleviate these issues, we first define stopover as an interruption of migratory endurance flight to minimise immediate and/or delayed fitness costs. Second, we review all probable functions of stopover, which include accumulating energy, various forms of physiological recovery and avoiding adverse environmental conditions for flight, and list potential other functions that are less well studied, such as minimising predation, recovery from physical exhaustion and spatiotemporal adjustments to migration. Third, derived from these aspects, we argue for a paradigm shift in stopover ecology research. This includes focusing on why an individual interrupts its migratory flight, which is more likely to identify the individual-specific function(s) of the stopover correctly than departure-decision studies. Moreover, we highlight that the selective forces acting on stopover decisions are context dependent and are expected to differ between, e.g. K-/r-selected species, the sexes and migration strategies. For example, all else being equal, r-selected species (low survival rate, high reproductive rate) should have a stronger urge to continue the migratory endurance flight or resume migration from a stopover because the potential increase in immediate fitness costs suffered from a flight is offset by the expected higher reproductive success in the subsequent breeding season. Finally, we propose to focus less on proximate mechanisms controlling landing and departure decisions, and more on ultimate mechanisms to identify the selective forces shaping stopover decisions. Our ideas are not limited to birds but can be applied to any migratory species. Our revised definition of stopover and the proposed paradigm shift has the potential to stimulate a fruitful discussion towards a better evolutionary ecological understanding of the functions of stopover. Furthermore, identifying the functions of stopover will support targeted measures to conserve and restore the functionality of stopover sites threatened by anthropogenic environmental changes. This is especially important for long-distance migrants, which currently are in alarming decline.
Collapse
Affiliation(s)
- Heiko Schmaljohann
- Institute for Biology and Environmental Sciences (IBU), Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, Oldenburg, 26129, Germany.,Institute of Avian Research, An der Vogelwarte 21, Wilhelmshaven, 26386, Germany
| | - Cas Eikenaar
- Institute of Avian Research, An der Vogelwarte 21, Wilhelmshaven, 26386, Germany
| | - Nir Sapir
- Department of Evolutionary and Environmental Biology and the Institute of Evolution, University of Haifa, 199 Aba Khoushy Ave, Haifa, 3498838, Israel
| |
Collapse
|
10
|
Linek N, Brzęk P, Gienapp P, O’Mara MT, Pokrovsky I, Schmidt A, Shipley JR, Taylor JRE, Tiainen J, Volkmer T, Wikelski M, Partecke J. A partial migrant relies upon a range-wide cue set but uses population-specific weighting for migratory timing. MOVEMENT ECOLOGY 2021; 9:63. [PMID: 34930467 PMCID: PMC8686659 DOI: 10.1186/s40462-021-00298-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Many birds species range over vast geographic regions and migrate seasonally between their breeding and overwintering sites. Deciding when to depart for migration is one of the most consequential life-history decisions an individual may make. However, it is still not fully understood which environmental cues are used to time the onset of migration and to what extent their relative importance differs across a range of migratory strategies. We focus on departure decisions of a songbird, the Eurasian blackbird Turdus merula, in which selected Russian and Polish populations are full migrants which travel relatively long-distances, whereas Finnish and German populations exhibit partial migration with shorter migration distances. METHODS We used telemetry data from the four populations (610 individuals) to determine which environmental cues individuals from each population use to initiate their autumn migration. RESULTS When departing, individuals in all populations selected nights with high atmospheric pressure and minimal cloud cover. Fully migratory populations departed earlier in autumn, at longer day length, at higher ambient temperatures, and during nights with higher relative atmospheric pressure and more supportive winds than partial migrants; however, they did not depart in higher synchrony. Thus, while all studied populations used the same environmental cues, they used population-specific and locally tuned thresholds to determine the day of departure. CONCLUSIONS Our data support the idea that migratory timing is controlled by general, species-wide mechanisms, but fine-tuned thresholds in response to local conditions.
Collapse
Affiliation(s)
- Nils Linek
- Max Planck Institute of Animal Behavior, Radolfzell, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Paweł Brzęk
- Faculty of Biology, University of Białystok, Białystok, Poland
| | | | - M. Teague O’Mara
- Max Planck Institute of Animal Behavior, Radolfzell, Germany
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, USA
| | - Ivan Pokrovsky
- Max Planck Institute of Animal Behavior, Radolfzell, Germany
- Institute of Plant and Animal Ecology, UB RAS, Ekaterinburg, Russia
- Institute of Biological Problems of the North, FEB RAS, Magadan, Russia
| | - Andreas Schmidt
- Max Planck Institute of Animal Behavior, Radolfzell, Germany
| | - J. Ryan Shipley
- Max Planck Institute of Animal Behavior, Radolfzell, Germany
| | | | - Juha Tiainen
- Natural Resources Institute Finland, Helsinki, Finland
- Lammi Biological Station, University of Helsinki, Lammi, Finland
| | - Tamara Volkmer
- Max Planck Institute of Animal Behavior, Radolfzell, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Martin Wikelski
- Max Planck Institute of Animal Behavior, Radolfzell, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
| | - Jesko Partecke
- Max Planck Institute of Animal Behavior, Radolfzell, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
11
|
Fudickar AM, Jahn AE, Ketterson ED. Animal Migration: An Overview of One of Nature's Great Spectacles. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2021. [DOI: 10.1146/annurev-ecolsys-012021-031035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The twenty-first century has witnessed an explosion in research on animal migration, in large part due to a technological revolution in tracking and remote-sensing technologies, along with advances in genomics and integrative biology. We now have access to unprecedented amounts of data on when, where, and how animals migrate across various continents and oceans. Among the important advancements, recent studies have uncovered a surprising level of variation in migratory trajectories at the species and population levels with implications for both speciation and the conservation of migratory populations. At the organismal level, studies linking molecular and physiological mechanisms to traits that support migration have revealed a remarkable amount of seasonal flexibility in many migratory animals. Advancements in the theory for why animals migrate have resulted in promising new directions for empirical studies. We provide an overview of the current state of knowledge and promising future avenues of study.
Collapse
Affiliation(s)
- Adam M. Fudickar
- Environmental Resilience Institute, Indiana University, Bloomington, Indiana 47405, USA;, ,
| | - Alex E. Jahn
- Environmental Resilience Institute, Indiana University, Bloomington, Indiana 47405, USA;, ,
| | - Ellen D. Ketterson
- Environmental Resilience Institute, Indiana University, Bloomington, Indiana 47405, USA;, ,
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| |
Collapse
|
12
|
Deakin JE, Guglielmo CG, Morbey YE. Effect of the Social Environment on Spring Migration Timing of a Songbird. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.715418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The influence of the social environment on the timing of the annual cycle is poorly understood. Seasonally migratory birds are under pressure to accurately time their spring migration, and throughout the annual cycle, they may experience variability of the local sex-ratio. A population-level male-biased sex ratio is predicted to advance spring migration timing in males and is attributed to the increased intra-specific competition for access to females and/or breeding territories. The present study had two goals. First, to develop a method that utilizes digitally coded radio-transmitters to quantify the activity of flocked individuals in captivity. Second, to use this method to test the hypothesis that the social environment influences the spring migration traits of male yellow-rumped warblers (Setophaga coronata coronata). To accomplish this, birds were captured in the fall in Long Point, Ontario, and transferred to the Advanced Facility for Avian Research, London, Ontario. In the winter, they were assigned to a slightly male- or female-biased treatment and housed in flocks in large free-flight rooms. Throughout the experimental period, we took body mass measurements and standardized photos to monitor body condition and molt progression. To measure locomotor activity, the birds were outfitted with digitally coded radio-transmitters in April and photo-triggered to enter a migratory phenotype. The tagged birds were released at their capture site in May and the Motus Wildlife Tracking System was used to determine stopover departure timing and migratory movements. Sex ratio did not influence body mass or molt progression. However, males from the male-biased treatment had significantly less locomotor movement than those from the female-biased treatment. Additionally, a lower proportion of males from the male-biased treatment initiated migratory restlessness, an indicator of the urge to migrate. Overall, these findings suggest that the social environment can influence behavior of songbirds, but do not support the hypothesis that a male-biased sex ratio accelerates migration.
Collapse
|
13
|
The genetic regulation of avian migration timing: combining candidate genes and quantitative genetic approaches in a long-distance migrant. Oecologia 2021; 196:373-387. [PMID: 33963450 DOI: 10.1007/s00442-021-04930-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
Plant and animal populations can adapt to prolonged environmental changes if they have sufficient genetic variation in important phenological traits. The genetic regulation of annual cycles can be studied either via candidate genes or through the decomposition of phenotypic variance by quantitative genetics. Here, we combined both approaches to study the timing of migration in a long-distance migrant, the collared flycatcher (Ficedula albicollis). We found that none of the four studied candidate genes (CLOCK, NPAS2, ADCYAP1 and CREB1) had any consistent effect on the timing of six annual cycle stages of geolocator-tracked individuals. This negative result was confirmed by direct observations of males arriving in spring to the breeding site over four consecutive years. Although male spring arrival date was significantly repeatable (R = 0.24 ± 0.08 SE), most was attributable to permanent environmental effects, while the additive genetic variance and heritability were very low (h2 = 0.03 ± 0.17 SE). This low value constrains species evolutionary adaptation, and our study adds to warnings that such populations may be threatened, e.g. by ongoing climate change.
Collapse
|
14
|
Kelsey NA, Schmaljohann H, Bairlein F. The avian lightweights: Trans-Saharan migrants show lower lean body mass than short-/medium-distance migrants. J Evol Biol 2021; 34:1010-1021. [PMID: 33813789 DOI: 10.1111/jeb.13787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 11/28/2022]
Abstract
Avian trans-Saharan migrants travelling long distances and crossing ecological barriers experience different constraints in terms of time, energy and safety than short-/medium-distance migrants without barrier-crossings. As such, natural selection shapes the aerodynamic properties of these groups differently. Yet, to the best of our knowledge, we lack information on whether natural selection has contributed to reducing energetic flight costs through generally lower body mass in trans-Saharan migrants. To fill parts of this gap, we investigated this eco-morphological pattern in 5,410 individuals of 22 Palearctic songbird species ranging from short-/medium-distance to trans-Saharan migrants. We used individual size-independent scaled lean body mass values based on wing length as a measure of body size and, for the first time, precisely determined lean body mass values by direct measurements via quantitative magnetic resonance technology. Scaled lean body mass for a given body size was significantly higher in short-/medium-distance migrants than in trans-Saharan migrants. Although scaled lean body mass significantly decreased with increasing migration distance in short-/medium-distance migrants, no such effect was found in trans-Saharan migrants. Our results thus show an eco-morphological pattern relating species' lean body mass not only to migration distance but also to migration group. This suggests that selective effects of the presence/absence of ecological barriers and/or of a threshold level for migration distance on migrant birds may be more important than the linear continuum of migration distance per se.
Collapse
Affiliation(s)
- Natalie A Kelsey
- Institute of Avian Research 'Vogelwarte Helgoland', Wilhelmshaven, Germany
| | - Heiko Schmaljohann
- Institute of Avian Research 'Vogelwarte Helgoland', Wilhelmshaven, Germany.,Institut für Biologie und Umweltwissenschaften (IBU), Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Franz Bairlein
- Institute of Avian Research 'Vogelwarte Helgoland', Wilhelmshaven, Germany.,Max Planck Institute of Animal Behavior, Radolfzell, Germany
| |
Collapse
|
15
|
Sex, age, molt strategy, and migration distance explain the phenology of songbirds at a stopover along the East Asian flyway. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-020-02957-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Abstract
Sex- and age-specific differences in the timing of migration are widespread among animals. In birds, common patterns are protandry, the earlier arrival of males in spring, and age-differential migration during autumn. However, knowledge of these differences stems mainly from the Palearctic-African and Nearctic-Neotropical flyways, while detailed information about the phenology of migrant birds from the East Asian flyway is far scarcer. To help fill parts of this gap, we analyzed how migration distance, sex, age, and molt strategy affect the spring and autumn phenologies of 36 migrant songbirds (altogether 18,427 individuals) at a stopover site in the Russian Far East. Sex-differential migration was more pronounced in spring than in autumn, with half of the studied species (6 out of 12) showing a protandrous migration pattern. Age-differences in migration were rare in spring but found in nearly half of the studied species (11 out of 25) in autumn. These age effects were associated with the birds’ molt strategy and the mean latitudinal distances from the assumed breeding area to the study site. Adults performing a complete molt before the onset of autumn migration passed the study site later than first-year birds undergoing only a partial molt. This pattern, however, reversed with increasing migration distance to the study site. These sex-, age-, and molt-specific migration patterns agree with those found along other flyways and seem to be common features of land bird migration strategies.
Significance statement
The timing of animal migration is shaped by the availability of resources and the organization of annual cycles. In migrant birds, sex- and age-differential migration is a common phenomenon. For the rarely studied East Asian flyway, we show for the first time and based on a large set of migrant songbirds that earlier migration of males is a common pattern there in spring. Further, the timing and extent of molt explained age-differential migration during autumn. Adults molting their complete plumage at the breeding area before migration showed delayed phenology in comparison to first-year birds, which perform only a partial molt. This pattern, however, reversed with increasing migration distance to the study site. Since our results agree with the general patterns from the other migration flyways, similar drivers for differential migration may act across different flyway systems, provoking a similar evolutionary response.
Collapse
|
16
|
Dorian NN, Lloyd-Evans TL, Reed JM. Non-parallel changes in songbird migration timing are not explained by changes in stopover duration. PeerJ 2020; 8:e8975. [PMID: 32477833 PMCID: PMC7243817 DOI: 10.7717/peerj.8975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 03/24/2020] [Indexed: 11/20/2022] Open
Abstract
Shifts in the timing of animal migration are widespread and well-documented; however, the mechanism underlying these changes is largely unknown. In this study, we test the hypothesis that systematic changes in stopover duration—the time that individuals spend resting and refueling at a site—are driving shifts in songbird migration timing. Specifically, we predicted that increases in stopover duration at our study site could generate increases in passage duration—the number of days that a study site is occupied by a particular species—by changing the temporal breadth of observations and vise versa. We analyzed an uninterrupted 46-year bird banding dataset from Massachusetts, USA using quantile regression, which allowed us to detect changes in early-and late-arriving birds, as well as changes in passage duration. We found that median spring migration had advanced by 1.04 days per decade; that these advances had strengthened over the last 13 years; and that early-and late-arriving birds were advancing in parallel, leading to negligible changes in the duration of spring passage at our site (+0.07 days per decade). In contrast, changes in fall migration were less consistent. Across species, we found that median fall migration had delayed by 0.80 days per decade, and that changes were stronger in late-arriving birds, leading to an average increase in passage duration of 0.45 days per decade. Trends in stopover duration, however, were weak and negative and, as a result, could not explain any changes in passage duration. We discuss, and provide some evidence, that changes in population age-structure, cryptic geographic variation, or shifts in resource availability are consistent with increases in fall passage duration. Moreover, we demonstrate the importance of evaluating changes across the entire phenological distribution, rather than just the mean, and stress this as an important consideration for future studies.
Collapse
Affiliation(s)
| | | | - J Michael Reed
- Department of Biology, Tufts University, Medford, MA, USA
| |
Collapse
|
17
|
Morbey YE, Hedenström A. Leave Earlier or Travel Faster? Optimal Mechanisms for Managing Arrival Time in Migratory Songbirds. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2019.00492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|