1
|
Wu MC, Chang YY, Lan MY, Chen YF, Tai CH, Chen SJ, Lin CH. Blood neurofilament light chain as a surrogate marker for dystonia. Eur J Neurol 2023; 30:3098-3104. [PMID: 37422850 DOI: 10.1111/ene.15972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/15/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND AND PURPOSE Dystonia is a heterogeneous movement disorder, and it remains unclear whether neurodegeneration is involved. Neurofilament light chain (NfL) is a biosignature of neurodegeneration. We aimed to investigate whether plasma NfL levels were elevated and associated with disease severity in patients with dystonia. METHOD We enrolled 231 unrelated dystonia patients (isolated dystonia n = 203; combined dystonia n = 28) and 54 healthy controls from movement disorder clinics. Clinical severity was evaluated using the Fahn Marsden Dystonia Rating Scale, the Unified Dystonia Rating Scale, and the Global Dystonia Rating Scale. Blood NfL levels were measured by single-molecule array. RESULTS Plasma NfL levels were significantly higher in those with generalized dystonia compared to those with focal dystonia (20.1 ± 8.8 vs. 11.7 ± 7.2 pg/mL; p = 0.01) or controls (p < 0.01), while the level was comparable between the focal dystonia group and controls (p = 0.08). Furthermore, the dystonia combined with parkinsonism group had higher NfL levels than the isolated dystonia group (17.4 ± 6.2 vs. 13.5 ± 7.5 pg/mL; p = 0.04). Notably, whole-exome sequencing was performed in 79 patients and two patients were identified as having likely pathogenic variants: one had a heterozygous c.122G>A (p.R41H) variant in THAP1 (DYT6) and the other carried a c.1825G>A (p.D609N) substitution in ATP1A3 (DYT12). No significant correlation was found between plasma NfL levels and dystonia rating scores. CONCLUSION Plasma NfL levels are elevated in patients with generalized dystonia and dystonia combined with parkinsonism, suggesting that neurodegeneration is involved in the disease process of this subgroup of patients.
Collapse
Affiliation(s)
- Meng-Chen Wu
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Geriatrics and Gerontology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yung-Yee Chang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Center for Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Min-Yu Lan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Center for Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Ying-Fa Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Center for Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chun-Hwei Tai
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Szu-Ju Chen
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
2
|
Su JH, Hu YW, Yang Y, Li RY, Teng F, Li LX, Jin LJ. Dystonia and the pedunculopontine nucleus: Current evidences and potential mechanisms. Front Neurol 2022; 13:1065163. [PMID: 36504662 PMCID: PMC9727297 DOI: 10.3389/fneur.2022.1065163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/08/2022] [Indexed: 11/24/2022] Open
Abstract
Being a major component of the midbrain locomotion region, the pedunculopontine nucleus (PPN) is known to have various connections with the basal ganglia, the cerebral cortex, thalamus, and motor regions of the brainstem and spinal cord. Functionally, the PPN is associated with muscle tone control and locomotion modulation, including motor initiation, rhythm and speed. In addition to its motor functions, the PPN also contribute to level of arousal, attention, memory and learning. Recent studies have revealed neuropathologic deficits in the PPN in both patients and animal models of dystonia, and deep brain stimulation of the PPN also showed alleviation of axial dystonia in patients of Parkinson's disease. These findings indicate that the PPN might play an important role in the development of dystonia. Moreover, with increasing preclinical evidences showed presence of dystonia-like behaviors, muscle tone changes, impaired cognitive functions and sleep following lesion or neuromodulation of the PPN, it is assumed that the pathological changes of the PPN might contribute to both motor and non-motor manifestations of dystonia. In this review, we aim to summarize the involvement of the PPN in dystonia based on the current preclinical and clinical evidences. Moreover, potential mechanisms for its contributions to the manifestation of dystonia is also discussed base on the dystonia-related basal ganglia-cerebello-thalamo-cortical circuit, providing fundamental insight into the targeting of the PPN for the treatment of dystonia in the future.
Collapse
Affiliation(s)
- Jun-hui Su
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China,Department of Neurology and Neurological Rehabilitation, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Yao-wen Hu
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yi Yang
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ruo-yu Li
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fei Teng
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Li-xi Li
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ling-jing Jin
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China,Department of Neurology and Neurological Rehabilitation, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China,*Correspondence: Ling-jing Jin
| |
Collapse
|
3
|
Tassone A, Martella G, Meringolo M, Vanni V, Sciamanna G, Ponterio G, Imbriani P, Bonsi P, Pisani A. Vesicular Acetylcholine Transporter Alters Cholinergic Tone and Synaptic Plasticity in DYT1 Dystonia. Mov Disord 2021; 36:2768-2779. [PMID: 34173686 PMCID: PMC9291835 DOI: 10.1002/mds.28698] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/18/2021] [Accepted: 06/07/2021] [Indexed: 11/17/2022] Open
Abstract
Background Acetylcholine‐mediated transmission plays a central role in the impairment of corticostriatal synaptic activity and plasticity in multiple DYT1 mouse models. However, the nature of such alteration remains unclear. Objective The aim of the present work was to characterize the mechanistic basis of cholinergic dysfunction in DYT1 dystonia to identify potential targets for pharmacological intervention. Methods We utilized electrophysiology recordings, immunohistochemistry, enzymatic activity assays, and Western blotting techniques to analyze in detail the cholinergic machinery in the dorsal striatum of the Tor1a+/− mouse model of DYT1 dystonia. Results We found a significant increase in the vesicular acetylcholine transporter (VAChT) protein level, the protein responsible for loading acetylcholine (ACh) from the cytosol into synaptic vesicles, which indicates an altered cholinergic tone. Accordingly, in Tor1a+/− mice we measured a robust elevation in basal ACh content coupled to a compensatory enhancement of acetylcholinesterase (AChE) enzymatic activity. Moreover, pharmacological activation of dopamine D2 receptors, which is expected to reduce ACh levels, caused an abnormal elevation in its content, as compared to controls. Patch‐clamp recordings revealed a reduced effect of AChE inhibitors on cholinergic interneuron excitability, whereas muscarinic autoreceptor function was preserved. Finally, we tested the hypothesis that blockade of VAChT could restore corticostriatal long‐term synaptic plasticity deficits. Vesamicol, a selective VAChT inhibitor, rescued a normal expression of synaptic plasticity. Conclusions Overall, our findings indicate that VAChT is a key player in the alterations of striatal plasticity and a novel target to normalize cholinergic dysfunction observed in DYT1 dystonia. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
Collapse
Affiliation(s)
- Annalisa Tassone
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giuseppina Martella
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Maria Meringolo
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Valentina Vanni
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giuseppe Sciamanna
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giulia Ponterio
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Paola Imbriani
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Paola Bonsi
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Antonio Pisani
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
4
|
Cascalho A, Foroozandeh J, Hennebel L, Swerts J, Klein C, Rous S, Dominguez Gonzalez B, Pisani A, Meringolo M, Gallego SF, Verstreken P, Seibler P, Goodchild RE. Excess Lipin enzyme activity contributes to TOR1A recessive disease and DYT-TOR1A dystonia. Brain 2021; 143:1746-1765. [PMID: 32516804 DOI: 10.1093/brain/awaa139] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 02/11/2020] [Accepted: 03/09/2020] [Indexed: 11/14/2022] Open
Abstract
TOR1A/TorsinA mutations cause two incurable diseases: a recessive congenital syndrome that can be lethal, and a dominantly-inherited childhood-onset dystonia (DYT-TOR1A). TorsinA has been linked to phosphatidic acid lipid metabolism in Drosophila melanogaster. Here we evaluate the role of phosphatidic acid phosphatase (PAP) enzymes in TOR1A diseases using induced pluripotent stem cell-derived neurons from patients, and mouse models of recessive Tor1a disease. We find that Lipin PAP enzyme activity is abnormally elevated in human DYT-TOR1A dystonia patient cells and in the brains of four different Tor1a mouse models. Its severity also correlated with the dosage of Tor1a/TOR1A mutation. We assessed the role of excess Lipin activity in the neurological dysfunction of Tor1a disease mouse models by interbreeding these with Lpin1 knock-out mice. Genetic reduction of Lpin1 improved the survival of recessive Tor1a disease-model mice, alongside suppressing neurodegeneration, motor dysfunction, and nuclear membrane pathology. These data establish that TOR1A disease mutations cause abnormal phosphatidic acid metabolism, and suggest that approaches that suppress Lipin PAP enzyme activity could be therapeutically useful for TOR1A diseases.
Collapse
Affiliation(s)
- Ana Cascalho
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium
| | - Joyce Foroozandeh
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium
| | - Lise Hennebel
- Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium
| | - Jef Swerts
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium.,Leuven Brain Institute, 3000 Leuven, Belgium
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Stef Rous
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium
| | - Beatriz Dominguez Gonzalez
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium
| | - Antonio Pisani
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia and Department of Systems Medicine, University Tor Vergata, Rome, Italy
| | - Maria Meringolo
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia and Department of Systems Medicine, University Tor Vergata, Rome, Italy
| | - Sandra F Gallego
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Patrik Verstreken
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium.,Leuven Brain Institute, 3000 Leuven, Belgium
| | - Philip Seibler
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Rose E Goodchild
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium.,Leuven Brain Institute, 3000 Leuven, Belgium
| |
Collapse
|
5
|
Sharma N. Neuropathology of Dystonia. TREMOR AND OTHER HYPERKINETIC MOVEMENTS (NEW YORK, N.Y.) 2019; 9:569. [PMID: 30886764 PMCID: PMC6420908 DOI: 10.7916/d8-j6sx-b156] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 01/28/2019] [Indexed: 12/30/2022]
Abstract
Background Dystonia is characterized by sustained or intermittent muscle contractions resulting in abnormal, often repetitive, movements, postures, or both. Neuropathologic research has been essential in understanding the etiology and disease progression of other movement disorders, including Parkinson’s disease and cerebellar ataxias. In the field of dystonia, however, research is stymied by the paucity of post-mortem tissue available and the phenotypic heterogeneity found in those with dystonia. Methods A PubMed search was conducted using the term “neuropathology of dystonia”. The resulting list of references was limited to English-language human neuropathology articles. A total of 20 publications were retrieved and reviewed. Results Historically, based on study of acquired forms of dystonia, lesions of the putamen and globus pallidus have been identified as causing dystonia. After the identification of genetic causes of dystonia and the study of limited tissue available from those cases, as well as findings from cases of isolated focal and segmental dystonia, there is evidence that brainstem cholinergic neurons and specific cell populations within the cerebellum also play a role in the pathophysiology of dystonia. Discussion Based on limited available brain tissue, there is evidence that the pathophysiology of dystonia may involve a combination of dysfunction within neurons of the brainstem, cerebellum, putamen, and globus pallidus. In order to gain a better understanding of the pathophysiology of dystonia, a prospective, quantitative study in well-phenotyped subjects with different types of genetic and isolated dystonia is required.
Collapse
Affiliation(s)
- Nutan Sharma
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, US.,Yale University, USA
| |
Collapse
|
6
|
Pappas SS, Li J, LeWitt TM, Kim JK, Monani UR, Dauer WT. A cell autonomous torsinA requirement for cholinergic neuron survival and motor control. eLife 2018; 7:36691. [PMID: 30117805 PMCID: PMC6115190 DOI: 10.7554/elife.36691] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 08/16/2018] [Indexed: 12/14/2022] Open
Abstract
Cholinergic dysfunction is strongly implicated in dystonia pathophysiology. Previously (Pappas et al., 2015;4:e08352), we reported that Dlx5/6-Cre mediated forebrain deletion of the DYT1 dystonia protein torsinA (Dlx-CKO) causes abnormal twisting and selective degeneration of dorsal striatal cholinergic interneurons (ChI) (Pappas et al., 2015). A central question raised by that work is whether the ChI loss is cell autonomous or requires torsinA loss from neurons synaptically connected to ChIs. Here, we addressed this question by using ChAT-Cre mice to conditionally delete torsinA from cholinergic neurons ('ChAT-CKO'). ChAT-CKO mice phenocopy the Dlx-CKO phenotype of selective dorsal striatal ChI loss and identify an essential requirement for torsinA in brainstem and spinal cholinergic neurons. ChAT-CKO mice are tremulous, weak, and exhibit trunk twisting and postural abnormalities. These findings are the first to demonstrate a cell autonomous requirement for torsinA in specific populations of cholinergic neurons, strengthening the connection between torsinA, cholinergic dysfunction and dystonia pathophysiology.
Collapse
Affiliation(s)
- Samuel S Pappas
- Department of Neurology, University of Michigan, Ann Arbor, United States
| | - Jay Li
- Department of Neurology, University of Michigan, Ann Arbor, United States.,Cell and Molecular Biology Program, University of Michigan, Ann Arbor, United States
| | - Tessa M LeWitt
- Department of Neurology, University of Michigan, Ann Arbor, United States
| | - Jeong-Ki Kim
- Department of Cell Biology, Columbia University Medical Center, New York, United States.,Center for Motor Neuron Biology and Disease, Columbia University Medical Center, New York, United States.,Department of Pathology, Columbia University Medical Center, New York, United States
| | - Umrao R Monani
- Department of Cell Biology, Columbia University Medical Center, New York, United States.,Center for Motor Neuron Biology and Disease, Columbia University Medical Center, New York, United States.,Department of Pathology, Columbia University Medical Center, New York, United States
| | - William T Dauer
- Department of Neurology, University of Michigan, Ann Arbor, United States.,Cell and Molecular Biology Program, University of Michigan, Ann Arbor, United States.,Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, United States
| |
Collapse
|
7
|
Mente K, Edwards NA, Urbano D, Ray-Chaudhury A, Iacono D, Di Lorenzo Alho AT, Lopes Alho EJ, Amaro E, Horovitz SG, Hallett M. Pedunculopontine Nucleus Cholinergic Deficiency in Cervical Dystonia. Mov Disord 2018; 33:827-834. [PMID: 29508906 PMCID: PMC7299544 DOI: 10.1002/mds.27358] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 01/23/2018] [Accepted: 01/24/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The etiology of cervical dystonia is unknown. Cholinergic abnormalities have been identified in dystonia animal models and human imaging studies. Some animal models have cholinergic neuronal loss in the striatum and increased acetylcholinesterase activity in the pedunculopontine nucleus. OBJECTIVES The objective of this study was to determine the presence of cholinergic abnormalities in the putamen and pedunculopontine nucleus in cervical dystonia human brain donors. METHODS Formalin-fixed brain tissues were obtained from 8 cervical dystonia and 7 age-matched control brains (controls). Pedunculopontine nucleus was available in only 6 cervical dystonia and 5 controls. Neurodegeneration was evaluated pathologically in the putamen, pedunculopontine nucleus, and other regions. Cholinergic neurons were detected using choline acetyltransferase immunohistochemistry in the putamen and pedunculopontine nucleus. Putaminal cholinergic neurons were quantified. A total of 6 cervical dystonia patients and 6 age-matched healthy controls underwent diffusion tensor imaging to determine if there were white matter microstructural abnormalities around the pedunculopontine nucleus. RESULTS Decreased or absent choline acetyltransferase staining was identified in all 6 pedunculopontine nucleus samples in cervical dystonia. In contrast, strong choline acetyltransferase staining was present in 4 of 5 pedunculopontine nucleus controls. There were no differences in pedunculopontine nucleus diffusion tensor imaging between cervical dystonia and healthy controls. There was no difference in numbers of putaminal cholinergic neurons between cervical dystonia and controls. CONCLUSIONS Our findings suggest that pedunculopontine nucleus choline acetyltransferase deficiency represents a functional cholinergic deficit in cervical dystonia. Structural lesions and confounding neurodegenerative processes were excluded by absence of neuronal loss, gliosis, diffusion tensor imaging abnormalities, and beta-amyloid, tau, and alpha-synuclein pathologies. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Karin Mente
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Nancy A. Edwards
- Neuropathology Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Demelio Urbano
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Charles R. Drew University of Medicine and Science, Los Angeles, CA, USA
| | - Abhik Ray-Chaudhury
- Neuropathology Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Diego Iacono
- Neuropathology Core and Brain Tissue Repository, Center for Neuroscience and Regenerative Medicine, Uniform Services University, Bethesda, MD, USA
- Departments of Neurology and Pathology, F. Edward Hébert School of Medicine, Uniformed, Services University, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Research, Bethesda, MD, USA
| | - Ana Tereza Di Lorenzo Alho
- Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, Brazil
- Department of Radiology, Faculdade de Medicina da Universidade de São Paulo, Instituto de Radiologia, São Paulo, Brazil
- Department of Pathology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Eduardo Joaquim Lopes Alho
- Department of Neurology, Faculdade de Medicina da Universidade de São Paulo, Divisão de Neurocirurgia Funcional do Instituto de Psiquiatria-HCFMUSP, São Paulo, Brazil
| | - Edson Amaro
- Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, Brazil
- Department of Radiology, Faculdade de Medicina da Universidade de São Paulo, Instituto de Radiologia, São Paulo, Brazil
| | - Silvina G. Horovitz
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
8
|
Cascalho A, Jacquemyn J, Goodchild RE. Membrane defects and genetic redundancy: Are we at a turning point for DYT1 dystonia? Mov Disord 2016; 32:371-381. [PMID: 27911022 DOI: 10.1002/mds.26880] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/24/2016] [Accepted: 10/29/2016] [Indexed: 12/11/2022] Open
Abstract
Heterozygosity for a 3-base pair deletion (ΔGAG) in TOR1A/torsinA is one of the most common causes of hereditary dystonia. In this review, we highlight current understanding of how this mutation causes disease from research spanning structural biochemistry, cell science, neurobiology, and several model organisms. We now know that homozygosity for ΔGAG has the same effects as Tor1aKO , implicating a partial loss of function mechanism in the ΔGAG/+ disease state. In addition, torsinA loss specifically affects neurons in mice, even though the gene is broadly expressed, apparently because of differential expression of homologous torsinB. Furthermore, certain neuronal subtypes are more severely affected by torsinA loss. Interestingly, these include striatal cholinergic interneurons that display abnormal responses to dopamine in several Tor1a animal models. There is also progress on understanding torsinA molecular cell biology. The structural basis of how ΔGAG inhibits torsinA ATPase activity is defined, although mutant torsinAΔGAG protein also displays some characteristics suggesting it contributes to dystonia by a gain-of-function mechanism. Furthermore, a consistent relationship is emerging between torsin dysfunction and membrane biology, including an evolutionarily conserved regulation of lipid metabolism. Considered together, these findings provide major advances toward understanding the molecular, cellular, and neurobiological pathologies of DYT1/TOR1A dystonia that can hopefully be exploited for new approaches to treat this disease. © 2016 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Ana Cascalho
- Vlaams Instituut voor Biotechnologie Centre for the Biology of Disease, Leuven, Belgium.,KU Leuven, Department of Human Genetics, Leuven, Belgium
| | - Julie Jacquemyn
- Vlaams Instituut voor Biotechnologie Centre for the Biology of Disease, Leuven, Belgium.,KU Leuven, Department of Human Genetics, Leuven, Belgium
| | - Rose E Goodchild
- Vlaams Instituut voor Biotechnologie Centre for the Biology of Disease, Leuven, Belgium.,KU Leuven, Department of Human Genetics, Leuven, Belgium
| |
Collapse
|