1
|
Kallunki P, Sotty F, Willén K, Lubas M, David L, Ambjørn M, Bergström AL, Buur L, Malik I, Nyegaard S, Eriksen TT, Krogh BO, Stavenhagen JB, Andersen KJ, Pedersen LØ, Cholak E, van den Brink EN, Rademaker R, Vink T, Satijn D, Parren PWHI, Christensen S, Olsen LR, Søderberg JN, Vergo S, Jensen A, Egebjerg J, Wulff-Larsen PG, Harndahl MN, Damlund DSM, Bjerregaard-Andersen K, Fog K. Rational selection of the monoclonal α-synuclein antibody amlenetug (Lu AF82422) for the treatment of α-synucleinopathies. NPJ Parkinsons Dis 2025; 11:132. [PMID: 40404755 PMCID: PMC12098740 DOI: 10.1038/s41531-024-00849-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 11/28/2024] [Indexed: 05/24/2025] Open
Abstract
Amlenetug (Lu AF82422) is a human monoclonal antibody targeting α-synuclein in clinical development for multiple system atrophy. We describe a series of studies that characterize its functional properties and supported its selection as a viable clinical candidate. Amlenetug inhibits seeding induced in mouse primary neurons by various α-synuclein fibrillar assemblies and by aggregates isolated from MSA brain homogenate. In vivo, both co-injection of amlenetug with α-synuclein assemblies in mouse brain and peripheral administration inhibit α-synuclein seeding. Amlenetug inhibits uptake of α-synuclein seeds as well as accumulation of C-terminal truncated α-synuclein seeds and demonstrates binding to monomeric, aggregated, and truncated forms of human α-synuclein. The epitope of amlenetug was mapped to amino acids 112-117 and further characterized by crystallographic structure analysis. Based on our data, we hypothesize that targeting α-synuclein will potentially slow further disease progression by inhibiting further pathology development but be without impact on established pathology and symptoms.
Collapse
Affiliation(s)
- Pekka Kallunki
- H. Lundbeck A/S, Research, Ottiliavej 9, 2500, Valby, Denmark.
| | - Florence Sotty
- H. Lundbeck A/S, Research, Ottiliavej 9, 2500, Valby, Denmark
| | - Katarina Willén
- H. Lundbeck A/S, Research, Ottiliavej 9, 2500, Valby, Denmark
| | - Michal Lubas
- H. Lundbeck A/S, Research, Ottiliavej 9, 2500, Valby, Denmark
| | - Laurent David
- H. Lundbeck A/S, Research, Ottiliavej 9, 2500, Valby, Denmark
| | - Malene Ambjørn
- H. Lundbeck A/S, Research, Ottiliavej 9, 2500, Valby, Denmark
| | | | - Louise Buur
- H. Lundbeck A/S, Research, Ottiliavej 9, 2500, Valby, Denmark
| | - Ibrahim Malik
- H. Lundbeck A/S, Research, Ottiliavej 9, 2500, Valby, Denmark
| | | | | | - Berit O Krogh
- H. Lundbeck A/S, Research, Ottiliavej 9, 2500, Valby, Denmark
| | | | | | - Lars Ø Pedersen
- H. Lundbeck A/S, Research, Ottiliavej 9, 2500, Valby, Denmark
| | - Ersoy Cholak
- H. Lundbeck A/S, Research, Ottiliavej 9, 2500, Valby, Denmark
| | | | - Rik Rademaker
- Genmab, Uppsalalaan 15, 3584 CT, Utrecht, The Netherlands
| | - Tom Vink
- Genmab, Uppsalalaan 15, 3584 CT, Utrecht, The Netherlands
| | - David Satijn
- Genmab, Uppsalalaan 15, 3584 CT, Utrecht, The Netherlands
| | | | | | - Line R Olsen
- H. Lundbeck A/S, Research, Ottiliavej 9, 2500, Valby, Denmark
| | | | - Sandra Vergo
- H. Lundbeck A/S, Research, Ottiliavej 9, 2500, Valby, Denmark
| | - Allan Jensen
- H. Lundbeck A/S, Research, Ottiliavej 9, 2500, Valby, Denmark
| | - Jan Egebjerg
- H. Lundbeck A/S, Research, Ottiliavej 9, 2500, Valby, Denmark
| | | | | | | | | | - Karina Fog
- H. Lundbeck A/S, Research, Ottiliavej 9, 2500, Valby, Denmark
| |
Collapse
|
2
|
Qi C, Lövestam S, Murzin AG, Peak-Chew S, Franco C, Bogdani M, Latimer C, Murrell JR, Cullinane PW, Jaunmuktane Z, Bird TD, Ghetti B, Scheres SHW, Goedert M. Tau filaments with the Alzheimer fold in human MAPT mutants V337M and R406W. Nat Struct Mol Biol 2025:10.1038/s41594-025-01498-5. [PMID: 40044789 DOI: 10.1038/s41594-025-01498-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 01/23/2025] [Indexed: 03/12/2025]
Abstract
Frontotemporal dementia (FTD) and Alzheimer's disease (AD) are the most common forms of early-onset dementia. Unlike AD, FTD begins with behavioral changes before the development of cognitive impairment. Dominantly inherited mutations in MAPT, the microtubule-associated protein tau gene, give rise to cases of FTD and parkinsonism linked to chromosome 17. These individuals develop abundant filamentous tau inclusions in brain cells in the absence of β-amyloid deposits. Here, we used cryo-electron microscopy to determine the structures of tau filaments from the brains of human MAPT mutants V337M and R406W. Both amino acid substitutions gave rise to tau filaments with the Alzheimer fold, which consisted of paired helical filaments in all V337M and R406W cases and of straight filaments in two V337M cases. We also identified another assembly of the Alzheimer fold into triple tau filaments in a V337M case. Filaments assembled from recombinant tau (297-391) with substitution V337M had the Alzheimer fold and showed an increased rate of assembly.
Collapse
Affiliation(s)
- Chao Qi
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | | | | | | - Marika Bogdani
- Departments of Neurology and Pathology, University of Washington, Seattle, WA, USA
- Veterans Administration Puget Sound Health Care System, Seattle, WA, USA
| | - Caitlin Latimer
- Departments of Neurology and Pathology, University of Washington, Seattle, WA, USA
- Veterans Administration Puget Sound Health Care System, Seattle, WA, USA
| | - Jill R Murrell
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pathology and Laboratory Medicine, Children's Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Patrick W Cullinane
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College, London, UK
- Queen Square Brain Bank for Neurological Disorders, Institute of Neurology, University College, London, UK
| | - Zane Jaunmuktane
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College, London, UK
- Queen Square Brain Bank for Neurological Disorders, Institute of Neurology, University College, London, UK
| | - Thomas D Bird
- Departments of Neurology and Pathology, University of Washington, Seattle, WA, USA
- Veterans Administration Puget Sound Health Care System, Seattle, WA, USA
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | |
Collapse
|
3
|
Heras-Garvin A, Fellner L, Granata R, Wenning GK, Stefanova N. Transcriptional dysregulation in the cerebellum triggered by oligodendroglial α-synucleinopathy: insights from a transgenic mouse into the early disease mechanisms of MSA. J Neural Transm (Vienna) 2025:10.1007/s00702-025-02892-5. [PMID: 39954078 DOI: 10.1007/s00702-025-02892-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 02/03/2025] [Indexed: 02/17/2025]
Abstract
Multiple system atrophy (MSA) is a fatal neurodegenerative disorder characterized by abnormal accumulation of α-synuclein, progressive neuronal loss, motor impairment and widespread pathological changes, which include significant involvement of the cerebellum. To understand the early molecular mechanisms that might underlie α-synuclein-triggered MSA cerebellar pathology, we performed RNA sequencing (RNA-Seq) of cerebellar samples from a well-established model of MSA. RNA-Seq and differential gene expression analysis was conducted in the PLP-αSyn model of MSA. Cerebellum from two and 12-month-old MSA and wildtype mice were used. Gene ontology (GO) and KEGG enrichment analyses of the differentially expressed genes (DEGs) were performed to explore processes involved in MSA-like disease progression. The overlap between transcriptional changes in MSA and those associated with aging was also evaluated. RNA-Seq analysis demonstrated significant transcriptional dysregulation in cerebellum from MSA mice, even at early stages. GO and KEGG analyses of DEGs point to a potential role of synaptic dysfunction, cellular signaling dysregulation and inflammation in the cerebellar pathology of MSA mice. In addition, those changes exacerbate with disease progression. Additionally, our analysis of aging in both control and PLP-αSyn mice showed that age-related transcriptional changes in mid-aged controls seem to be present in young MSA mice. Thus, MSA-like pathology might lead to an acceleration of aging-related mechanisms. Our findings demonstrate significant cerebellar transcriptional dysregulation triggered by oligodendroglial α-synucleinopathy in PLP-αSyn mice, revealing pathways that might be critical for the early cerebellar pathology of MSA, and that may serve as potential molecular targets for therapeutic interventions in this devastating disorder.
Collapse
Affiliation(s)
- Antonio Heras-Garvin
- Laboratory for Translational Neurodegeneration Research, Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innrain 66, 3rd floor, Innsbruck, 6020, Austria.
| | - Lisa Fellner
- Laboratory for Translational Neurodegeneration Research, Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innrain 66, 3rd floor, Innsbruck, 6020, Austria
| | - Roberta Granata
- Laboratory for Translational Neurodegeneration Research, Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innrain 66, 3rd floor, Innsbruck, 6020, Austria
| | - Gregor K Wenning
- Laboratory for Translational Neurodegeneration Research, Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innrain 66, 3rd floor, Innsbruck, 6020, Austria
| | - Nadia Stefanova
- Laboratory for Translational Neurodegeneration Research, Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innrain 66, 3rd floor, Innsbruck, 6020, Austria.
| |
Collapse
|
4
|
Robinson EC, Gorecki AM, Pesce SR, Bagda V, Anderton RS, Meloni BP. Novel Poly-Arginine Peptide R18D Reduces α-Synuclein Aggregation and Uptake of α-Synuclein Seeds in Cortical Neurons. Biomedicines 2025; 13:122. [PMID: 39857706 PMCID: PMC11763338 DOI: 10.3390/biomedicines13010122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES The role of α-synuclein (α-syn) pathology in Parkinson's disease (PD) is well established; however, effective therapies remain elusive. Two mechanisms central to PD neurodegeneration are the intracellular aggregation of misfolded α-syn and the uptake of α-syn aggregates into neurons. Cationic arginine-rich peptides (CARPs) are an emerging class of molecule with multiple neuroprotective mechanisms of action, including protein stabilisation. This study characterised both intracellular α-syn aggregation and α-syn uptake in cortical neurons in vitro. Thereafter, this study examined the therapeutic potential of the neuroprotective CARP, R18D (18-mer of D-arginine), to prevent the aforementioned PD pathogenic processes through a cell-free thioflavin-T (ThT) assay and in cortical neurons. METHODS To induce intracellular α-syn aggregation, rat primary cortical neurons were exposed to α-syn seed (0.14 μM) for 2 h to allow uptake of the protein, followed by R18D treatment (0.0625, 0.125, 0.25, 0.5 μM), and a subsequent measurement of α-syn aggregates 48 h later using a homogenous time-resolved fluorescence (HTRF) assay. To assess neuronal uptake, α-syn seeds were covalently labelled with an Alexa-Fluor 488 fluorescent tag, pre-incubated with R18D (0.125, 0.25, 0.5 μM), and then exposed to cortical neurons for 24 h and assessed via confocal microscopy. RESULTS It was demonstrated that R18D significantly reduced both intracellular α-syn aggregation and α-syn seed uptake in neurons by 37.8% and 77.7%, respectively. Also, R18D reduced the aggregation of α-syn monomers in the cell-free assay. CONCLUSIONS These findings highlight the therapeutic potential of R18D to inhibit key α-syn pathological processes and PD progression.
Collapse
Affiliation(s)
- Emma C. Robinson
- Perron Institute for Neurological and Translational Science, Nedlands 6009, Australia; (E.C.R.); (V.B.)
- School of Health Sciences, University of Notre Dame, Fremantle 6106, Australia; (A.M.G.); (R.S.A.)
| | - Anastazja M. Gorecki
- School of Health Sciences, University of Notre Dame, Fremantle 6106, Australia; (A.M.G.); (R.S.A.)
- Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Australia
| | - Samuel R. Pesce
- Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands 6009, Australia;
| | - Vaishali Bagda
- Perron Institute for Neurological and Translational Science, Nedlands 6009, Australia; (E.C.R.); (V.B.)
| | - Ryan S. Anderton
- School of Health Sciences, University of Notre Dame, Fremantle 6106, Australia; (A.M.G.); (R.S.A.)
| | - Bruno P. Meloni
- Perron Institute for Neurological and Translational Science, Nedlands 6009, Australia; (E.C.R.); (V.B.)
- Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands 6009, Australia;
- Department of Neurosurgery, Sir Charles Gairdner Hospital, Nedlands 6009, Australia
| |
Collapse
|
5
|
Verdurand M, Kaczorowski F, Dautricourt S, Desestret V, Formaglio M, Mollion H, Petitnicolas G, Afifi A, Fourier A, Garnier‐Crussard A, Quadrio I. Toward alpha-synuclein seed amplification assay in clinical practice. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2025; 17:e70066. [PMID: 39822296 PMCID: PMC11736632 DOI: 10.1002/dad2.70066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/15/2024] [Accepted: 12/10/2024] [Indexed: 01/19/2025]
Abstract
INTRODUCTION Seed amplification assays (SAAs) demonstrate remarkable diagnostic performance in alpha-synucleinopathies. However, existing protocols lack accessibility in routine laboratories, mainly due to the requirement for in-house production of recombinant alpha-synuclein (aSyn). This study proposes a cerebrospinal fluid (CSF) aSyn-SAA protocol using solely commercial reagents to facilitate its clinical implementation. METHODS Routine clinical care CSF samples from 126 patients, comprising 47 with Lewy body diseases (LBD) (41 with dementia with Lewy bodies, six with Parkinson's disease), 37 without alpha-synucleinopathy, and 42 with Alzheimer's disease (AD), underwent assessment for aSyn-SAA activity. RESULTS CSF aSyn-SAA showed a sensitivity of 72.3% and a specificity of 100% when distinguishing clinically diagnosed LBD patients from those without alpha-synucleinopathy. In AD patients, 14.3% were tested positive for aSyn. DISCUSSION The commercial-only CSF aSyn-SAA protocol exhibited excellent specificity when applied to a real-life cohort, signaling progress toward the accessibility of an aSyn biomarker in clinical settings. Highlights Diagnosis of LBD through aSyn-SAA lacks accessibility.This commercial-only aSyn-SAA has satisfactory performance in a real-life cohort.A negative aSyn-SAA does not completely exclude a synucleinopathy.Some technical points must be considered when developing aSyn-SAA.aSyn-SAA must be confined to expert laboratories due to prion-like risk management.
Collapse
Affiliation(s)
- Mathieu Verdurand
- Biochemistry and Molecular Biology DepartmentNeurodegenerative PathologiesLBMMSHospices Civils de LyonLyonFrance
- Lyon Memory Resources and Research CenterHospices Civils de LyonLyonFrance
- BIORAN TeamLyon Neurosciences Research CenterCNRS UMR 5292INSERM U1028LyonFrance
| | - Flora Kaczorowski
- Biochemistry and Molecular Biology DepartmentNeurodegenerative PathologiesLBMMSHospices Civils de LyonLyonFrance
- Lyon Memory Resources and Research CenterHospices Civils de LyonLyonFrance
- BIORAN TeamLyon Neurosciences Research CenterCNRS UMR 5292INSERM U1028LyonFrance
| | - Sophie Dautricourt
- Lyon Memory Resources and Research CenterHospices Civils de LyonLyonFrance
- Lyon Institute For AgingCharpennes HospitalHospices Civils de LyonLyonFrance
- Normandie UnivUNICAEN, INSERM, U1237, PhIND “Physiopathology and Imaging of Neurological Disorders”, Neuropresage Team, CyceronCaenFrance
| | - Virginie Desestret
- Lyon Memory Resources and Research CenterHospices Civils de LyonLyonFrance
- Neuro‐cognition and neuro‐ophthalmology departmentHôpital Pierre WertheimerHospices Civils de LyonLyonFrance
- Reference center for autoimmune encephalitisInstitut NeuromyogèneHospices Civils de LyonInstitut MeLiS INSERM U1314 / UMR CNRS 5284LyonFrance
| | - Maïté Formaglio
- Lyon Memory Resources and Research CenterHospices Civils de LyonLyonFrance
- BIORAN TeamLyon Neurosciences Research CenterCNRS UMR 5292INSERM U1028LyonFrance
- Neuro‐cognition and neuro‐ophthalmology departmentHôpital Pierre WertheimerHospices Civils de LyonLyonFrance
| | - Hélène Mollion
- Lyon Memory Resources and Research CenterHospices Civils de LyonLyonFrance
- Neuro‐cognition and neuro‐ophthalmology departmentHôpital Pierre WertheimerHospices Civils de LyonLyonFrance
- Neuropsychology departmentHôpital Pierre WertheimerHospices Civils de LyonLyonFrance
| | - Gil Petitnicolas
- Toulon Memory ClinicHôpital Sainte MusseToulon‐La Seyne Sur MerFrance
| | - Ali Afifi
- Mâcon Memory ClinicHôpital de MâconMâconFrance
| | - Anthony Fourier
- Biochemistry and Molecular Biology DepartmentNeurodegenerative PathologiesLBMMSHospices Civils de LyonLyonFrance
- Lyon Memory Resources and Research CenterHospices Civils de LyonLyonFrance
- BIORAN TeamLyon Neurosciences Research CenterCNRS UMR 5292INSERM U1028LyonFrance
| | - Antoine Garnier‐Crussard
- Lyon Memory Resources and Research CenterHospices Civils de LyonLyonFrance
- Lyon Institute For AgingCharpennes HospitalHospices Civils de LyonLyonFrance
- Normandie UnivUNICAEN, INSERM, U1237, PhIND “Physiopathology and Imaging of Neurological Disorders”, Neuropresage Team, CyceronCaenFrance
| | - Isabelle Quadrio
- Biochemistry and Molecular Biology DepartmentNeurodegenerative PathologiesLBMMSHospices Civils de LyonLyonFrance
- Lyon Memory Resources and Research CenterHospices Civils de LyonLyonFrance
- BIORAN TeamLyon Neurosciences Research CenterCNRS UMR 5292INSERM U1028LyonFrance
| |
Collapse
|
6
|
Saturnino Guarino D, Miranda Azpiazu P, Sunnemark D, Elmore CS, Bergare J, Artelsmair M, Nordvall G, Forsberg Morén A, Jia Z, Cortes-Gonzalez M, Mach RH, Wilcox KC, Finnema S, Schou M, Varrone A. Identification and In Vitro and In Vivo Characterization of KAC-50.1 as a Potential α-Synuclein PET Radioligand. ACS Chem Neurosci 2024; 15:4210-4219. [PMID: 39528351 PMCID: PMC11587505 DOI: 10.1021/acschemneuro.4c00493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/02/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
The accumulation of aggregated α-synuclein (α-syn) is a pathological hallmark of Parkinson's disease (PD) and other synucleinopathies. Here within, we report the in vitro characterization targeting site 2 of α-syn fibrils and in vivo evaluation of NHPs of KAC-50.1 as a potential α-syn positron emission tomography (PET) radioligand. Preclinical studies were performed using a multidimensional approach of post-mortem brain imaging techniques, radioligand binding, and biochemical studies. These experiments were followed by PET imaging in cynomolgus monkeys using [11C]KAC-50.1. [3H]KAC-50.1 displayed a KD of 35 nM toward site 2 in recombinant α-syn fibrils. Specific binding of [3H]KAC-50.1 was observed in brain tissues with abundant α-syn pathology but also in AD, PSP, and CBD cases, indicating binding to amyloid β (Aβ) and tau pathology. PET studies showed a rapid entrance of [11C]KAC-50.1 into the brain and relatively rapid washout from cortical brain regions, with slower washout in subcortical regions. [3H]KAC-50.1 is a ligand that binds to fibrillar α-syn but shows limited selectivity for α-syn versus Aβ and tau fibrils. PET studies in NHPs indicate that [11C]KAC-50.1, despite reversible kinetic properties, displays retention in white matter. Altogether, the in vitro and in vivo properties do not support further development of [11C]KAC-50.1 as a PET imaging agent.
Collapse
Affiliation(s)
- Dinahlee Saturnino Guarino
- Department
of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Patricia Miranda Azpiazu
- Department
of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm Health Care Services, BioClinicum, Floor 4, Akademiska
Stråket 1, 17174 Solna, Sweden
| | - Dan Sunnemark
- Offspring
Biosciences, Sweden AB, SE-151 36 Södertälje, Sweden
- Applied
Immunology, Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Charles S. Elmore
- Isotope
Chemistry, Drug Safety and Metabolism, AstraZeneca, Pepparedsleden 1, SE-431 83 Mölndal, Sweden
| | - Jonas Bergare
- Isotope
Chemistry, Drug Safety and Metabolism, AstraZeneca, Pepparedsleden 1, SE-431 83 Mölndal, Sweden
| | - Markus Artelsmair
- Isotope
Chemistry, Drug Safety and Metabolism, AstraZeneca, Pepparedsleden 1, SE-431 83 Mölndal, Sweden
| | - Gunnar Nordvall
- AlzeCure
Pharma AB, Hälsovägen
7, SE-141 57 Huddinge, Sweden
| | - Anton Forsberg Morén
- Department
of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm Health Care Services, BioClinicum, Floor 4, Akademiska
Stråket 1, 17174 Solna, Sweden
| | - Zhisheng Jia
- Department
of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm Health Care Services, BioClinicum, Floor 4, Akademiska
Stråket 1, 17174 Solna, Sweden
| | - Miguel Cortes-Gonzalez
- Department
of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm Health Care Services, BioClinicum, Floor 4, Akademiska
Stråket 1, 17174 Solna, Sweden
| | - Robert H. Mach
- Department
of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Kyle C. Wilcox
- AbbVie
Inc, 1 N Waukegan Road, North Chicago, Illinois 60064, United States
| | - Sjoerd Finnema
- AbbVie
Inc, 1 N Waukegan Road, North Chicago, Illinois 60064, United States
| | - Magnus Schou
- AstraZeneca,
Precision Medicine Diagnostic Development and HBS Science, AstraZeneca
R&DRINGGOLD Oncology, KI-RCF PET, J2:30, BioClinicum, Visionsgatan
4, SE-17164 Solna, Sweden
| | - Andrea Varrone
- Department
of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm Health Care Services, BioClinicum, Floor 4, Akademiska
Stråket 1, 17174 Solna, Sweden
| |
Collapse
|
7
|
Kaji S, Berghoff SA, Spieth L, Schlaphoff L, Sasmita AO, Vitale S, Büschgens L, Kedia S, Zirngibl M, Nazarenko T, Damkou A, Hosang L, Depp C, Kamp F, Scholz P, Ewers D, Giera M, Ischebeck T, Wurst W, Wefers B, Schifferer M, Willem M, Nave KA, Haass C, Arzberger T, Jäkel S, Wirths O, Saher G, Simons M. Apolipoprotein E aggregation in microglia initiates Alzheimer's disease pathology by seeding β-amyloidosis. Immunity 2024; 57:2651-2668.e12. [PMID: 39419029 DOI: 10.1016/j.immuni.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 02/09/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024]
Abstract
The seeded growth of pathogenic protein aggregates underlies the pathogenesis of Alzheimer's disease (AD), but how this pathological cascade is initiated is not fully understood. Sporadic AD is linked genetically to apolipoprotein E (APOE) and other genes expressed in microglia related to immune, lipid, and endocytic functions. We generated a transgenic knockin mouse expressing HaloTag-tagged APOE and optimized experimental protocols for the biochemical purification of APOE, which enabled us to identify fibrillary aggregates of APOE in mice with amyloid-β (Aβ) amyloidosis and in human AD brain autopsies. These APOE aggregates that stained positive for β sheet-binding dyes triggered Aβ amyloidosis within the endo-lysosomal system of microglia, in a process influenced by microglial lipid metabolism and the JAK/STAT signaling pathway. Taking these observations together, we propose a model for the onset of Aβ amyloidosis in AD, suggesting that the endocytic uptake and aggregation of APOE by microglia can initiate Aβ plaque formation.
Collapse
Affiliation(s)
- Seiji Kaji
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Stefan A Berghoff
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
| | - Lena Spieth
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Lennart Schlaphoff
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Andrew O Sasmita
- Max Planck Insitute for Multidisciplinary Sciences, Göttingen, Germany
| | - Simona Vitale
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Luca Büschgens
- Department of Psychiatry and Psychotherapy, University Medical Center (UMG), Georg-August-University, Göttingen, Germany
| | - Shreeya Kedia
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Martin Zirngibl
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Taisiia Nazarenko
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Alkmini Damkou
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Leon Hosang
- Institute for Neuroimmunology and Multiple Sclerosis Research, Göttingen, Germany
| | - Constanze Depp
- Max Planck Insitute for Multidisciplinary Sciences, Göttingen, Germany
| | - Frits Kamp
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Patricia Scholz
- Department of Plant Biochemistry, University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
| | - David Ewers
- Max Planck Insitute for Multidisciplinary Sciences, Göttingen, Germany
| | - Martin Giera
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Albinusdreef 2, 2333ZA Leiden, the Netherlands
| | - Till Ischebeck
- Department of Plant Biochemistry, University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, University of Göttingen, Göttingen, Germany; Institute of Plant Biology and Biotechnology (IBBP), Green Biotechnology, University of Münster, Münster, Germany
| | - Wolfgang Wurst
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics, Neuherberg, Germany
| | - Benedikt Wefers
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics, Neuherberg, Germany
| | - Martina Schifferer
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Michael Willem
- Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Klaus-Armin Nave
- Max Planck Insitute for Multidisciplinary Sciences, Göttingen, Germany
| | - Christian Haass
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians University of Munich, Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Thomas Arzberger
- Center for Neuropathology and Prion Research, Ludwig-Maximilians University of Munich, Munich, Germany; Department of Psychiatry and Psychotherapy, Ludwig-Maximilians University Hospital, Munich, Germany
| | - Sarah Jäkel
- Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Oliver Wirths
- Department of Psychiatry and Psychotherapy, University Medical Center (UMG), Georg-August-University, Göttingen, Germany
| | - Gesine Saher
- Max Planck Insitute for Multidisciplinary Sciences, Göttingen, Germany
| | - Mikael Simons
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), Munich, Germany; Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany.
| |
Collapse
|
8
|
Ghetti B, Schweighauser M, Jacobsen MH, Gray D, Bacioglu M, Murzin AG, Glazier BS, Katsinelos T, Vidal R, Newell KL, Gao S, Garringer HJ, Spillantini MG, Scheres SHW, Goedert M. TMEM106B amyloid filaments in the Biondi bodies of ependymal cells. Acta Neuropathol 2024; 148:60. [PMID: 39503754 PMCID: PMC11541264 DOI: 10.1007/s00401-024-02807-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/11/2024] [Accepted: 09/15/2024] [Indexed: 11/09/2024]
Abstract
Biondi bodies are filamentous amyloid inclusions of unknown composition in ependymal cells of the choroid plexuses, ependymal cells lining cerebral ventricles and ependymal cells of the central canal of the spinal cord. Their formation is age-dependent and they are commonly associated with a variety of neurodegenerative conditions, including Alzheimer's disease and Lewy body disorders. Here, we show that Biondi bodies are strongly immunoreactive with TMEM239, an antibody specific for inclusions of transmembrane protein 106B (TMEM106B). Biondi bodies were labelled by both this antibody and the amyloid dye pFTAA. Many Biondi bodies were also labelled for TMEM106B and the lysosomal markers Hexosaminidase A and Cathepsin D. By transmission immuno-electron microscopy, Biondi bodies of choroid plexuses were decorated by TMEM239 and were associated with structures that resembled residual bodies or secondary lysosomes. By electron cryo-microscopy, TMEM106B filaments from Biondi bodies of choroid plexuses were similar (Biondi variant), but not identical, to the fold I that was previously identified in filaments from brain parenchyma.
Collapse
Affiliation(s)
- Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, USA.
| | | | - Max H Jacobsen
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, USA
| | - Derrick Gray
- Center for Electron Microscopy, Indiana University School of Medicine, Indianapolis, USA
| | - Mehtap Bacioglu
- Department of Clinical Neurosciences, Cambridge University, Cambridge, UK
| | - Alexey G Murzin
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Bradley S Glazier
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, USA
| | | | - Ruben Vidal
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, USA
| | - Kathy L Newell
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, USA
| | - Sujuan Gao
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, USA
| | - Holly J Garringer
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, USA
| | | | - Sjors H W Scheres
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Michel Goedert
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
9
|
Ruiz-Ortega ED, Wilkaniec A, Adamczyk A. Liquid-liquid phase separation and conformational strains of α-Synuclein: implications for Parkinson's disease pathogenesis. Front Mol Neurosci 2024; 17:1494218. [PMID: 39507104 PMCID: PMC11537881 DOI: 10.3389/fnmol.2024.1494218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024] Open
Abstract
Parkinson's disease (PD) and other synucleinopathies are characterized by the aggregation and deposition of alpha-synuclein (α-syn) in brain cells, forming insoluble inclusions such as Lewy bodies (LBs) and Lewy neurites (LNs). The aggregation of α-syn is a complex process involving the structural conversion from its native random coil to well-defined secondary structures rich in β-sheets, forming amyloid-like fibrils. Evidence suggests that intermediate species of α-syn aggregates formed during this conversion are responsible for cell death. However, the molecular events involved in α-syn aggregation and its relationship with disease onset and progression remain not fully elucidated. Additionally, the clinical and pathological heterogeneity observed in various synucleinopathies has been highlighted. Liquid-liquid phase separation (LLPS) and condensate formation have been proposed as alternative mechanisms that could underpin α-syn pathology and contribute to the heterogeneity seen in synucleinopathies. This review focuses on the role of the cellular environment in α-syn conformational rearrangement, which may lead to pathology and the existence of different α-syn conformational strains with varying toxicity patterns. The discussion will include cellular stress, abnormal LLPS formation, and the potential role of LLPS in α-syn pathology.
Collapse
Affiliation(s)
| | | | - Agata Adamczyk
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
10
|
Ansari S, Lagasca D, Dumarieh R, Xiao Y, Krishna S, Li Y, Frederick KK. In cell NMR reveals cells selectively amplify and structurally remodel amyloid fibrils. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612142. [PMID: 39314304 PMCID: PMC11419106 DOI: 10.1101/2024.09.09.612142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Amyloid forms of α-synuclein adopt different conformations depending on environmental conditions. Advances in structural biology have accelerated fibril characterization. However, it remains unclear which conformations predominate in biological settings because current methods typically not only require isolating fibrils from their native environments, but they also do not provide insight about flexible regions. To address this, we characterized α-syn amyloid seeds and used sensitivity enhanced nuclear magnetic resonance to investigate the amyloid fibrils resulting from seeded amyloid propagation in different settings. We found that the amyloid fold and conformational preferences of flexible regions are faithfully propagated in vitro and in cellular lysates. However, seeded propagation of amyloids inside cells led to the minority conformation in the seeding population becoming predominant and more ordered, and altered the conformational preferences of flexible regions. The examination of the entire ensemble of protein conformations in biological settings that is made possible with this approach may advance our understanding of protein misfolding disorders and facilitate structure-based drug design efforts.
Collapse
Affiliation(s)
- Shoyab Ansari
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390-8816
| | - Dominique Lagasca
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390-8816
| | - Rania Dumarieh
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390-8816
| | - Yiling Xiao
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390-8816
| | - Sakshi Krishna
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390-8816
| | - Yang Li
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390-8816
| | - Kendra K. Frederick
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390-8816
- Center for Alzheimer’s and Neurodegenerative Disease, UT Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
11
|
Schweighauser M, Shi Y, Murzin AG, Garringer HJ, Vidal R, Murrell JR, Erro ME, Seelaar H, Ferrer I, van Swieten JC, Ghetti B, Scheres SH, Goedert M. Novel tau filament folds in individuals with MAPT mutations P301L and P301T. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.15.608062. [PMID: 39185206 PMCID: PMC11343192 DOI: 10.1101/2024.08.15.608062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Mutations in MAPT, the microtubule-associated protein tau gene, give rise to cases of frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17) with abundant filamentous tau inclusions in brain cells. Individuals with pathological MAPT variants exhibit behavioural changes, cognitive impairment and signs of parkinsonism. Missense mutations of residue P301, which are the most common MAPT mutations associated with FTDP-17, give rise to the assembly of mutant four-repeat tau into filamentous inclusions, in the absence of extracellular deposits. Here we report the cryo-EM structures of tau filaments from five individuals belonging to three unrelated families with mutation P301L and from one individual belonging to a family with mutation P301T. A novel three-lobed tau fold resembling the two-layered tau fold of Pick's disease was present in all cases with the P301L tau mutation. Two different tau folds were found in the case with mutation P301T, the less abundant of which was a variant of the three-lobed fold. The major P301T tau fold was V-shaped, with partial similarity to the four-layered tau folds of corticobasal degeneration and argyrophilic grain disease. These findings suggest that FTDP-17 with mutations in P301 should be considered distinct inherited tauopathies and that model systems with these mutations should be used with caution in the study of sporadic tauopathies.
Collapse
Affiliation(s)
- Manuel Schweighauser
- MRC Laboratory of Molecular Biology, Cambridge, UK
- These authors contributed equally
| | - Yang Shi
- MRC Laboratory of Molecular Biology, Cambridge, UK
- Department of Pathology of the First Affiliated Hospital and School of Brain Science, Zhejiang University, Hangzhou, China
- These authors contributed equally
| | - Alexey G. Murzin
- MRC Laboratory of Molecular Biology, Cambridge, UK
- These authors contributed equally
| | - Holly J. Garringer
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, USA
| | - Ruben Vidal
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, USA
| | - Jill R. Murrell
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, USA
- Department of Pathology and Laboratory Medicine, Children’s Hospital of the University of Pennsylvania, Philadelphia, USA
| | - M. Elena Erro
- Department of Neurology, Hospital Universitario de Navarra, Brain Bank NavarraBiomed, Pamplona, Spain
| | - Harro Seelaar
- Department of Neurology, Erasmus University, Rotterdam, The Netherlands
| | - Isidro Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Spain
| | | | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, USA
| | - Sjors H.W. Scheres
- MRC Laboratory of Molecular Biology, Cambridge, UK
- These authors jointly supervised the work
| | - Michel Goedert
- MRC Laboratory of Molecular Biology, Cambridge, UK
- These authors jointly supervised the work
| |
Collapse
|
12
|
Kuang Y, Mao H, Gan T, Guo W, Dai W, Huang W, Wu Z, Li H, Huang X, Yang X, Xu PY. A skin-specific α-Synuclein seeding amplification assay for diagnosing Parkinson's disease. NPJ Parkinsons Dis 2024; 10:129. [PMID: 38961119 PMCID: PMC11222486 DOI: 10.1038/s41531-024-00738-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/31/2024] [Indexed: 07/05/2024] Open
Abstract
The seeding amplification assay (SAA) has recently emerged as a valuable tool for detecting α-synuclein (αSyn) aggregates in various clinically accessible biospecimens. Despite its efficiency and specificity, optimal tissue-specific conditions for distinguishing Parkinson's disease (PD) from non-PD outside the brain remain underexplored. This study systematically evaluated 150 reaction conditions to identify the one with the highest discriminatory potential between PD and non-synucleinopathy controls using skin samples, resulting in a modified SAA. The streamlined SAA achieved an overall sensitivity of 92.46% and specificity of 93.33% on biopsy skin samples from 332 PD patients and 285 controls within 24 h. Inter-laboratory reproducibility demonstrated a Cohen's kappa value of 0.87 (95% CI 0.69-1.00), indicating nearly perfect agreement. Additionally, αSyn seeds in the skin were stable at -80 °C but were vulnerable to short-term exposure to non-ultra-low temperatures and grinding. This study thoroughly investigated procedures for sample preprocessing, seed amplification, and storage, introducing a well-structured experimental framework for PD diagnosis using skin samples.
Collapse
Affiliation(s)
- Yaoyun Kuang
- Department of Neurology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Hengxu Mao
- Department of Neurology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Tingting Gan
- Department of Neurology, the First Affiliated Hospital of Gannan Medical University, 341000, Ganzhou, China
| | - Wenyuan Guo
- Department of Neurology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Wei Dai
- Department of Neurology, Xinjiang Uygur Autonomous Region People's Hospital, 830054, Urumqi, Xinjiang, China
| | - Weimeng Huang
- Department of Neurology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Zhuohua Wu
- Department of Neurology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Hongyan Li
- Department of Neurology, Xinjiang Uygur Autonomous Region People's Hospital, 830054, Urumqi, Xinjiang, China
| | - Xiaoyun Huang
- Dongguan Songshan Lake Central Hospital, 523000, Donggguan, China.
| | - Xinling Yang
- The Second Affiliated Hospital of Xinjiang Medical University, 830054, Urumqi, Xinjiang, China.
| | - Ping-Yi Xu
- Department of Neurology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| |
Collapse
|
13
|
Qi C, Kobayashi R, Kawakatsu S, Kametani F, Scheres SHW, Goedert M, Hasegawa M. Tau filaments with the chronic traumatic encephalopathy fold in a case of vacuolar tauopathy with VCP mutation D395G. Acta Neuropathol 2024; 147:86. [PMID: 38758288 PMCID: PMC7616110 DOI: 10.1007/s00401-024-02741-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024]
Abstract
Dominantly inherited mutation D395G in the gene encoding valosin-containing protein causes vacuolar tauopathy, a type of behavioural-variant frontotemporal dementia, with marked vacuolation and abundant filamentous tau inclusions made of all six brain isoforms. Here we report that tau inclusions were concentrated in layers II/III of the frontotemporal cortex in a case of vacuolar tauopathy. By electron cryomicroscopy, tau filaments had the chronic traumatic encephalopathy (CTE) fold. Tau inclusions of vacuolar tauopathy share this cortical location and the tau fold with CTE, subacute sclerosing panencephalitis and amyotrophic lateral sclerosis/parkinsonism-dementia complex, which are believed to be environmentally induced. Vacuolar tauopathy is the first inherited disease with the CTE tau fold.
Collapse
Affiliation(s)
- Chao Qi
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Ryota Kobayashi
- Department of Psychiatry, Yamagata University School of Medicine, Yamagata, Japan
| | - Shinobu Kawakatsu
- Department of Neuropsychiatry, Aizu Medical Center, Fukushima Medical University, Aizuwakamatsu, Japan
| | - Fuyuki Kametani
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Sjors H W Scheres
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| | - Michel Goedert
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| | - Masato Hasegawa
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| |
Collapse
|
14
|
Qi C, Lövestam S, Murzin AG, Peak-Chew S, Franco C, Bogdani M, Latimer C, Murrell JR, Cullinane PW, Jaunmuktane Z, Bird TD, Ghetti B, Scheres SH, Goedert M. Tau filaments with the Alzheimer fold in cases with MAPT mutations V337M and R406W. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.591661. [PMID: 38746388 PMCID: PMC11092478 DOI: 10.1101/2024.04.29.591661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Frontotemporal dementia (FTD) and Alzheimer's disease are the most common forms of early-onset dementia. Dominantly inherited mutations in MAPT, the microtubule-associated protein tau gene, cause FTD and parkinsonism linked to chromosome 17 (FTDP-17). Individuals with FTDP-17 develop abundant filamentous tau inclusions in brain cells. Here we used electron cryo-microscopy to determine the structures of tau filaments from the brains of individuals with MAPT mutations V337M and R406W. Both mutations gave rise to tau filaments with the Alzheimer fold, which consisted of paired helical filaments in all V337M and R406W cases and of straight filaments in two V337M cases. We also identified a new assembly of the Alzheimer fold into triple tau filaments in a V337M case. Filaments assembled from recombinant tau(297-391) with mutation V337M had the Alzheimer fold and showed an increased rate of assembly.
Collapse
Affiliation(s)
- Chao Qi
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | | | | | | - Marika Bogdani
- Departments of Neurology and Pathology, University of Washington, Seattle, USA
- Veterans Administration Puget Sound Health Care System, Seattle, USA
| | - Caitlin Latimer
- Departments of Neurology and Pathology, University of Washington, Seattle, USA
- Veterans Administration Puget Sound Health Care System, Seattle, USA
| | - Jill R. Murrell
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, USA
- Department of Pathology and Laboratory Medicine, Children’s Hospital of the University of Pennsylvania, Philadelphia, USA
| | - Patrick W. Cullinane
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College, London UK
- Queen Square Brain Bank for Neurological Disorders, Institute of Neurology, University College, London, UK
| | - Zane Jaunmuktane
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College, London UK
- Queen Square Brain Bank for Neurological Disorders, Institute of Neurology, University College, London, UK
| | - Thomas D. Bird
- Departments of Neurology and Pathology, University of Washington, Seattle, USA
- Veterans Administration Puget Sound Health Care System, Seattle, USA
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, USA
| | - Sjors H.W. Scheres
- MRC Laboratory of Molecular Biology, Cambridge, UK
- These authors jointly supervised this work: Sjors H.W. Scheres, Michel Goedert
| | - Michel Goedert
- MRC Laboratory of Molecular Biology, Cambridge, UK
- These authors jointly supervised this work: Sjors H.W. Scheres, Michel Goedert
| |
Collapse
|
15
|
Abdul‐Rahman T, Herrera‐Calderón RE, Ahluwalia A, Wireko AA, Ferreira T, Tan JK, Wolfson M, Ghosh S, Horbas V, Garg V, Perveen A, Papadakis M, Ashraf GM, Alexiou A. The potential of phosphorylated α-synuclein as a biomarker for the diagnosis and monitoring of multiple system atrophy. CNS Neurosci Ther 2024; 30:e14678. [PMID: 38572788 PMCID: PMC10993367 DOI: 10.1111/cns.14678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 04/05/2024] Open
Abstract
INTRODUCTION Multiple system atrophy (MSA) is a rapidly progressive neurodegenerative disorder characterized by the presence of glial cytoplasmic inclusions (GCIs) containing aggregated α-synuclein (α-Syn). Accurate diagnosis and monitoring of MSA present significant challenges, which can lead to potential misdiagnosis and inappropriate treatment. Biomarkers play a crucial role in improving the accuracy of MSA diagnosis, and phosphorylated α-synuclein (p-syn) has emerged as a promising biomarker for aiding in diagnosis and disease monitoring. METHODS A literature search was conducted on PubMed, Scopus, and Google Scholar using specific keywords and MeSH terms without imposing a time limit. Inclusion criteria comprised various study designs including experimental studies, case-control studies, and cohort studies published only in English, while conference abstracts and unpublished sources were excluded. RESULTS Increased levels of p-syn have been observed in various samples from MSA patients, such as red blood cells, cerebrospinal fluid, oral mucosal cells, skin, and colon biopsies, highlighting their diagnostic potential. The α-Syn RT-QuIC assay has shown sensitivity in diagnosing MSA and tracking its progression. Meta-analyses and multicenter investigations have confirmed the diagnostic value of p-syn in cerebrospinal fluid, demonstrating high specificity and sensitivity in distinguishing MSA from other neurodegenerative diseases. Moreover, combining p-syn with other biomarkers has further improved the diagnostic accuracy of MSA. CONCLUSION The p-syn stands out as a promising biomarker for MSA. It is found in oligodendrocytes and shows a correlation with disease severity and progression. However, further research and validation studies are necessary to establish p-syn as a reliable biomarker for MSA. If proven, p-syn could significantly contribute to early diagnosis, disease monitoring, and assessing treatment response.
Collapse
Affiliation(s)
| | | | | | | | - Tomas Ferreira
- Department of Clinical Neurosciences, School of Clinical MedicineUniversity of CambridgeCambridgeUK
| | | | | | - Shankhaneel Ghosh
- Institute of Medical Sciences and SUM Hospital, Siksha 'O' AnusandhanBhubaneswarIndia
| | | | - Vandana Garg
- Department of Pharmaceutical SciencesMaharshi Dayanand UniversityRohtakHaryanaIndia
| | - Asma Perveen
- Glocal School of Life SciencesGlocal UniversitySaharanpurUttar PradeshIndia
- Princess Dr. Najla Bint Saud Al‐Saud Center for Excellence Research in BiotechnologyKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten‐HerdeckeUniversity of Witten‐HerdeckeWuppertalGermany
| | - Ghulam Md Ashraf
- Department of Medical Laboratory SciencesUniversity of Sharjah, College of Health Sciences, and Research Institute for Medical and Health SciencesSharjahUAE
| | - Athanasios Alexiou
- University Centre for Research & DevelopmentChandigarh UniversityMohaliPunjabIndia
- Department of Research & DevelopmentAthensGreece
- Department of Research & DevelopmentAFNP MedWienAustria
- Department of Science and EngineeringNovel Global Community Educational FoundationNew South WalesAustralia
| |
Collapse
|
16
|
Tarutani A, Hasegawa M. Ultrastructures of α-Synuclein Filaments in Synucleinopathy Brains and Experimental Models. J Mov Disord 2024; 17:15-29. [PMID: 37990381 PMCID: PMC10846975 DOI: 10.14802/jmd.23213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/11/2023] [Accepted: 11/22/2023] [Indexed: 11/23/2023] Open
Abstract
Intracellular α-synuclein (α-syn) inclusions are a neuropathological hallmark of Lewy body disease (LBD) and multiple system atrophy (MSA), both of which are termed synucleinopathies. LBD is defined by Lewy bodies and Lewy neurites in neurons, while MSA displays glial cytoplasmic inclusions in oligodendrocytes. Pathological α-syn adopts an ordered filamentous structure with a 5-10 nm filament diameter, and this conformational change has been suggested to be involved in the disease onset and progression. Synucleinopathies also exhibit characteristic ultrastructural and biochemical properties of α-syn filaments, and α-syn strains with distinct conformations have been identified. Numerous experimental studies have supported the idea that pathological α-syn self-amplifies and spreads throughout the brain, during which processes the conformation of α-syn filaments may drive the disease specificity. In this review, we summarize the ultrastructural features and heterogeneity of α-syn filaments in the brains of patients with synucleinopathy and in experimental models of seeded α-syn aggregation.
Collapse
Affiliation(s)
- Airi Tarutani
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Masato Hasegawa
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
17
|
Kluge A, Iranzo A. Biofluid Detection of Pathological α-Synuclein in the Prodromal Phase of Synucleinopathies. JOURNAL OF PARKINSON'S DISEASE 2024; 14:S323-S331. [PMID: 38995801 PMCID: PMC11494638 DOI: 10.3233/jpd-230429] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/10/2024] [Indexed: 07/14/2024]
Abstract
Synucleinopathies are disorders characterized by the aggregation and deposition of pathological α-synuclein conformers. The underlying neurodegenerative processes begin years or decades before the onset of cardinal motor symptoms. This prodromal phase may manifest with various signs or symptoms. However, there are no current standardized laboratory tests to ascertain the progression and conversion of prodromal conditions such as mild cognitive impairment, isolated REM sleep behavior disorder or pure autonomic failure. The aim of this systematic review was to evaluate the diagnostic possibilities using human biofluids as source material to detect pathological α-synuclein in the prodromal phase of synucleinopathies. Our review identified eight eligible studies, that investigated pathological α-synuclein conformers using cerebrospinal fluid from patients with prodromal signs of synulceinopathies to differentiate this patient group from non-synucleinopathies, while only one study investigated this aspect using blood as medium. While previous studies clearly demonstrated a high diagnostic performance of α-synuclein seed amplification assays for differentiating synucleinopathies with Lewy bodies from healthy controls, only few analyses were performed focussing on individuals with prodromal disease. Nevertheless, results for the early detection of α-synuclein seeds using α-synuclein seed amplification assays were promising and may be of particular relevance for future clinical trials and clinical practice.
Collapse
Affiliation(s)
- Annika Kluge
- Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel and Kiel University, Kiel, Germany
| | - Alex Iranzo
- Sleep Unit, Neurology Service, Hospital Clínic Barcelona, Barcelona University, IDIBAPS, CIBERNED, Barcelona, Spain
| |
Collapse
|
18
|
Li HY, Liu DS, Zhang YB, Rong H, Zhang XJ. The interaction between alpha-synuclein and mitochondrial dysfunction in Parkinson's disease. Biophys Chem 2023; 303:107122. [PMID: 37839353 DOI: 10.1016/j.bpc.2023.107122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/18/2023] [Accepted: 10/07/2023] [Indexed: 10/17/2023]
Abstract
Parkinson's disease (PD) is an aging-associated neurodegenerative disorder with the hallmark of abnormal aggregates of alpha-synuclein (α-syn) in Lewy bodies (LBs) and Lewy neurites (LNs). Currently, pathogenic α-syn and mitochondrial dysfunction have been considered as prominent roles that give impetus to the PD onset. This review describes the α-syn pathology and mitochondrial alterations in PD, and focuses on how α-syn interacts with multiple aspects of mitochondrial homeostasis in the pathogenesis of PD.
Collapse
Affiliation(s)
- Hong-Yan Li
- Department of Basic Medical College, Heilongjiang University of Chinese Medicine, Haerbin 150000, PR China
| | - De-Shui Liu
- Department of Pathology, Qiqihar Medical University, Qiqihar 161006, PR China
| | - Ying-Bo Zhang
- Department of Pathology, Qiqihar Medical University, Qiqihar 161006, PR China
| | - Hua Rong
- Department of Pathology, Qiqihar Medical University, Qiqihar 161006, PR China
| | - Xiao-Jie Zhang
- Department of Basic Medical College, Heilongjiang University of Chinese Medicine, Haerbin 150000, PR China; Heilongjiang Nursing College, Haerbin 150000, PR China.
| |
Collapse
|
19
|
Nakamura R, Tomizawa I, Iwai A, Ikeda T, Hirayama K, Chiu YW, Suzuki T, Tarutani A, Mano T, Iwata A, Toda T, Sohma Y, Kanai M, Hori Y, Tomita T. Photo-oxygenation of histidine residue inhibits α-synuclein aggregation. FASEB J 2023; 37:e23311. [PMID: 37962096 DOI: 10.1096/fj.202301533r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/14/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023]
Abstract
Aggregation of α-synuclein (α-syn) into amyloid is the pathological hallmark of several neurodegenerative disorders, including Parkinson disease, dementia with Lewy bodies, and multiple system atrophy. It is widely accepted that α-syn aggregation is associated with neurodegeneration, although the mechanisms are not yet fully understood. Therefore, the inhibition of α-syn aggregation is a potential therapeutic approach against these diseases. This study used the photocatalyst for α-syn photo-oxygenation, which selectively adds oxygen atoms to fibrils. Our findings demonstrate that photo-oxygenation using this photocatalyst successfully inhibits α-syn aggregation, particularly by reducing its seeding ability. Notably, we also discovered that photo-oxygenation of the histidine at the 50th residue in α-syn aggregates is responsible for the inhibitory effect. These findings indicate that photo-oxygenation of the histidine residue in α-syn is a potential therapeutic strategy for synucleinopathies.
Collapse
Affiliation(s)
- Reito Nakamura
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Ikumi Tomizawa
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Atsushi Iwai
- Laboratory of Synthetic Organic Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Tetsuo Ikeda
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Kota Hirayama
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yung Wen Chiu
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Takanobu Suzuki
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Airi Tarutani
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Tatsuo Mano
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Atsushi Iwata
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Neurology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Tatsushi Toda
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Youhei Sohma
- Laboratory of Synthetic Organic Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, Japan
| | - Motomu Kanai
- Laboratory of Synthetic Organic Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yukiko Hori
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
20
|
Shin YJ, Kim YJ, Lee JE, Kim YS, Lee JW, Kim H, Shin JY, Lee PH. Uric acid regulates α-synuclein transmission in Parkinsonian models. Front Aging Neurosci 2023; 15:1117491. [PMID: 37711993 PMCID: PMC10497982 DOI: 10.3389/fnagi.2023.1117491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 08/11/2023] [Indexed: 09/16/2023] Open
Abstract
Ample evidence demonstrates that α-synuclein (α-syn) has a critical role in the pathogenesis of Parkinson's disease (PD) with evidence indicating that its propagation from one area of the brain to others may be the primary mechanism for disease progression. Uric acid (UA), a natural antioxidant, has been proposed as a potential disease modifying candidate in PD. In the present study, we investigated whether UA treatment modulates cell-to-cell transmission of extracellular α-syn and protects dopaminergic neurons in the α-syn-enriched model. In a cellular model, UA treatment decreased internalized cytosolic α-syn levels and neuron-to-neuron transmission of α-syn in donor-acceptor cell models by modulating dynamin-mediated and clathrin-mediated endocytosis. Moreover, UA elevation in α-syn-inoculated mice inhibited propagation of extracellular α-syn which decreased expression of phosphorylated α-syn in the dopaminergic neurons of the substantia nigra leading to their increased survival. UA treatment did not lead to change in markers related with autophagolysosomal and microglial activity under the same experimental conditions. These findings suggest UA may control the pathological conditions of PD via additive mechanisms which modulate the propagation of α-syn.
Collapse
Affiliation(s)
- Yu Jin Shin
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University, Seoul, Republic of Korea
| | - Yeon Ju Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University, Seoul, Republic of Korea
| | - Ji Eun Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University, Seoul, Republic of Korea
| | - Yi Seul Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University, Seoul, Republic of Korea
| | - Jung Wook Lee
- Department of Medical Science, Catholic Kwandong University College of Medicine, Gangneung-si, Republic of Korea
| | - HyeonJeong Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University, Seoul, Republic of Korea
| | - Jin Young Shin
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University, Seoul, Republic of Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
21
|
Han JY, Park KJ, Park HC, Lee YR, Moore RA, Sohn HJ, Choi YP. Autoclave treatment fails to completely inactivate DLB alpha-synuclein seeding activity. Biochem Biophys Rep 2023; 34:101446. [PMID: 36923008 PMCID: PMC10009011 DOI: 10.1016/j.bbrep.2023.101446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
Synucleinopathies are characterized by the deposition of alpha-synuclein (α-syn) aggregates in brain tissue. Pathological α-syn aggregates propagate in a prion-like manner and display prion-like biochemical properties. Using RT-QuIC, we measured α-syn seeding activity from brains of Dementia with Lewy body (DLB) patients post autoclave. Here, we show that autoclaving at 121 °C removes one to two log10 of α-syn seeding activity but the remaining 50% seeding dose (SD50) is more than 107/mg tissue. DLB brain samples autoclaved at 132 °C still revealed an SD50 of approximately 106/mg tissue. Our data suggest that DLB α-syn seeds are incompletely inactivated by standard autoclave, thus highlighting the need for evaluating laboratory procedures that fully inactivate them.
Collapse
Affiliation(s)
- Jung-Youn Han
- Laboratory Animal Center, Division of Research Strategy, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Kyung-Je Park
- Reference Laboratory for CWD, Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Hoo-Chang Park
- Reference Laboratory for CWD, Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Yu-Ran Lee
- Reference Laboratory for CWD, Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | | | - Hyun-Joo Sohn
- Reference Laboratory for CWD, Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Young Pyo Choi
- Laboratory Animal Center, Division of Research Strategy, Korea Brain Research Institute, Daegu, Republic of Korea
| |
Collapse
|
22
|
Qi C, Hasegawa M, Takao M, Sakai M, Sasaki M, Mizutani M, Akagi A, Iwasaki Y, Miyahara H, Yoshida M, Scheres SHW, Goedert M. Identical tau filaments in subacute sclerosing panencephalitis and chronic traumatic encephalopathy. Acta Neuropathol Commun 2023; 11:74. [PMID: 37143123 PMCID: PMC10161654 DOI: 10.1186/s40478-023-01565-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/10/2023] [Indexed: 05/06/2023] Open
Abstract
Subacute sclerosing panencephalitis (SSPE) occurs in some individuals after measles infection, following a symptom-free period of several years. It resembles chronic traumatic encephalopathy (CTE), which happens after repetitive head impacts or exposure to blast waves, following a symptom-free period. As in CTE, the neurofibrillary changes of SSPE are concentrated in superficial cortical layers. Here we used electron cryo-microscopy (cryo-EM) of tau filaments from two cases of SSPE to show that the tau folds of SSPE and CTE are identical. Two types of filaments were each made of two identical protofilaments with an extra density in the β-helix region. Like in CTE, the vast majority of tau filaments were Type I, with a minority of Type II filaments. These findings suggest that the CTE tau fold can be caused by different environmental insults, which may be linked by inflammatory changes.
Collapse
Affiliation(s)
- Chao Qi
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Masato Hasegawa
- Department of Brain and Neuroscience, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Masaki Takao
- Department of Clinical Laboratory and Internal Medicine, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Neurology and Brain Bank, Mihara Memorial Hospital, Isesaki, Japan
| | - Motoko Sakai
- Department of Neurology, National Hospital Organization Suzuka National Hospital, Suzuka, Mie, Japan
| | - Mayasuki Sasaki
- Department of Child Neurology, Center of Neurology and Psychiatry, Tokyo, Japan
| | - Masashi Mizutani
- Department of Clinical Laboratory and Internal Medicine, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Akio Akagi
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Aichi, Japan
| | - Yasushi Iwasaki
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Aichi, Japan
| | - Hiroaki Miyahara
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Aichi, Japan
| | - Mari Yoshida
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Aichi, Japan
| | - Sjors H W Scheres
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| | - Michel Goedert
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
23
|
Yang Y, Garringer HJ, Shi Y, Lövestam S, Peak-Chew S, Zhang X, Kotecha A, Bacioglu M, Koto A, Takao M, Spillantini MG, Ghetti B, Vidal R, Murzin AG, Scheres SHW, Goedert M. New SNCA mutation and structures of α-synuclein filaments from juvenile-onset synucleinopathy. Acta Neuropathol 2023; 145:561-572. [PMID: 36847833 PMCID: PMC10119069 DOI: 10.1007/s00401-023-02550-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 03/01/2023]
Abstract
A 21-nucleotide duplication in one allele of SNCA was identified in a previously described disease with abundant α-synuclein inclusions that we now call juvenile-onset synucleinopathy (JOS). This mutation translates into the insertion of MAAAEKT after residue 22 of α-synuclein, resulting in a protein of 147 amino acids. Both wild-type and mutant proteins were present in sarkosyl-insoluble material that was extracted from frontal cortex of the individual with JOS and examined by electron cryo-microscopy. The structures of JOS filaments, comprising either a single protofilament, or a pair of protofilaments, revealed a new α-synuclein fold that differs from the folds of Lewy body diseases and multiple system atrophy (MSA). The JOS fold consists of a compact core, the sequence of which (residues 36-100 of wild-type α-synuclein) is unaffected by the mutation, and two disconnected density islands (A and B) of mixed sequences. There is a non-proteinaceous cofactor bound between the core and island A. The JOS fold resembles the common substructure of MSA Type I and Type II dimeric filaments, with its core segment approximating the C-terminal body of MSA protofilaments B and its islands mimicking the N-terminal arm of MSA protofilaments A. The partial similarity of JOS and MSA folds extends to the locations of their cofactor-binding sites. In vitro assembly of recombinant wild-type α-synuclein, its insertion mutant and their mixture yielded structures that were distinct from those of JOS filaments. Our findings provide insight into a possible mechanism of JOS fibrillation in which mutant α-synuclein of 147 amino acids forms a nucleus with the JOS fold, around which wild-type and mutant proteins assemble during elongation.
Collapse
Affiliation(s)
- Yang Yang
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Holly J Garringer
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yang Shi
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, China
| | - Sofia Lövestam
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Sew Peak-Chew
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Xianjun Zhang
- Thermo Fisher Scientific, Eindhoven, The Netherlands
| | - Abhay Kotecha
- Thermo Fisher Scientific, Eindhoven, The Netherlands
| | - Mehtap Bacioglu
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Atsuo Koto
- Yomiuri-Land Keiyu Hospital, Tokyo, Japan
| | - Masaki Takao
- Department of Clinical Laboratory and Internal Medicine, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Neurology and Brain Bank, Mihara Memorial Hospital, Isesaki, Japan
| | | | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ruben Vidal
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alexey G Murzin
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| | - Sjors H W Scheres
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| | - Michel Goedert
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
24
|
Yang Y, Zhang W, Murzin AG, Schweighauser M, Huang M, Lövestam S, Peak-Chew SY, Saito T, Saido TC, Macdonald J, Lavenir I, Ghetti B, Graff C, Kumar A, Nordberg A, Goedert M, Scheres SHW. Cryo-EM structures of amyloid-β filaments with the Arctic mutation (E22G) from human and mouse brains. Acta Neuropathol 2023; 145:325-333. [PMID: 36611124 PMCID: PMC9925504 DOI: 10.1007/s00401-022-02533-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 01/09/2023]
Abstract
The Arctic mutation, encoding E693G in the amyloid precursor protein (APP) gene [E22G in amyloid-β (Aβ)], causes dominantly inherited Alzheimer's disease. Here, we report the high-resolution cryo-EM structures of Aβ filaments from the frontal cortex of a previously described case (AβPParc1) with the Arctic mutation. Most filaments consist of two pairs of non-identical protofilaments that comprise residues V12-V40 (human Arctic fold A) and E11-G37 (human Arctic fold B). They have a substructure (residues F20-G37) in common with the folds of type I and type II Aβ42. When compared to the structures of wild-type Aβ42 filaments, there are subtle conformational changes in the human Arctic folds, because of the lack of a side chain at G22, which may strengthen hydrogen bonding between mutant Aβ molecules and promote filament formation. A minority of Aβ42 filaments of type II was also present, as were tau paired helical filaments. In addition, we report the cryo-EM structures of Aβ filaments with the Arctic mutation from mouse knock-in line AppNL-G-F. Most filaments are made of two identical mutant protofilaments that extend from D1 to G37 (AppNL-G-F murine Arctic fold). In a minority of filaments, two dimeric folds pack against each other in an anti-parallel fashion. The AppNL-G-F murine Arctic fold differs from the human Arctic folds, but shares some substructure.
Collapse
Affiliation(s)
- Yang Yang
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Wenjuan Zhang
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
- Medical Research Council Prion Unit and Institute of Prion Diseases, University College London, London, UK
| | - Alexey G Murzin
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | | | - Melissa Huang
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
- Dementia Research Institute, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Sofia Lövestam
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Sew Y Peak-Chew
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Takashi Saito
- RIKEN Brain Science Institute, Saitama, Japan
- Department of Neurocognitive Science, Nagoya City University, Nagoya, Japan
| | | | | | - Isabelle Lavenir
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Caroline Graff
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden
| | - Amit Kumar
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Agneta Nordberg
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden
| | - Michel Goedert
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| | - Sjors H W Scheres
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
25
|
So RWL, Watts JC. α-Synuclein Conformational Strains as Drivers of Phenotypic Heterogeneity in Neurodegenerative Diseases. J Mol Biol 2023:168011. [PMID: 36792008 DOI: 10.1016/j.jmb.2023.168011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/19/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023]
Abstract
The synucleinopathies, which include Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy, are a class of human neurodegenerative disorders unified by the presence of α-synuclein aggregates in the brain. Considerable clinical and pathological heterogeneity exists within and among the individual synucleinopathies. A potential explanation for this variability is the existence of distinct conformational strains of α-synuclein aggregates that cause different disease manifestations. Like prion strains, α-synuclein strains can be delineated based on their structural architecture, with structural differences among α-synuclein aggregates leading to unique biochemical attributes and neuropathological properties in humans and animal models. Bolstered by recent high-resolution structural data from patient brain-derived material, it has now been firmly established that there are conformational differences among α-synuclein aggregates from different human synucleinopathies. Moreover, recombinant α-synuclein can be polymerized into several structurally distinct aggregates that exhibit unique pathological properties. In this review, we outline the evidence supporting the existence of α-synuclein strains and highlight how they can act as drivers of phenotypic heterogeneity in the human synucleinopathies.
Collapse
Affiliation(s)
- Raphaella W L So
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada. https://twitter.com/xsakuraphie
| | - Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada. https://twitter.com/JoelWattsLab
| |
Collapse
|
26
|
Muacevic A, Adler JR, Nigh G, McCullough PA. A Potential Role of the Spike Protein in Neurodegenerative Diseases: A Narrative Review. Cureus 2023; 15:e34872. [PMID: 36788995 PMCID: PMC9922164 DOI: 10.7759/cureus.34872] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2023] [Indexed: 02/13/2023] Open
Abstract
Human prion protein and prion-like protein misfolding are widely recognized as playing a causal role in many neurodegenerative diseases. Based on in vitro and in vivo experimental evidence relating to prion and prion-like disease, we extrapolate from the compelling evidence that the spike glycoprotein of SARS-CoV-2 contains extended amino acid sequences characteristic of a prion-like protein to infer its potential to cause neurodegenerative disease. We propose that vaccine-induced spike protein synthesis can facilitate the accumulation of toxic prion-like fibrils in neurons. We outline various pathways through which these proteins could be expected to distribute throughout the body. We review both cellular pathologies and the expression of disease that could become more frequent in those who have undergone mRNA vaccination. Specifically, we describe the spike protein's contributions, via its prion-like properties, to neuroinflammation and neurodegenerative diseases; to clotting disorders within the vasculature; to further disease risk due to suppressed prion protein regulation in the context of widely prevalent insulin resistance; and to other health complications. We explain why these prion-like characteristics are more relevant to vaccine-related mRNA-induced spike proteins than natural infection with SARS-CoV-2. We note with an optimism an apparent loss of prion-like properties among the current Omicron variants. We acknowledge that the chain of pathological events described throughout this paper is only hypothetical and not yet verified. We also acknowledge that the evidence we usher in, while grounded in the research literature, is currently largely circumstantial, not direct. Finally, we describe the implications of our findings for the general public, and we briefly discuss public health recommendations we feel need urgent consideration. An earlier version of this article was previously posted to the Authorea preprint server on August 16, 2022.
Collapse
|
27
|
The intestinal barrier in disorders of the central nervous system. Lancet Gastroenterol Hepatol 2023; 8:66-80. [PMID: 36334596 DOI: 10.1016/s2468-1253(22)00241-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/14/2022] [Accepted: 07/14/2022] [Indexed: 12/12/2022]
Abstract
The intestinal barrier, which primarily consists of a mucus layer, an epithelial barrier, and a gut vascular barrier, has a crucial role in health and disease by facilitating nutrient absorption and preventing the entry of pathogens. The intestinal barrier is in close contact with gut microbiota on its luminal side and with enteric neurons and glial cells on its tissue side. Mounting evidence now suggests that the intestinal barrier is compromised not only in digestive disorders, but also in disorders of the central nervous system (CNS), such as Parkinson's disease, autism spectrum disorder, depression, multiple sclerosis, and Alzheimer's disease. After providing an overview of the structure and functions of the intestinal barrier, we review existing preclinical and clinical studies supporting the notion that intestinal barrier dysfunction is present in neurological, neurodevelopmental, and psychiatric disorders. On the basis of this evidence, we discuss the mechanisms that possibly link gut barrier dysfunction and CNS disorders and the potential impact that evaluating enteric barriers in brain disorders could have on clinical practice, in terms of novel diagnostic and therapeutic strategies, in the near future.
Collapse
|
28
|
Structures of α-synuclein filaments from human brains with Lewy pathology. Nature 2022; 610:791-795. [PMID: 36108674 PMCID: PMC7613749 DOI: 10.1038/s41586-022-05319-3] [Citation(s) in RCA: 230] [Impact Index Per Article: 76.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/05/2022] [Indexed: 12/05/2022]
Abstract
Parkinson's disease (PD) is the most common movement disorder, with resting tremor, rigidity, bradykinesia and postural instability being major symptoms1. Neuropathologically, it is characterized by the presence of abundant filamentous inclusions of α-synuclein in the form of Lewy bodies and Lewy neurites in some brain cells, including dopaminergic nerve cells of the substantia nigra2. PD is increasingly recognised as a multisystem disorder, with cognitive decline being one of its most common non-motor symptoms. Many patients with PD develop dementia more than 10 years after diagnosis3. PD dementia (PDD) is clinically and neuropathologically similar to dementia with Lewy bodies (DLB), which is diagnosed when cognitive impairment precedes parkinsonian motor signs or begins within one year from their onset4. In PDD, cognitive impairment develops in the setting of well-established PD. Besides PD and DLB, multiple system atrophy (MSA) is the third major synucleinopathy5. It is characterized by the presence of abundant filamentous α-synuclein inclusions in brain cells, especially oligodendrocytes (Papp-Lantos bodies). We previously reported the electron cryo-microscopy structures of two types of α-synuclein filament extracted from the brains of individuals with MSA6. Each filament type is made of two different protofilaments. Here we report that the cryo-electron microscopy structures of α-synuclein filaments from the brains of individuals with PD, PDD and DLB are made of a single protofilament (Lewy fold) that is markedly different from the protofilaments of MSA. These findings establish the existence of distinct molecular conformers of assembled α-synuclein in neurodegenerative disease.
Collapse
|
29
|
Alpha-Synuclein: The Spark That Flames Dopaminergic Neurons, In Vitro and In Vivo Evidence. Int J Mol Sci 2022; 23:ijms23179864. [PMID: 36077253 PMCID: PMC9456396 DOI: 10.3390/ijms23179864] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/15/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022] Open
Abstract
Mitochondria, α-syn fibrils and the endo-lysosomal system are key players in the pathophysiology of Parkinson’s disease. The toxicity of α-syn is amplified by cell-to-cell transmission and aggregation of endogenous species in newly invaded neurons. Toxicity of α-syn PFF was investigated using primary cultures of dopaminergic neurons or on aged mice after infusion in the SNpc and combined with mild inhibition of GBA. In primary dopaminergic neurons, application of α-syn PFF induced a progressive cytotoxicity associated with mitochondrial dysfunction, oxidative stress, and accumulation of lysosomes suggesting that exogenous α-syn reached the lysosome (from the endosome). Counteracting the α-syn endocytosis with a clathrin inhibitor, dopaminergic neuron degeneration was prevented. In vivo, α-syn PFF induced progressive neurodegeneration of dopaminergic neurons associated with motor deficits. Histology revealed progressive aggregation of α-syn and microglial activation and accounted for the seeding role of α-syn, injection of which acted as a spark suggesting a triggering of cell-to-cell toxicity. We showed for the first time that a localized SNpc α-syn administration combined with a slight lysosomal deficiency and aging triggered a progressive lesion. The cellular and animal models described could help in the understanding of the human disease and might contribute to the development of new therapies.
Collapse
|
30
|
Abstract
Multiple system atrophy (MSA) is a rare neurodegenerative disease that is characterized by neuronal loss and gliosis in multiple areas of the central nervous system including striatonigral, olivopontocerebellar and central autonomic structures. Oligodendroglial cytoplasmic inclusions containing misfolded and aggregated α-synuclein are the histopathological hallmark of MSA. A firm clinical diagnosis requires the presence of autonomic dysfunction in combination with parkinsonism that responds poorly to levodopa and/or cerebellar ataxia. Clinical diagnostic accuracy is suboptimal in early disease because of phenotypic overlaps with Parkinson disease or other types of degenerative parkinsonism as well as with other cerebellar disorders. The symptomatic management of MSA requires a complex multimodal approach to compensate for autonomic failure, alleviate parkinsonism and cerebellar ataxia and associated disabilities. None of the available treatments significantly slows the aggressive course of MSA. Despite several failed trials in the past, a robust pipeline of putative disease-modifying agents, along with progress towards early diagnosis and the development of sensitive diagnostic and progression biomarkers for MSA, offer new hope for patients.
Collapse
|
31
|
Zheng R, Yan Y, Pu J, Zhang B. Physiological and Pathological Functions of Neuronal Hemoglobin: A Key Underappreciated Protein in Parkinson's Disease. Int J Mol Sci 2022; 23:9088. [PMID: 36012351 PMCID: PMC9408843 DOI: 10.3390/ijms23169088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
The expression of Hemoglobin (Hb) is not restricted to erythrocytes but is also present in neurons. Hb is selectively enriched in vulnerable mesencephalic dopaminergic neurons of Parkinson's disease (PD) instead of resistant neurons. Controversial results of neuronal Hb levels have been reported in postmortem brains of PD patients: although neuronal Hb levels may decline in PD patients, elderly men with higher Hb levels have an increased risk of developing PD. α-synuclein, a key protein involved in PD pathology, interacts directly with Hb protein and forms complexes in erythrocytes and brains of monkeys and humans. These complexes increase in erythrocytes and striatal cytoplasm, while they decrease in striatal mitochondria with aging. Besides, the colocalization of serine 129-phosphorylated (Pser129) α-synuclein and Hb β chains have been found in the brains of PD patients. Several underlying molecular mechanisms involving mitochondrial homeostasis, α-synuclein accumulation, iron metabolism, and hormone-regulated signaling pathways have been investigated to assess the relationship between neuronal Hb and PD development. The formation of fibrils with neuronal Hb in various neurodegenerative diseases may indicate a common fibrillization pathway and a widespread target that could be applied in neurodegeneration therapy.
Collapse
Affiliation(s)
| | | | - Jiali Pu
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Baorong Zhang
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| |
Collapse
|
32
|
Sidoroff V, Bower P, Stefanova N, Fanciulli A, Stankovic I, Poewe W, Seppi K, Wenning GK, Krismer F. Disease-Modifying Therapies for Multiple System Atrophy: Where Are We in 2022? JOURNAL OF PARKINSON'S DISEASE 2022; 12:1369-1387. [PMID: 35491799 PMCID: PMC9398078 DOI: 10.3233/jpd-223183] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Multiple system atrophy is a rapidly progressive and fatal neurodegenerative disorder. While numerous preclinical studies suggested efficacy of potentially disease modifying agents, none of those were proven to be effective in large-scale clinical trials. Three major strategies are currently pursued in preclinical and clinical studies attempting to slow down disease progression. These target α-synuclein, neuroinflammation, and restoration of neurotrophic support. This review provides a comprehensive overview on ongoing preclinical and clinical developments of disease modifying therapies. Furthermore, we will focus on potential shortcomings of previous studies that can be avoided to improve data quality in future studies of this rare disease.
Collapse
Affiliation(s)
- Victoria Sidoroff
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Pam Bower
- The Multiple System Atrophy Coalition, Inc., McLean, VA, USA
| | - Nadia Stefanova
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Iva Stankovic
- Neurology Clinic, University Clinical Center of Serbia, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Werner Poewe
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Klaus Seppi
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Gregor K Wenning
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Florian Krismer
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
33
|
Tarutani A, Adachi T, Akatsu H, Hashizume Y, Hasegawa K, Saito Y, Robinson AC, Mann DMA, Yoshida M, Murayama S, Hasegawa M. Ultrastructural and biochemical classification of pathogenic tau, α-synuclein and TDP-43. Acta Neuropathol 2022; 143:613-640. [PMID: 35513543 PMCID: PMC9107452 DOI: 10.1007/s00401-022-02426-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 04/12/2022] [Accepted: 04/23/2022] [Indexed: 12/20/2022]
Abstract
Intracellular accumulation of abnormal proteins with conformational changes is the defining neuropathological feature of neurodegenerative diseases. The pathogenic proteins that accumulate in patients' brains adopt an amyloid-like fibrous structure and exhibit various ultrastructural features. The biochemical analysis of pathogenic proteins in sarkosyl-insoluble fractions extracted from patients' brains also shows disease-specific features. Intriguingly, these ultrastructural and biochemical features are common within the same disease group. These differences among the pathogenic proteins extracted from patients' brains have important implications for definitive diagnosis of the disease, and also suggest the existence of pathogenic protein strains that contribute to the heterogeneity of pathogenesis in neurodegenerative diseases. Recent experimental evidence has shown that prion-like propagation of these pathogenic proteins from host cells to recipient cells underlies the onset and progression of neurodegenerative diseases. The reproduction of the pathological features that characterize each disease in cellular and animal models of prion-like propagation also implies that the structural differences in the pathogenic proteins are inherited in a prion-like manner. In this review, we summarize the ultrastructural and biochemical features of pathogenic proteins extracted from the brains of patients with neurodegenerative diseases that accumulate abnormal forms of tau, α-synuclein, and TDP-43, and we discuss how these disease-specific properties are maintained in the brain, based on recent experimental insights.
Collapse
Affiliation(s)
- Airi Tarutani
- Department of Brain and Neuroscience, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Tadashi Adachi
- Division of Neuropathology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Tottori, 683-8503, Japan
| | - Hiroyasu Akatsu
- Department of Neuropathology, Choju Medical Institute, Fukushimura Hospital, Aichi, 441-8124, Japan
- Department of Community-Based Medical Education, Nagoya City University Graduate School of Medical Sciences, Aichi, 467-8601, Japan
| | - Yoshio Hashizume
- Department of Neuropathology, Choju Medical Institute, Fukushimura Hospital, Aichi, 441-8124, Japan
| | - Kazuko Hasegawa
- Division of Neurology, National Hospital Organization, Sagamihara National Hospital, Kanagawa, 252-0392, Japan
| | - Yuko Saito
- Department of Neuropathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan
- Department of Pathology and Laboratory Medicine, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, 187-8551, Japan
| | - Andrew C Robinson
- Faculty of Biology, Medicine and Health, School of Biological Sciences, Division of Neuroscience and Experimental Psychology, Salford Royal Hospital, The University of Manchester, Salford, M6 8HD, UK
| | - David M A Mann
- Faculty of Biology, Medicine and Health, School of Biological Sciences, Division of Neuroscience and Experimental Psychology, Salford Royal Hospital, The University of Manchester, Salford, M6 8HD, UK
| | - Mari Yoshida
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Aichi, 480-1195, Japan
| | - Shigeo Murayama
- Department of Neuropathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan
- Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Osaka, 565-0871, Japan
| | - Masato Hasegawa
- Department of Brain and Neuroscience, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan.
| |
Collapse
|
34
|
Schweighauser M, Arseni D, Bacioglu M, Huang M, Lövestam S, Shi Y, Yang Y, Zhang W, Kotecha A, Garringer HJ, Vidal R, Hallinan GI, Newell KL, Tarutani A, Murayama S, Miyazaki M, Saito Y, Yoshida M, Hasegawa K, Lashley T, Revesz T, Kovacs GG, van Swieten J, Takao M, Hasegawa M, Ghetti B, Spillantini MG, Ryskeldi-Falcon B, Murzin AG, Goedert M, Scheres SHW. Age-dependent formation of TMEM106B amyloid filaments in human brains. Nature 2022; 605:310-314. [PMID: 35344985 PMCID: PMC9095482 DOI: 10.1038/s41586-022-04650-z] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/15/2022] [Indexed: 11/25/2022]
Abstract
Many age-dependent neurodegenerative diseases, such as Alzheimer's and Parkinson's, are characterized by abundant inclusions of amyloid filaments. Filamentous inclusions of the proteins tau, amyloid-β, α-synuclein and transactive response DNA-binding protein (TARDBP; also known as TDP-43) are the most common1,2. Here we used structure determination by cryogenic electron microscopy to show that residues 120-254 of the lysosomal type II transmembrane protein 106B (TMEM106B) also form amyloid filaments in human brains. We determined the structures of TMEM106B filaments from a number of brain regions of 22 individuals with abundant amyloid deposits, including those resulting from sporadic and inherited tauopathies, amyloid-β amyloidoses, synucleinopathies and TDP-43 proteinopathies, as well as from the frontal cortex of 3 individuals with normal neurology and no or only a few amyloid deposits. We observed three TMEM106B folds, with no clear relationships between folds and diseases. TMEM106B filaments correlated with the presence of a 29-kDa sarkosyl-insoluble fragment and globular cytoplasmic inclusions, as detected by an antibody specific to the carboxy-terminal region of TMEM106B. The identification of TMEM106B filaments in the brains of older, but not younger, individuals with normal neurology indicates that they form in an age-dependent manner.
Collapse
Affiliation(s)
| | - Diana Arseni
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Mehtap Bacioglu
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Melissa Huang
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Sofia Lövestam
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Yang Shi
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Yang Yang
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Wenjuan Zhang
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
- Medical Research Council Prion Unit, Institute of Prion Diseases, University College London, London, UK
| | - Abhay Kotecha
- Thermo Fisher Scientific, Eindhoven, The Netherlands
| | - Holly J Garringer
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ruben Vidal
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Grace I Hallinan
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kathy L Newell
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Airi Tarutani
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Shigeo Murayama
- Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, University of Osaka, Osaka, Japan
| | - Masayuki Miyazaki
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yuko Saito
- Department of Neuropathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Mari Yoshida
- Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| | - Kazuko Hasegawa
- Division of Neurology, Sagamihara National Hospital, Sagamihara, Japan
| | - Tammaryn Lashley
- Department of Neurodegenerative Disease and Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - Tamas Revesz
- Department of Neurodegenerative Disease and Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Diseases and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - John van Swieten
- Department of Neurology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Masaki Takao
- Department of Clinical Laboratory, National Center of Neurology and Psychiatry, National Center Hospital, Tokyo, Japan
- Department of Neurology, Mihara Memorial Hospital, Isesaki, Japan
| | - Masato Hasegawa
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | - Alexey G Murzin
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Michel Goedert
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| | - Sjors H W Scheres
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
35
|
Srivastava A, Alam P, Caughey B. RT-QuIC and Related Assays for Detecting and Quantifying Prion-like Pathological Seeds of α-Synuclein. Biomolecules 2022; 12:biom12040576. [PMID: 35454165 PMCID: PMC9030929 DOI: 10.3390/biom12040576] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 02/01/2023] Open
Abstract
Various disease-associated forms or strains of α-synuclein (αSynD) can spread and accumulate in a prion-like fashion during synucleinopathies such as Parkinson’s disease (PD), Lewy body dementia (DLB), and multiple system atrophy (MSA). This capacity for self-propagation has enabled the development of seed amplification assays (SAAs) that can detect αSynD in clinical samples. Notably, α-synuclein real-time quaking-induced conversion (RT-QuIC) and protein misfolding cyclic amplification (PMCA) assays have evolved as ultrasensitive, specific, and relatively practical methods for detecting αSynD in a variety of biospecimens including brain tissue, CSF, skin, and olfactory mucosa from synucleinopathy patients. However, αSyn SAAs still lack concordance in detecting MSA and familial forms of PD/DLB, and the assay parameters show poor correlations with various clinical measures. End-point dilution analysis in αSyn RT-QuIC assays allows for the quantitation of relative amounts of αSynD seeding activity that may correlate moderately with clinical measures and levels of other biomarkers. Herein, we review recent advancements in α-synuclein SAAs for detecting αSynD and describe in detail the modified Spearman–Karber quantification algorithm used with end-point dilutions.
Collapse
|
36
|
Different α-synuclein prion strains cause dementia with Lewy bodies and multiple system atrophy. Proc Natl Acad Sci U S A 2022; 119:2113489119. [PMID: 35115402 PMCID: PMC8833220 DOI: 10.1073/pnas.2113489119] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2021] [Indexed: 11/18/2022] Open
Abstract
Dementia with Lewy bodies (DLB) and multiple system atrophy (MSA) are caused by α-synuclein prions that differ from each other and from those causing Parkinson’s disease (PD). DLB prions differ in their infectivity from those causing MSA or PD. The wild-type, normal version of the α-synuclein protein has the acidic amino acid glutamate (E) at residue 46, while in cases of inherited PD, it is mutated to the basic amino acid lysine (K). Using genetically engineered α-synuclein, we identified unique conditions for propagating MSA and DLB prions. Being able to distinguish among strains of naturally occurring α-synuclein prions may make it possible to develop strain-specific therapeutics for MSA, DLB, and PD. The α-synuclein protein can adopt several different conformations that cause neurodegeneration. Different α-synuclein conformers cause at least three distinct α-synucleinopathies: multiple system atrophy (MSA), dementia with Lewy bodies (DLB), and Parkinson’s disease (PD). In earlier studies, we transmitted MSA to transgenic (Tg) mice and cultured HEK cells both expressing mutant α-synuclein (A53T) but not to cells expressing α-synuclein (E46K). Now, we report that DLB is caused by a strain of α-synuclein prions that is distinct from MSA. Using cultured HEK cells expressing mutant α-synuclein (E46K), we found that DLB prions could be transmitted to these HEK cells. Our results argue that a third strain of α-synuclein prions likely causes PD, but further studies are needed to identify cells and/or Tg mice that express a mutant α-synuclein protein that is permissive for PD prion replication. Our findings suggest that other α-synuclein mutants should give further insights into α-synuclein prion replication, strain formation, and disease pathogenesis, all of which are likely required to discover effective drugs for the treatment of PD as well as the other α-synucleinopathies.
Collapse
|
37
|
Awa S, Suzuki G, Masuda-Suzukake M, Nonaka T, Saito M, Hasegawa M. Phosphorylation of endogenous α-synuclein induced by extracellular seeds initiates at the pre-synaptic region and spreads to the cell body. Sci Rep 2022; 12:1163. [PMID: 35064139 PMCID: PMC8782830 DOI: 10.1038/s41598-022-04780-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/30/2021] [Indexed: 11/16/2022] Open
Abstract
Accumulation of phosphorylated α-synuclein aggregates has been implicated in several diseases, such as Parkinson's disease (PD) and dementia with Lewy bodies (DLB), and is thought to spread in a prion-like manner. Elucidating the mechanisms of prion-like transmission of α-synuclein is important for the development of therapies for these diseases, but little is known about the details. Here, we injected α-synuclein fibrils into the brains of wild-type mice and examined the early phase of the induction of phosphorylated α-synuclein accumulation. We found that phosphorylated α-synuclein appeared within a few days after the intracerebral injection. It was observed initially in presynaptic regions and subsequently extended its localization to axons and cell bodies. These results suggest that extracellular α-synuclein fibrils are taken up into the presynaptic region and seed-dependently convert the endogenous normal α-synuclein that is abundant there to an abnormal phosphorylated form, which is then transported through the axon to the cell body.
Collapse
Affiliation(s)
- Shiori Awa
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Department of Biosciences, College of Humanities and Sciences, Nihon University, Tokyo, Japan.,Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Genjiro Suzuki
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| | - Masami Masuda-Suzukake
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Takashi Nonaka
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Minoru Saito
- Department of Biosciences, College of Humanities and Sciences, Nihon University, Tokyo, Japan.,Department of Correlative Study in Physics and Chemistry, Graduate School of Integrated Basic Sciences, Nihon University, Tokyo, Japan
| | - Masato Hasegawa
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| |
Collapse
|
38
|
Yang Y, Arseni D, Zhang W, Huang M, Lövestam S, Schweighauser M, Kotecha A, Murzin AG, Peak-Chew SY, Macdonald J, Lavenir I, Garringer HJ, Gelpi E, Newell KL, Kovacs GG, Vidal R, Ghetti B, Ryskeldi-Falcon B, Scheres SHW, Goedert M. Cryo-EM structures of amyloid-β 42 filaments from human brains. Science 2022; 375:167-172. [PMID: 35025654 DOI: 10.1126/science.abm7285] [Citation(s) in RCA: 294] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Yang Yang
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Diana Arseni
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Wenjuan Zhang
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Melissa Huang
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Sofia Lövestam
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | | | | | - Alexey G Murzin
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Sew Y Peak-Chew
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | | | - Isabelle Lavenir
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Holly J Garringer
- Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, IN, USA
| | - Ellen Gelpi
- Institute of Neurology, Medical University, Vienna, Austria
| | - Kathy L Newell
- Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, IN, USA
| | - Gabor G Kovacs
- Institute of Neurology, Medical University, Vienna, Austria.,Tanz Centre and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Ruben Vidal
- Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, IN, USA
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, IN, USA
| | | | - Sjors H W Scheres
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Michel Goedert
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
39
|
Nakano H, Hamaguchi T, Ikeda T, Watanabe‐Nakayama T, Ono K, Yamada M. Inactivation of seeding activity of amyloid β‐protein aggregates in vitro. J Neurochem 2021; 160:499-516. [DOI: 10.1111/jnc.15563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/25/2021] [Accepted: 12/14/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Hiroto Nakano
- Department of Neurology and Neurobiology of Aging Kanazawa University Graduate School of Medical Sciences Kanazawa Japan
| | - Tsuyoshi Hamaguchi
- Department of Neurology and Neurobiology of Aging Kanazawa University Graduate School of Medical Sciences Kanazawa Japan
| | - Tokuhei Ikeda
- Department of Neurology and Neurobiology of Aging Kanazawa University Graduate School of Medical Sciences Kanazawa Japan
- Department of Neurology Ishikawa Prefectural Central Hospital Kanazawa Japan
| | - Takahiro Watanabe‐Nakayama
- World Premier International Research Center Initiative (WPI)‐Nano Life Science Institute Kanazawa University Kanazawa Japan
| | - Kenjiro Ono
- Division of Neurology Department of Internal Medicine Showa University Tokyo Japan
| | - Masahito Yamada
- Department of Neurology and Neurobiology of Aging Kanazawa University Graduate School of Medical Sciences Kanazawa Japan
- Department of Internal Medicine Department of Neurology Kudanzaka Hospital Tokyo Japan
| |
Collapse
|
40
|
Malfertheiner K, Stefanova N, Heras-Garvin A. The Concept of α-Synuclein Strains and How Different Conformations May Explain Distinct Neurodegenerative Disorders. Front Neurol 2021; 12:737195. [PMID: 34675870 PMCID: PMC8523670 DOI: 10.3389/fneur.2021.737195] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/08/2021] [Indexed: 12/27/2022] Open
Abstract
In the past few years, an increasing amount of studies primarily based on experimental models have investigated the existence of distinct α-synuclein strains and their different pathological effects. This novel concept could shed light on the heterogeneous nature of α-synucleinopathies, a group of disorders that includes Parkinson's disease, dementia with Lewy bodies and multiple system atrophy, which share as their key-molecular hallmark the abnormal aggregation of α-synuclein, a process that seems pivotal in disease pathogenesis according to experimental observations. However, the etiology of α-synucleinopathies and the initial events leading to the formation of α-synuclein aggregates remains elusive. Hence, the hypothesis that structurally distinct fibrillary assemblies of α-synuclein could have a causative role in the different disease phenotypes and explain, at least to some extent, their specific neurodegenerative, disease progression, and clinical presentation patterns is very appealing. Moreover, the presence of different α-synuclein strains might represent a potential biomarker for the diagnosis of these neurodegenerative disorders. In this regard, the recent use of super resolution techniques and protein aggregation assays has offered the possibility, on the one hand, to elucidate the conformation of α-synuclein pathogenic strains and, on the other hand, to cyclically amplify to detectable levels low amounts of α-synuclein strains in blood, cerebrospinal fluid and peripheral tissue from patients. Thus, the inclusion of these techniques could facilitate the differentiation between α-synucleinopathies, even at early stages, which is crucial for successful therapeutic intervention. This mini-review summarizes the current knowledge on α-synuclein strains and discusses its possible applications and potential benefits.
Collapse
Affiliation(s)
- Katja Malfertheiner
- Laboratory for Translational Neurodegeneration Research, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Nadia Stefanova
- Laboratory for Translational Neurodegeneration Research, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Antonio Heras-Garvin
- Laboratory for Translational Neurodegeneration Research, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
41
|
Han JY, Jang HS, Green AJE, Choi YP. RT-QuIC-based detection of alpha-synuclein seeding activity in brains of dementia with Lewy Body patients and of a transgenic mouse model of synucleinopathy. Prion 2021; 14:88-94. [PMID: 32041499 PMCID: PMC7039666 DOI: 10.1080/19336896.2020.1724608] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
RT-QuIC is a shaking-based cyclic amplification technique originally developed in the prion field to detect minute amounts of scrapie prion protein (PrPSc). In this study, we applied the RT-QuIC assay to investigate a-synuclein (a-syn) seeding activity in brains of Dementia with Lewy Body (DLB) patients and in brains of G2-3 transgenic mice expressing human a-syn with A53T mutation. The results show that a-syn seeding activity varies between patients with detectable dilutions ranging from 10−3 to 10−8 dilutions of brain tissue and is stable under exposures to the cycles of freezing, thawing and sonication. A53T a-syn aggregates from G2-3 transgenic mice greatly favoured A53T recombinant human a-syn as substrates in comparison to wild-type a-syn, suggesting that conformations for wild-type a-syn to be able to adopt are not compatible with that of A53T aggregates from G2-3.
Collapse
Affiliation(s)
- Jung-Youn Han
- Laboratory Animal Center, Division of Research Strategy, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Hyung-Sup Jang
- Laboratory Animal Center, Division of Research Strategy, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Alison J E Green
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, School of Clinical Sciences, University of Edinburgh, Edinburgh, UK
| | - Young Pyo Choi
- Laboratory Animal Center, Division of Research Strategy, Korea Brain Research Institute, Daegu, Republic of Korea
| |
Collapse
|
42
|
Jellinger KA, Wenning GK, Stefanova N. Is Multiple System Atrophy a Prion-like Disorder? Int J Mol Sci 2021; 22:10093. [PMID: 34576255 PMCID: PMC8472631 DOI: 10.3390/ijms221810093] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/16/2021] [Accepted: 09/16/2021] [Indexed: 02/08/2023] Open
Abstract
Multiple system atrophy (MSA) is a rapidly progressive, fatal neurodegenerative disease of uncertain aetiology that belongs to the family of α-synucleinopathies. It clinically presents with parkinsonism, cerebellar, autonomic, and motor impairment in variable combinations. Pathological hallmarks are fibrillary α-synuclein (αSyn)-rich glial cytoplasmic inclusions (GCIs) mainly involving oligodendroglia and to a lesser extent neurons, inducing a multisystem neurodegeneration, glial activation, and widespread demyelinization. The neuronal αSyn pathology of MSA has molecular properties different from Lewy bodies in Parkinson's disease (PD), both of which could serve as a pool of αSyn (prion) seeds that could initiate and drive the pathogenesis of synucleinopathies. The molecular cascade leading to the "prion-like" transfer of "strains" of aggregated αSyn contributing to the progression of the disease is poorly understood, while some presented evidence that MSA is a prion disease. However, this hypothesis is difficult to reconcile with postmortem analysis of human brains and the fact that MSA-like pathology was induced by intracerebral inoculation of human MSA brain homogenates only in homozygous mutant 53T mice, without production of disease-specific GCIs, or with replication of MSA prions in primary astrocyte cultures from transgenic mice expressing human αSyn. Whereas recent intrastriatal injection of Lewy body-derived or synthetic human αSyn fibrils induced PD-like pathology including neuronal αSyn aggregates in macaques, no such transmission of αSyn pathology in non-human primates by MSA brain lysate has been reported until now. Given the similarities between αSyn and prions, there is a considerable debate whether they should be referred to as "prions", "prion-like", "prionoids", or something else. Here, the findings supporting the proposed nature of αSyn as a prion and its self-propagation through seeding as well as the transmissibility of neurodegenerative disorders are discussed. The proof of disease causation rests on the concordance of scientific evidence, none of which has provided convincing evidence for the classification of MSA as a prion disease or its human transmission until now.
Collapse
Affiliation(s)
| | - Gregor K. Wenning
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (G.K.W.); (N.S.)
| | - Nadia Stefanova
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (G.K.W.); (N.S.)
| |
Collapse
|
43
|
Barth M, Bacioglu M, Schwarz N, Novotny R, Brandes J, Welzer M, Mazzitelli S, Häsler LM, Schweighauser M, Wuttke TV, Kronenberg-Versteeg D, Fog K, Ambjørn M, Alik A, Melki R, Kahle PJ, Shimshek DR, Koch H, Jucker M, Tanriöver G. Microglial inclusions and neurofilament light chain release follow neuronal α-synuclein lesions in long-term brain slice cultures. Mol Neurodegener 2021; 16:54. [PMID: 34380535 PMCID: PMC8356412 DOI: 10.1186/s13024-021-00471-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/06/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Proteopathic brain lesions are a hallmark of many age-related neurodegenerative diseases including synucleinopathies and develop at least a decade before the onset of clinical symptoms. Thus, understanding of the initiation and propagation of such lesions is key for developing therapeutics to delay or halt disease progression. METHODS Alpha-synuclein (αS) inclusions were induced in long-term murine and human slice cultures by seeded aggregation. An αS seed-recognizing human antibody was tested for blocking seeding and/or spreading of the αS lesions. Release of neurofilament light chain (NfL) into the culture medium was assessed. RESULTS To study initial stages of α-synucleinopathies, we induced αS inclusions in murine hippocampal slice cultures by seeded aggregation. Induction of αS inclusions in neurons was apparent as early as 1week post-seeding, followed by the occurrence of microglial inclusions in vicinity of the neuronal lesions at 2-3 weeks. The amount of αS inclusions was dependent on the type of αS seed and on the culture's genetic background (wildtype vs A53T-αS genotype). Formation of αS inclusions could be monitored by neurofilament light chain protein release into the culture medium, a fluid biomarker of neurodegeneration commonly used in clinical settings. Local microinjection of αS seeds resulted in spreading of αS inclusions to neuronally connected hippocampal subregions, and seeding and spreading could be inhibited by an αS seed-recognizing human antibody. We then applied parameters of the murine cultures to surgical resection-derived adult human long-term neocortical slice cultures from 22 to 61-year-old donors. Similarly, in these human slice cultures, proof-of-principle induction of αS lesions was achieved at 1week post-seeding in combination with viral A53T-αS expressions. CONCLUSION The successful translation of these brain cultures from mouse to human with the first reported induction of human αS lesions in a true adult human brain environment underlines the potential of this model to study proteopathic lesions in intact mouse and now even aged human brain environments.
Collapse
Affiliation(s)
- Melanie Barth
- DZNE, German Center for Neurodegenerative Diseases, 72076 Tuebingen, Germany
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tuebingen, 72076 Tuebingen, Germany
- Graduate Training Center of Neuroscience, University of Tuebingen, 72076 Tuebingen, Germany
| | - Mehtap Bacioglu
- DZNE, German Center for Neurodegenerative Diseases, 72076 Tuebingen, Germany
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tuebingen, 72076 Tuebingen, Germany
- Graduate Training Center of Neuroscience, University of Tuebingen, 72076 Tuebingen, Germany
| | - Niklas Schwarz
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, 72076 Tuebingen, Germany
| | - Renata Novotny
- DZNE, German Center for Neurodegenerative Diseases, 72076 Tuebingen, Germany
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tuebingen, 72076 Tuebingen, Germany
| | - Janine Brandes
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tuebingen, 72076 Tuebingen, Germany
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, 72076 Tuebingen, Germany
| | - Marc Welzer
- DZNE, German Center for Neurodegenerative Diseases, 72076 Tuebingen, Germany
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tuebingen, 72076 Tuebingen, Germany
- Graduate Training Center of Neuroscience, University of Tuebingen, 72076 Tuebingen, Germany
| | - Sonia Mazzitelli
- DZNE, German Center for Neurodegenerative Diseases, 72076 Tuebingen, Germany
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tuebingen, 72076 Tuebingen, Germany
| | - Lisa M. Häsler
- DZNE, German Center for Neurodegenerative Diseases, 72076 Tuebingen, Germany
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tuebingen, 72076 Tuebingen, Germany
| | - Manuel Schweighauser
- DZNE, German Center for Neurodegenerative Diseases, 72076 Tuebingen, Germany
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tuebingen, 72076 Tuebingen, Germany
| | - Thomas V. Wuttke
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, 72076 Tuebingen, Germany
- Department of Neurosurgery, University of Tuebingen, 72076 Tuebingen, Germany
| | - Deborah Kronenberg-Versteeg
- DZNE, German Center for Neurodegenerative Diseases, 72076 Tuebingen, Germany
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tuebingen, 72076 Tuebingen, Germany
| | - Karina Fog
- Division of Neuroscience, H. Lundbeck A/S, 2500 Valby, Denmark
| | - Malene Ambjørn
- Division of Neuroscience, H. Lundbeck A/S, 2500 Valby, Denmark
| | - Ania Alik
- MIRCen, CEA and Laboratory of Neurodegenerative Diseases, CNRS, Institut François Jacob, 92265 Fontenay-aux-Roses, France
| | - Ronald Melki
- MIRCen, CEA and Laboratory of Neurodegenerative Diseases, CNRS, Institut François Jacob, 92265 Fontenay-aux-Roses, France
| | - Philipp J. Kahle
- DZNE, German Center for Neurodegenerative Diseases, 72076 Tuebingen, Germany
- Laboratory of Functional Neurogenetics, Department of Neurodegeneration, Hertie-Institute for Clinical Brain Research, University of Tuebingen, 72076 Tuebingen, Germany
| | - Derya R. Shimshek
- Neuroscience Research, Novartis Institutes for BioMedical Research, CH-4056 Basel, Switzerland
| | - Henner Koch
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, 72076 Tuebingen, Germany
- Department of Epileptology, Neurology, RWTH Aachen University, Aachen, Germany
| | - Mathias Jucker
- DZNE, German Center for Neurodegenerative Diseases, 72076 Tuebingen, Germany
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tuebingen, 72076 Tuebingen, Germany
| | - Gaye Tanriöver
- DZNE, German Center for Neurodegenerative Diseases, 72076 Tuebingen, Germany
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tuebingen, 72076 Tuebingen, Germany
| |
Collapse
|
44
|
Keskin I, Ekhtiari Bidhendi E, Marklund M, Andersen PM, Brännström T, Marklund SL, Nordström U. Peripheral administration of SOD1 aggregates does not transmit pathogenic aggregation to the CNS of SOD1 transgenic mice. Acta Neuropathol Commun 2021; 9:111. [PMID: 34158126 PMCID: PMC8220797 DOI: 10.1186/s40478-021-01211-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/07/2021] [Indexed: 01/02/2023] Open
Abstract
The deposition of aggregated proteins is a common neuropathological denominator for neurodegenerative disorders. Experimental evidence suggests that disease propagation involves prion-like mechanisms that cause the spreading of template-directed aggregation of specific disease-associated proteins. In transgenic (Tg) mouse models of superoxide dismutase-1 (SOD1)-linked amyotrophic lateral sclerosis (ALS), inoculation of minute amounts of human SOD1 (hSOD1) aggregates into the spinal cord or peripheral nerves induces premature ALS-like disease and template-directed hSOD1 aggregation that spreads along the neuroaxis. This infectious nature of spreading pathogenic aggregates might have implications for the safety of laboratory and medical staff, recipients of donated blood or tissue, or possibly close relatives and caregivers. Here we investigate whether transmission of ALS-like disease is unique to the spinal cord and peripheral nerve inoculations or if hSOD1 aggregation might spread from the periphery into the central nervous system (CNS). We inoculated hSOD1 aggregate seeds into the peritoneal cavity, hindlimb skeletal muscle or spinal cord of adult Tg mice expressing mutant hSOD1. Although we used up to 8000 times higher dose—compared to the lowest dose transmitting disease in spinal cord inoculations—the peripheral inoculations did not transmit seeded aggregation to the CNS or premature ALS-like disease in hSOD1 Tg mice. Nor was any hSOD1 aggregation detected in the liver, kidney, skeletal muscle or sciatic nerve. To explore potential reasons for the lack of disease transmission, we examined the stability of hSOD1 aggregates and found them to be highly vulnerable to both proteases and detergent. Our findings suggest that exposed individuals and personnel handling samples from ALS patients are at low risk of any potential transmission of seeded hSOD1 aggregation.
Collapse
|
45
|
Creekmore BC, Chang YW, Lee EB. The Cryo-EM Effect: Structural Biology of Neurodegenerative Disease Aggregates. J Neuropathol Exp Neurol 2021; 80:514-529. [PMID: 33970243 PMCID: PMC8177849 DOI: 10.1093/jnen/nlab039] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neurogenerative diseases are characterized by diverse protein aggregates with a variety of microscopic morphologic features. Although ultrastructural studies of human neurodegenerative disease tissues have been conducted since the 1960s, only recently have near-atomic resolution structures of neurodegenerative disease aggregates been described. Solid-state nuclear magnetic resonance spectroscopy and X-ray crystallography have provided near-atomic resolution information about in vitro aggregates but pose logistical challenges to resolving the structure of aggregates derived from human tissues. Recent advances in cryo-electron microscopy (cryo-EM) have provided the means for near-atomic resolution structures of tau, amyloid-β (Aβ), α-synuclein (α-syn), and transactive response element DNA-binding protein of 43 kDa (TDP-43) aggregates from a variety of diseases. Importantly, in vitro aggregate structures do not recapitulate ex vivo aggregate structures. Ex vivo tau aggregate structures indicate individual tauopathies have a consistent aggregate structure unique from other tauopathies. α-syn structures show that even within a disease, aggregate heterogeneity may correlate to disease course. Ex vivo structures have also provided insight into how posttranslational modifications may relate to aggregate structure. Though there is less cryo-EM data for human tissue-derived TDP-43 and Aβ, initial structural studies provide a basis for future endeavors. This review highlights structural variations across neurodegenerative diseases and reveals fundamental differences between experimental systems and human tissue derived protein inclusions.
Collapse
Affiliation(s)
- Benjamin C Creekmore
- From the Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Graduate Program in Biochemistry and Molecular Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yi-Wei Chang
- From the Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Edward B Lee
- Send correspondence to: Edward B. Lee, MD, PhD, Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 613A Stellar Chance Laboratories, 422 Curie Blvd., Philadelphia, PA 19104, USA; E-mail:
| |
Collapse
|
46
|
Hass EW, Sorrentino ZA, Lloyd GM, McFarland NR, Prokop S, Giasson BI. Robust α-synuclein pathology in select brainstem neuronal populations is a potential instigator of multiple system atrophy. Acta Neuropathol Commun 2021; 9:80. [PMID: 33941284 PMCID: PMC8091528 DOI: 10.1186/s40478-021-01173-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 03/28/2021] [Indexed: 12/23/2022] Open
Abstract
Multiple system atrophy (MSA) is an insidious middle age-onset neurodegenerative disease that clinically presents with variable degrees of parkinsonism and cerebellar ataxia. The pathological hallmark of MSA is the progressive accumulation of glial cytoplasmic inclusions (GCIs) in oligodendrocytes that are comprised of α-synuclein (αSyn) aberrantly polymerized into fibrils. Experimentally, MSA brain samples display a high level of seeding activity to induce further αSyn aggregation by a prion-like conformational mechanism. Paradoxically, αSyn is predominantly a neuronal brain protein, with only marginal levels expressed in normal or diseased oligodendrocytes, and αSyn inclusions in other neurodegenerative diseases, including Parkinson's disease and Dementia with Lewy bodies, are primarily found in neurons. Although GCIs are the hallmark of MSA, using a series of new monoclonal antibodies targeting the carboxy-terminal region of αSyn, we demonstrate that neuronal αSyn pathology in MSA patient brains is remarkably abundant in the pontine nuclei and medullary inferior olivary nucleus. This neuronal αSyn pathology has distinct histological properties compared to GCIs, which allows it to remain concealed to many routine detection methods associated with altered biochemical properties of the carboxy-terminal domain of αSyn. We propose that these previously underappreciated sources of aberrant αSyn could serve as a pool of αSyn prion seeds that can initiate and continue to drive the pathogenesis of MSA.
Collapse
Affiliation(s)
- Ethan W Hass
- Department of Neuroscience, College of Medicine, University of Florida, BMS J483/CTRND, 1275 Center Drive, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Zachary A Sorrentino
- Department of Neuroscience, College of Medicine, University of Florida, BMS J483/CTRND, 1275 Center Drive, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Grace M Lloyd
- Department of Neuroscience, College of Medicine, University of Florida, BMS J483/CTRND, 1275 Center Drive, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Nikolaus R McFarland
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Stefan Prokop
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
- Department of Pathology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Benoit I Giasson
- Department of Neuroscience, College of Medicine, University of Florida, BMS J483/CTRND, 1275 Center Drive, Gainesville, FL, 32610, USA.
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
47
|
Sokratian A, Ziaee J, Kelly K, Chang A, Bryant N, Wang S, Xu E, Li JY, Wang SH, Ervin J, Swain SM, Liddle RA, West AB. Heterogeneity in α-synuclein fibril activity correlates to disease phenotypes in Lewy body dementia. Acta Neuropathol 2021; 141:547-564. [PMID: 33641009 DOI: 10.1007/s00401-021-02288-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 12/16/2022]
Abstract
α-Synuclein aggregation underlies pathological changes in Lewy body dementia. Recent studies highlight structural variabilities associated with α-synuclein aggregates in patient populations. Here, we develop a quantitative real-time quaking-induced conversion (qRT-QuIC) assay to measure permissive α-synuclein fibril-templating activity in tissues and cerebrospinal fluid (CSF). The assay is anchored through reference panels of stabilized ultra-short fibril particles. In humanized α-synuclein transgenic mice, qRT-QuIC identifies differential levels of fibril activity across the brain months before the deposition of phosphorylated α-synuclein in susceptible neurons. α-Synuclein fibril activity in cortical brain extracts from dementia with Lewy bodies (DLB) correlates with activity in matched ventricular CSF. Elevated α-synuclein fibril activity in CSF corresponds to reduced survival in DLB. α-Synuclein fibril particles amplified from cases with high fibril activity show superior templating in the formation of new inclusions in neurons relative to the same number of fibril particles amplified from DLB cases with low fibril activity. Our results highlight a previously unknown broad heterogeneity of fibril-templating activities in DLB that may contribute to disease phenotypes. We predict that quantitative assessments of fibril activities in CSF that correlate to fibril activities in brain tissue will help stratify patient populations as well as measure therapeutic responses to facilitate the development of α-synuclein-targeted therapeutics.
Collapse
|
48
|
Tarutani A, Miyata H, Nonaka T, Hasegawa K, Yoshida M, Saito Y, Murayama S, Robinson AC, Mann DMA, Tomita T, Hasegawa M. Human tauopathy-derived tau strains determine the substrates recruited for templated amplification. Brain 2021; 144:2333-2348. [PMID: 33693528 PMCID: PMC8418341 DOI: 10.1093/brain/awab091] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 02/14/2021] [Accepted: 02/25/2021] [Indexed: 11/25/2022] Open
Abstract
Tauopathies are a subset of neurodegenerative diseases characterized by abnormal tau inclusions. Specifically, three-repeat tau and four-repeat tau in Alzheimer’s disease, three-repeat tau in Pick’s disease (PiD) and four-repeat tau in progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD) form amyloid-like fibrous structures that accumulate in neurons and/or glial cells. Amplification and cell-to-cell transmission of abnormal tau based on the prion hypothesis are believed to explain the onset and progression of tauopathies. Recent studies support not only the self-propagation of abnormal tau, but also the presence of conformationally distinct tau aggregates, namely tau strains. Cryogenic electron microscopy analyses of patient-derived tau filaments have revealed disease-specific ordered tau structures. However, it remains unclear whether the ultrastructural and biochemical properties of tau strains are inherited during the amplification of abnormal tau in the brain. In this study, we investigated template-dependent amplification of tau aggregates using a cellular model of seeded aggregation. Tau strains extracted from human tauopathies caused strain-dependent accumulation of insoluble filamentous tau in SH-SY5Y cells. The seeding activity towards full-length four-repeat tau substrate was highest in CBD-tau seeds, followed by PSP-tau and Alzheimer’s disease (AD)-tau seeds, while AD-tau seeds showed higher seeding activity than PiD-tau seeds towards three-repeat tau substrate. Abnormal tau amplified in cells inherited the ultrastructural and biochemical properties of the original seeds. These results strongly suggest that the structural differences of patient-derived tau strains underlie the diversity of tauopathies, and that seeded aggregation and filament formation mimicking the pathogenesis of sporadic tauopathy can be reproduced in cultured cells. Our results indicate that the disease-specific conformation of tau aggregates determines the tau isoform substrate that is recruited for templated amplification, and also influences the prion-like seeding activity.
Collapse
Affiliation(s)
- Airi Tarutani
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan.,Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Haruka Miyata
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Takashi Nonaka
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Kazuko Hasegawa
- Division of Neurology, Sagamihara National Hospital, Kanagawa, 252-0392, Japan
| | - Mari Yoshida
- Department of Neuropathology, Aichi Medical University, Aichi, 480-1195, Japan
| | - Yuko Saito
- Department of Neuropathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan.,Department of Pathology and Laboratory Medicine, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, 187-8551, Japan
| | - Shigeo Murayama
- Department of Neuropathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan.,Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Osaka, 565-0871, Japan
| | - Andrew C Robinson
- Faculty of Biology, Medicine and Health, School of Biological Sciences, Division of Neuroscience & Experimental Psychology, The University of Manchester, Salford Royal Hospital, Salford, M6 8HD, UK
| | - David M A Mann
- Faculty of Biology, Medicine and Health, School of Biological Sciences, Division of Neuroscience & Experimental Psychology, The University of Manchester, Salford Royal Hospital, Salford, M6 8HD, UK
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Masato Hasegawa
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| |
Collapse
|
49
|
Ferreira N, Gonçalves NP, Jan A, Jensen NM, van der Laan A, Mohseni S, Vægter CB, Jensen PH. Trans-synaptic spreading of alpha-synuclein pathology through sensory afferents leads to sensory nerve degeneration and neuropathic pain. Acta Neuropathol Commun 2021; 9:31. [PMID: 33632316 PMCID: PMC7905893 DOI: 10.1186/s40478-021-01131-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 02/11/2021] [Indexed: 01/13/2023] Open
Abstract
Pain is a common non-motor symptom of Parkinson’s disease (PD), with current limited knowledge of its pathophysiology. Here, we show that peripheral inoculation of mouse alpha-synuclein (α-Syn) pre-formed fibrils, in a transgenic mouse model of PD, elicited retrograde trans-synaptic spreading of α-Syn pathology (pSer129) across sensory neurons and dorsal nerve roots, reaching central pain processing regions, including the spinal dorsal horn and the projections of the anterolateral system in the central nervous system (CNS). Pathological peripheral to CNS propagation of α-Syn aggregates along interconnected neuronal populations within sensory afferents, was concomitant with impaired nociceptive response, reflected by mechanical allodynia, reduced nerve conduction velocities (sensory and motor) and degeneration of small- and medium-sized myelinated fibers. Our findings show a link between the transneuronal propagation of α-Syn pathology with sensory neuron dysfunction and neuropathic impairment, suggesting promising avenues of investigation into the mechanisms underlying pain in PD.
Collapse
|
50
|
Lövestam S, Schweighauser M, Matsubara T, Murayama S, Tomita T, Ando T, Hasegawa K, Yoshida M, Tarutani A, Hasegawa M, Goedert M, Scheres SHW. Seeded assembly in vitro does not replicate the structures of α-synuclein filaments from multiple system atrophy. FEBS Open Bio 2021; 11:999-1013. [PMID: 33548114 PMCID: PMC8016116 DOI: 10.1002/2211-5463.13110] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/04/2021] [Indexed: 11/26/2022] Open
Abstract
The propagation of conformational strains by templated seeding is central to the prion concept. Seeded assembly of α‐synuclein into filaments is believed to underlie the prion‐like spreading of protein inclusions in a number of human neurodegenerative diseases, including Parkinson's disease, dementia with Lewy bodies (DLB) and multiple system atrophy (MSA). We previously determined the atomic structures of α‐synuclein filaments from the putamen of five individuals with MSA. Here, we used filament preparations from three of these brains for the in vitro seeded assembly of recombinant human α‐synuclein. We find that the structures of the seeded assemblies differ from those of the seeds, suggesting that additional, as yet unknown, factors play a role in the propagation of the seeds. Identification of these factors will be essential for understanding the prion‐like spreading of α‐synuclein proteinopathies.
Collapse
Affiliation(s)
| | | | - Tomoyasu Matsubara
- Department of Neuropathology, Tokyo Metropolitan Institute of Gerontology, Japan
| | - Shigeo Murayama
- Department of Neuropathology, Tokyo Metropolitan Institute of Gerontology, Japan
| | - Taisuke Tomita
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan
| | - Takashi Ando
- Department of Neurology, Nagoya University Graduate School of Medicine, Japan
| | | | - Mari Yoshida
- Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| | - Airi Tarutani
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan.,Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Japan
| | - Masato Hasegawa
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Japan
| | | | | |
Collapse
|