1
|
Donison N, Palik J, Volkening K, Strong MJ. Cellular and molecular mechanisms of pathological tau phosphorylation in traumatic brain injury: implications for chronic traumatic encephalopathy. Mol Neurodegener 2025; 20:56. [PMID: 40349043 PMCID: PMC12065185 DOI: 10.1186/s13024-025-00842-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 04/14/2025] [Indexed: 05/14/2025] Open
Abstract
Tau protein plays a critical role in the physiological functioning of the central nervous system by providing structural integrity to the cytoskeletal architecture of neurons and glia through microtubule assembly and stabilization. Under certain pathological conditions, tau is aberrantly phosphorylated and aggregates into neurotoxic fibrillary tangles. The aggregation and cell-to-cell propagation of pathological tau leads to the progressive deterioration of the nervous system. The clinical entity of traumatic brain injury (TBI) ranges from mild to severe and can promote tau aggregation by inducing cellular mechanisms and signalling pathways that increase tau phosphorylation and aggregation. Chronic traumatic encephalopathy (CTE), which is a consequence of repetitive TBI, is a unique tauopathy characterized by pathological tau aggregates located at the depths of the sulci and surrounding blood vessels. The mechanisms leading to increased tau phosphorylation and aggregation in CTE remain to be fully defined but are likely the result of the primary and secondary injury sequelae associated with TBI. The primary injury includes physical and mechanical damage resulting from the head impact and accompanying forces that cause blood-brain barrier disruption and axonal shearing, which primes the central nervous system to be more vulnerable to the subsequent secondary injury mechanisms. A complex interplay of neuroinflammation, oxidative stress, excitotoxicity, and mitochondrial dysfunction activate kinase and cell death pathways, increasing tau phosphorylation, aggregation and neurodegeneration. In this review, we explore the most recent insights into the mechanisms of tau phosphorylation associated with TBI and propose how multiple cellular pathways converge on tau phosphorylation, which may contribute to CTE progression.
Collapse
Affiliation(s)
- Neil Donison
- Molecular Medicine Group, Robarts Research Institute, Western University, London, ON, Canada
- Neuroscience Graduate Program, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Jacqueline Palik
- Molecular Medicine Group, Robarts Research Institute, Western University, London, ON, Canada
| | - Kathryn Volkening
- Molecular Medicine Group, Robarts Research Institute, Western University, London, ON, Canada
- Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Michael J Strong
- Molecular Medicine Group, Robarts Research Institute, Western University, London, ON, Canada.
- Neuroscience Graduate Program, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
- Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
- Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
| |
Collapse
|
2
|
Han X, Zhang Y, Petrosky JN, Bald S, Sherva RM, Labadorf A, Cherry JD, Chung J, Farrell K, Abdolmohammadi B, Durape S, Martin BM, Palmisano JN, Farrell JJ, Alvarez VE, Huber BR, Dwyer B, Daneshvar DH, Dams-O'Connor K, Jun GR, Lunetta KL, Goldstein LE, Katz DI, Cantu RC, Shenton ME, Cummings JL, Reiman EM, Stern RA, Alosco ML, Tripodis Y, Farrer LA, Stein TD, Crary JF, McKee AC, Mez J. A structural haplotype in the 17q21.31 MAPT region is associated with increased risk for chronic traumatic encephalopathy endophenotypes. Cell Rep Med 2025:102084. [PMID: 40239644 DOI: 10.1016/j.xcrm.2025.102084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/02/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025]
Abstract
Chronic traumatic encephalopathy (CTE) is a neurodegenerative tauopathy associated with repetitive head impact (RHI) exposure. Genetic variation in the 17q21.31 region, containing microtubule-associated protein tau (MAPT), has been implicated in tauopathies but has not been investigated in CTE. The region includes a megabase-long inversion (H1/H2) and copy-number variations, including α, β, and γ segments, which can be characterized as nine segregating structural haplotypes. We leveraged array SNP data and a reference panel across the 17q21.31 region to impute structural haplotypes and test their association with CTE endophenotypes in 447 European ancestry brain donors with RHI exposure. The H1β1γ1 haplotype was significantly associated with dementia and semi-quantitative tau burden in multiple cortical and medial temporal regions commonly affected in CTE. H1β1γ1 differential expression analyses in dorsolateral frontal cortex implicated cis-acting genes and inflammatory pathways. Taken together, the H1β1γ1 haplotype may help explain CTE heterogeneity among those with similar RHI exposure.
Collapse
Affiliation(s)
- Xudong Han
- Bioinformatics Graduate Program, Boston University, Boston, MA, USA; Section of Biomedical Genetics, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Yichi Zhang
- Bioinformatics Graduate Program, Boston University, Boston, MA, USA
| | | | - Sarah Bald
- Bioinformatics Graduate Program, Boston University, Boston, MA, USA
| | - Richard M Sherva
- Section of Biomedical Genetics, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Adam Labadorf
- Bioinformatics Graduate Program, Boston University, Boston, MA, USA; Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston VA Healthcare System, Boston, MA, USA
| | - Jonathan D Cherry
- Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston VA Healthcare System, Boston, MA, USA; Boston University Chronic Traumatic Encephalopathy Center, Boston University, Boston, MA, USA; Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Jaeyoon Chung
- Section of Biomedical Genetics, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Kurt Farrell
- Departments of Pathology, Neuroscience, and Artificial Intelligence & Human Health, Neuropathology Brain Bank & Research CoRE, Friedman Brain Institute, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bobak Abdolmohammadi
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston University Chronic Traumatic Encephalopathy Center, Boston University, Boston, MA, USA; Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, MA, USA
| | - Shruti Durape
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston University Chronic Traumatic Encephalopathy Center, Boston University, Boston, MA, USA
| | - Brett M Martin
- Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston University Chronic Traumatic Encephalopathy Center, Boston University, Boston, MA, USA; Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, MA, USA
| | - Joseph N Palmisano
- Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston University Chronic Traumatic Encephalopathy Center, Boston University, Boston, MA, USA; Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, MA, USA
| | - John J Farrell
- Section of Biomedical Genetics, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Victor E Alvarez
- Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston VA Healthcare System, Boston, MA, USA; Boston University Chronic Traumatic Encephalopathy Center, Boston University, Boston, MA, USA; Bedford VA Healthcare System, Bedford, MA, USA
| | - Bertrand R Huber
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston VA Healthcare System, Boston, MA, USA; Boston University Chronic Traumatic Encephalopathy Center, Boston University, Boston, MA, USA; Bedford VA Healthcare System, Bedford, MA, USA
| | - Brigid Dwyer
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston University Chronic Traumatic Encephalopathy Center, Boston University, Boston, MA, USA; Braintree Rehabilitation Hospital, Braintree, MA, USA
| | - Daniel H Daneshvar
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA
| | - Kristen Dams-O'Connor
- Department of Rehabilitation and Human Performance, Brain Injury Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gyungah R Jun
- Section of Biomedical Genetics, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA; Department of Ophthalmology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Kathryn L Lunetta
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Lee E Goldstein
- Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston University Chronic Traumatic Encephalopathy Center, Boston University, Boston, MA, USA; Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Department of Ophthalmology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Departments of Biomedical, Electrical & Computer Engineering, Boston University College of Engineering, Boston, MA, USA; Departments of Radiology and Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Douglas I Katz
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston University Chronic Traumatic Encephalopathy Center, Boston University, Boston, MA, USA; Braintree Rehabilitation Hospital, Braintree, MA, USA
| | - Robert C Cantu
- Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston University Chronic Traumatic Encephalopathy Center, Boston University, Boston, MA, USA; Department of Neurosurgery, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Department of Neurosurgery, Emerson Hospital, Concord, MA, USA
| | - Martha E Shenton
- Boston VA Healthcare System, Boston, MA, USA; Psychiatry Neuroimaging Laboratory, Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Boston, MA, USA
| | - Jeffrey L Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Eric M Reiman
- Banner Alzheimer's Institute, University of Arizona, Arizona State University, Translational Genomics Research Institute, and Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Robert A Stern
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston University Chronic Traumatic Encephalopathy Center, Boston University, Boston, MA, USA; Department of Neurosurgery, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Michael L Alosco
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston University Chronic Traumatic Encephalopathy Center, Boston University, Boston, MA, USA
| | - Yorghos Tripodis
- Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston University Chronic Traumatic Encephalopathy Center, Boston University, Boston, MA, USA; Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Lindsay A Farrer
- Section of Biomedical Genetics, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA; Department of Ophthalmology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Thor D Stein
- Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston VA Healthcare System, Boston, MA, USA; Boston University Chronic Traumatic Encephalopathy Center, Boston University, Boston, MA, USA; Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Bedford VA Healthcare System, Bedford, MA, USA
| | - John F Crary
- Departments of Pathology, Neuroscience, and Artificial Intelligence & Human Health, Neuropathology Brain Bank & Research CoRE, Friedman Brain Institute, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ann C McKee
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston VA Healthcare System, Boston, MA, USA; Boston University Chronic Traumatic Encephalopathy Center, Boston University, Boston, MA, USA; Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Bedford VA Healthcare System, Bedford, MA, USA
| | - Jesse Mez
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston University Chronic Traumatic Encephalopathy Center, Boston University, Boston, MA, USA.
| |
Collapse
|
3
|
Zedde M, Piazza F, Pascarella R. Traumatic Brain Injury and Chronic Traumatic Encephalopathy: Not Only Trigger for Neurodegeneration but Also for Cerebral Amyloid Angiopathy? Biomedicines 2025; 13:881. [PMID: 40299513 PMCID: PMC12024568 DOI: 10.3390/biomedicines13040881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 03/25/2025] [Accepted: 04/02/2025] [Indexed: 04/30/2025] Open
Abstract
Traumatic brain injury (TBI) has been linked to the development of neurodegenerative diseases, particularly Alzheimer's disease (AD) and chronic traumatic encephalopathy (CTE). This review critically assesses the relationship between TBI and cerebral amyloid angiopathy (CAA), highlighting the complexities of diagnosing CAA in the context of prior head trauma. While TBI has been shown to facilitate the accumulation of amyloid plaques and tau pathology, the interplay between neurodegenerative processes and vascular contributions remains underexplored. Epidemiological studies indicate that TBI increases the risk of various dementias, not solely AD, emphasizing the need for a comprehensive understanding of TBI-related neurodegeneration as a polypathological condition. This review further delineates the mechanisms by which TBI can lead to CAA, particularly focusing on the vascular changes that occur post-injury. It discusses the challenges associated with diagnosing CAA after TBI, particularly due to the overlapping symptoms and pathologies that complicate clinical evaluations. Notably, this review includes a clinical case that exemplifies the diagnostic challenges posed by TBI in patients with subsequent cognitive decline and vascular pathology. By synthesizing current research on TBI, CAA, and associated neurodegenerative conditions, this review aims to foster a more nuanced understanding of how these conditions interact and contribute to long-term cognitive outcomes. The findings underscore the importance of developing standardized diagnostic criteria and imaging techniques to better elucidate the relationship between TBI and vascular pathology, which could enhance clinical interventions and inform therapeutic strategies for affected individuals.
Collapse
Affiliation(s)
- Marialuisa Zedde
- Neurology Unit, Stroke Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy
- CAA and AD Translational Research and Biomarkers Lab, School of Medicine, University of Milano-Bicocca, 20900 Monza, Italy; (F.P.); (R.P.)
- Neuroradiology Unit, Ospedale Santa Maria della Misericordia, AULSS 5 Polesana, 45100 Rovigo, Italy
| | - Fabrizio Piazza
- CAA and AD Translational Research and Biomarkers Lab, School of Medicine, University of Milano-Bicocca, 20900 Monza, Italy; (F.P.); (R.P.)
- Neuroradiology Unit, Ospedale Santa Maria della Misericordia, AULSS 5 Polesana, 45100 Rovigo, Italy
- iCAβ International Network
| | - Rosario Pascarella
- CAA and AD Translational Research and Biomarkers Lab, School of Medicine, University of Milano-Bicocca, 20900 Monza, Italy; (F.P.); (R.P.)
- Neuroradiology Unit, Ospedale Santa Maria della Misericordia, AULSS 5 Polesana, 45100 Rovigo, Italy
- SINdem Study Group “The Inflammatory Cerebral Amyloid Angiopathy and Alzheimer’s Disease Biomarkers”
| |
Collapse
|
4
|
Yang C, Lee GB, Hao L, Hu F. TMEM106B deficiency leads to alterations in lipid metabolism and obesity in the TDP-43 Q331K knock-in mouse model. Commun Biol 2025; 8:315. [PMID: 40011708 PMCID: PMC11865606 DOI: 10.1038/s42003-025-07752-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 02/15/2025] [Indexed: 02/28/2025] Open
Abstract
The TMEM106B gene, encoding a lysosomal membrane protein, is closely linked with brain aging and neurodegeneration. TMEM106B has been identified as a risk factor for several neurodegenerative diseases characterized by aggregation of the RNA-binding protein TDP-43, including frontotemporal lobar degeneration (FTLD) and limbic-predominant age-related TDP-43 encephalopathy (LATE). To investigate the role of TMEM106B in TDP-43 proteinopathy, we ablated TMEM106B in the TDP-43Q331K knock-in mouse line, which expresses an ALS-linked TDP-43 mutation at endogenous levels. We found that TMEM106B deficiency leads to glial activation, Purkinje cell loss, and behavioral deficits in TDP-43Q331K mice without inducing typical TDP-43 pathology. Interestingly, ablation of TMEM106B results in significant body weight gain, increased fat deposition, and hepatic triglyceride (TG) accumulation in TDP-43Q331K mice. In addition, lipidomic and transcriptome analysis shows a profound alteration in lipid metabolism in the liver of TDP-43Q331KTmem106b-/- mice. Our studies reveal a novel function of TMEM106B and TDP-43 in lipid metabolism and provide new insights into their roles in neurodegeneration.
Collapse
Affiliation(s)
- Cha Yang
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Gwang Bin Lee
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, US
| | - Ling Hao
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, US
| | - Fenghua Hu
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
5
|
Held S, Erck C, Kemppainen S, Bleibaum F, Giridhar NJ, Feederle R, Krenner C, Juopperi SP, Calliari A, Mentrup T, Schröder B, Dickson DW, Rauramaa T, Petrucelli L, Prudencio M, Hiltunen M, Lüningschrör P, Capell A, Damme M. Physiological shedding and C-terminal proteolytic processing of TMEM106B. Cell Rep 2025; 44:115107. [PMID: 39709600 DOI: 10.1016/j.celrep.2024.115107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/08/2024] [Accepted: 12/03/2024] [Indexed: 12/24/2024] Open
Abstract
Genetic variants in TMEM106B, coding for a transmembrane protein of unknown function, have been identified as critical genetic modulators in various neurodegenerative diseases with a strong effect in patients with frontotemporal degeneration. The luminal domain of TMEM106B can form amyloid-like fibrils upon proteolysis. Whether this luminal domain is generated under physiological conditions and which protease(s) are involved in shedding remain unclear. We developed a commercially available antibody against the luminal domain of TMEM106B, allowing a detailed survey of the proteolytic processing under physiological conditions in cellular models and TMEM106B-related mouse models. Moreover, fibrillary TMEM106B was detected in human autopsy material. We find that the luminal domain is generated by multiple lysosomal cysteine-type proteases. Cysteine-type proteases perform additional C-terminal trimming, for which experimental evidence has been lacking. The presented results allow an in-depth perception of the processing of TMEM106B, a prerequisite to understanding factors leading to fibril formation.
Collapse
Affiliation(s)
- Sebastian Held
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Olshausenstrasse 40, 24118 Kiel, Germany
| | - Christian Erck
- Cellular Proteome Research, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; Synaptic Systems GmbH, Rudolf-Wissell-Straβe 28a, 37079 Göttingen, Germany
| | - Susanna Kemppainen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Florian Bleibaum
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Olshausenstrasse 40, 24118 Kiel, Germany
| | - Neha Jadhav Giridhar
- Institute of Clinical Neurobiology, University Hospital Würzburg, Versbacher Str. 5, 97078 Würzburg, Germany
| | - Regina Feederle
- Monoclonal Antibody Core Facility, German Research Center for Environmental Health, Neuherberg, Germany; Munich Center for Systems Neurology (SyNergy), Munich, Germany; German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| | - Claudia Krenner
- Division of Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Anna Calliari
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Torben Mentrup
- Institute of Physiological Chemistry, Medizinische Fakultät und Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Bernd Schröder
- Institute of Physiological Chemistry, Medizinische Fakultät und Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Neurobiology of Disease Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Tuomas Rauramaa
- Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland; Unit of Pathology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Neurobiology of Disease Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Mercedes Prudencio
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Neurobiology of Disease Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Patrick Lüningschrör
- Institute of Clinical Neurobiology, University Hospital Würzburg, Versbacher Str. 5, 97078 Würzburg, Germany
| | - Anja Capell
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany; Division of Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Markus Damme
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Olshausenstrasse 40, 24118 Kiel, Germany.
| |
Collapse
|
6
|
Takahashi H, Perez-Canamas A, Lee CW, Ye H, Han X, Strittmatter SM. Lysosomal TMEM106B interacts with galactosylceramidase to regulate myelin lipid metabolism. Commun Biol 2024; 7:1088. [PMID: 39237682 PMCID: PMC11377756 DOI: 10.1038/s42003-024-06810-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/30/2024] [Indexed: 09/07/2024] Open
Abstract
TMEM106B is an endolysosomal transmembrane protein not only associated with multiple neurological disorders including frontotemporal dementia, Alzheimer's disease, and hypomyelinating leukodystrophy but also potentially involved in COVID-19. Additionally, recent studies have identified amyloid fibrils of C-terminal TMEM106B in both aged healthy and neurodegenerative brains. However, so far little is known about physiological functions of TMEM106B in the endolysosome and how TMEM106B is involved in a wide range of human conditions at molecular levels. Here, we performed lipidomic analysis of the brain of TMEM106B-deficient mice. We found that TMEM106B deficiency significantly decreases levels of two major classes of myelin lipids, galactosylceramide and its sulfated derivative sulfatide. Subsequent co-immunoprecipitation assay showed that TMEM106B physically interacts with galactosylceramidase. We also found that galactosylceramidase activity was significantly increased in TMEM106B-deficient brains. Thus, our results suggest that TMEM106B interacts with galactosylceramidase to regulate myelin lipid metabolism and have implications for TMEM106B-associated diseases.
Collapse
Affiliation(s)
- Hideyuki Takahashi
- Cellular Neuroscience, Neurodegeneration, Repair, Departments of Neurology and of Neuroscience, Yale University School of Medicine, New Haven, CT, 06536, USA
| | - Azucena Perez-Canamas
- Cellular Neuroscience, Neurodegeneration, Repair, Departments of Neurology and of Neuroscience, Yale University School of Medicine, New Haven, CT, 06536, USA
| | - Chris W Lee
- Biomedical Research Institute of New Jersey (BRInj), Cedar Knolls, NJ, 07927, USA
- MidAtlantic Neonatology Associates (MANA), Morristown, NJ, 07960, USA
- Atlantic Health System, Morristown, NJ, 07960, USA
| | - Hongping Ye
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center At San Antonio, San Antonio, TX, 78229, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center At San Antonio, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center At San Antonio, San Antonio, TX, 78229, USA
| | - Stephen M Strittmatter
- Cellular Neuroscience, Neurodegeneration, Repair, Departments of Neurology and of Neuroscience, Yale University School of Medicine, New Haven, CT, 06536, USA.
| |
Collapse
|
7
|
Majeed A, Naz N, Namal F, Tahir S, Karmani VK. Chronic Traumatic Encephalopathy: A Comprehensive Narrative Review of Its Biomarkers. Cureus 2024; 16:e69510. [PMID: 39421082 PMCID: PMC11485022 DOI: 10.7759/cureus.69510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Chronic traumatic encephalopathy (CTE) is a progressive and fatal neurological disorder linked to repeated traumatic brain injuries (TBIs), including concussions and blows to the head. This condition is characterized by the accumulation of abnormally structured hyperphosphorylated tau proteins (p-tau), forming neurofibrillary tangles, astrocytic tangles, and neurites in the brain. CTE is often diagnosed post-mortem, making it challenging to diagnose and predict its progression in living individuals. Despite recent advancements, no definitive pathological, radiological, or neurobiological marker consistently shows promise in diagnosing and predicting the disease. This review aims to summarize the available techniques and advancements in imaging-based, genetic, neuropsychological, and fluid biomarkers for CTE, evaluating their specificity and sensitivity. It will also highlight the limitations of each marker in diagnosing CTE and provide future research directions to enhance the accuracy of CTE diagnosis in living individuals.
Collapse
Affiliation(s)
- Aleena Majeed
- Internal Medicine, Fatima Jinnah Medical University, Lahore, PAK
| | - Nageen Naz
- Internal Medicine, Fatima Jinnah Medical University, Lahore, PAK
| | - Fnu Namal
- Internal Medicine, Social Security Hospital, Faisalabad, PAK
| | - Sohaira Tahir
- Internal Medicine, Avicenna Medical College, Lahore, PAK
| | | |
Collapse
|
8
|
Rodney A, Karanjeet K, Benzow K, Koob MD. A common Alu insertion in the 3'UTR of TMEM106B is associated with risk of dementia. Alzheimers Dement 2024; 20:5071-5077. [PMID: 38924247 PMCID: PMC11247663 DOI: 10.1002/alz.14090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/22/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
INTRODUCTION Sequence variants in TMEM106B have been associated with an increased risk of developing dementia. METHODS As part of our efforts to generate a set of mouse lines in which we replaced the mouse Tmem106b gene with a human TMEM106B gene comprised of either a risk or protective haplotype, we conducted an in-depth sequence analysis of these alleles. We also analyzed transcribed TMEM106B sequences using RNA-seq data (AD Knowledge portal) and full genome sequences (1000 Genomes). RESULTS We identified an AluYb8 insertion in the 3' untranslated region (3'UTR) of the TMEM106B risk haplotype. We found this AluYb8 insertion in every risk haplotype analyzed, but not in either protective haplotypes or in non-human primates. DISCUSSION We conclude that this risk haplotype arose early in human development with a single Alu-insertion event within a unique haplotype context. This AluYb8 element may act as a functional variant in conferring an increased risk of developing dementia. HIGHLIGHTS We conducted an in-depth sequence analysis of (1) a risk and (2) a protective haplotype of the human TMEM106B gene. We also analyzed transcribed TMEM106B sequences using RNA-seq data (AD Knowledge Portal) and full genome sequences (1000 Genomes). We identified an AluYb8 insertion in the 3' untranslated region (3'UTR) of the TMEM106B risk haplotype. We found this AluYb8 insertion in every risk haplotype analyzed, but not in either protective haplotypes or in non-human primates. This AluYb8 element may act as a functional variant in conferring an increased risk of developing dementia.
Collapse
Affiliation(s)
- Alana Rodney
- Lab Medicine and Pathology, and Institute for Translational NeuroscienceUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Kul Karanjeet
- Lab Medicine and Pathology, and Institute for Translational NeuroscienceUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Kellie Benzow
- Lab Medicine and Pathology, and Institute for Translational NeuroscienceUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Michael D. Koob
- Lab Medicine and Pathology, and Institute for Translational NeuroscienceUniversity of MinnesotaMinneapolisMinnesotaUSA
| |
Collapse
|
9
|
Nelson PT, Fardo DW, Wu X, Aung KZ, Cykowski MD, Katsumata Y. Limbic-predominant age-related TDP-43 encephalopathy (LATE-NC): Co-pathologies and genetic risk factors provide clues about pathogenesis. J Neuropathol Exp Neurol 2024; 83:396-415. [PMID: 38613823 PMCID: PMC11110076 DOI: 10.1093/jnen/nlae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2024] Open
Abstract
Limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) is detectable at autopsy in more than one-third of people beyond age 85 years and is robustly associated with dementia independent of other pathologies. Although LATE-NC has a large impact on public health, there remain uncertainties about the underlying biologic mechanisms. Here, we review the literature from human studies that may shed light on pathogenetic mechanisms. It is increasingly clear that certain combinations of pathologic changes tend to coexist in aging brains. Although "pure" LATE-NC is not rare, LATE-NC often coexists in the same brains with Alzheimer disease neuropathologic change, brain arteriolosclerosis, hippocampal sclerosis of aging, and/or age-related tau astrogliopathy (ARTAG). The patterns of pathologic comorbidities provide circumstantial evidence of mechanistic interactions ("synergies") between the pathologies, and also suggest common upstream influences. As to primary mediators of vulnerability to neuropathologic changes, genetics may play key roles. Genes associated with LATE-NC include TMEM106B, GRN, APOE, SORL1, ABCC9, and others. Although the anatomic distribution of TDP-43 pathology defines the condition, important cofactors for LATE-NC may include Tau pathology, endolysosomal pathways, and blood-brain barrier dysfunction. A review of the human phenomenology offers insights into disease-driving mechanisms, and may provide clues for diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Peter T Nelson
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, Kentucky, USA
- Department of Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | - David W Fardo
- Department of Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky, USA
| | - Xian Wu
- Department of Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky, USA
| | - Khine Zin Aung
- Department of Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky, USA
| | - Matthew D Cykowski
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Yuriko Katsumata
- Department of Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
10
|
Zhu M, Zhang G, Meng L, Xiao T, Fang X, Zhang Z. Physiological and pathological functions of TMEM106B in neurodegenerative diseases. Cell Mol Life Sci 2024; 81:209. [PMID: 38710967 PMCID: PMC11074223 DOI: 10.1007/s00018-024-05241-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 05/08/2024]
Abstract
As an integral lysosomal transmembrane protein, transmembrane protein 106B (TMEM106B) regulates several aspects of lysosomal function and is associated with neurodegenerative diseases. The TMEM106B gene mutations lead to lysosomal dysfunction and accelerate the pathological progression of Neurodegenerative diseases. Yet, the precise mechanism of TMEM106B in Neurodegenerative diseases remains unclear. Recently, different research teams discovered that TMEM106B is an amyloid protein and the C-terminal domain of TMEM106B forms amyloid fibrils in various Neurodegenerative diseases and normally elderly individuals. In this review, we discussed the physiological functions of TMEM106B. We also included TMEM106B gene mutations that cause neurodegenerative diseases. Finally, we summarized the identification and cryo-electronic microscopic structure of TMEM106B fibrils, and discussed the promising therapeutic strategies aimed at TMEM106B fibrils and the future directions for TMEM106B research in neurodegenerative diseases.
Collapse
Affiliation(s)
- Min Zhu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Guoxin Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lanxia Meng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Tingting Xiao
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xin Fang
- Department of Neurology, the First Affiliated Hospital of Nanchang University, Nanchang, 330000, China.
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430000, China.
| |
Collapse
|
11
|
Picard C, Miron J, Poirier J. Association of TMEM106B with Cortical APOE Gene Expression in Neurodegenerative Conditions. Genes (Basel) 2024; 15:416. [PMID: 38674351 PMCID: PMC11049136 DOI: 10.3390/genes15040416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/28/2024] Open
Abstract
The e4 allele of the apolipoprotein E gene is the strongest genetic risk factor for sporadic Alzheimer's disease. Nevertheless, how APOE is regulated is still elusive. In a trans-eQTL analysis, we found a genome-wide significant association between transmembrane protein 106B (TMEM106B) genetic variants and cortical APOE mRNA levels in human brains. The goal of this study is to determine whether TMEM106B is mis-regulated in Alzheimer's disease or in other neurodegenerative conditions. Available genomic, transcriptomic and proteomic data from human brains were downloaded from the Mayo Clinic Brain Bank and the Religious Orders Study and Memory and Aging Project. An in-house mouse model of the hippocampal deafferentation/reinnervation was achieved via a stereotaxic lesioning surgery to the entorhinal cortex, and mRNA levels were measured using RNAseq technology. In human temporal cortices, the mean TMEM106B expression was significantly higher in Alzheimer's disease compared to cognitively unimpaired individuals. In the mouse model, hippocampal Tmem106b reached maximum levels during the early phase of reinnervation. These results suggest an active response to tissue damage that is consistent with compensatory synaptic and terminal remodeling.
Collapse
Affiliation(s)
- Cynthia Picard
- Douglas Mental Health University Institute, Montreal, QC H4H 1R3, Canada; (C.P.); (J.M.)
- Centre for the Studies on Prevention of Alzheimer’s Disease, Montreal, QC H4H 1R3, Canada
| | - Justin Miron
- Douglas Mental Health University Institute, Montreal, QC H4H 1R3, Canada; (C.P.); (J.M.)
- Centre for the Studies on Prevention of Alzheimer’s Disease, Montreal, QC H4H 1R3, Canada
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC H3A 0E7, Canada
| | - Judes Poirier
- Douglas Mental Health University Institute, Montreal, QC H4H 1R3, Canada; (C.P.); (J.M.)
- Centre for the Studies on Prevention of Alzheimer’s Disease, Montreal, QC H4H 1R3, Canada
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC H3A 0E7, Canada
| |
Collapse
|
12
|
Feng T, Du H, Yang C, Wang Y, Hu F. Loss of TMEM106B exacerbates Tau pathology and neurodegeneration in PS19 mice. Acta Neuropathol 2024; 147:62. [PMID: 38526799 PMCID: PMC11924916 DOI: 10.1007/s00401-024-02702-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 03/27/2024]
Abstract
TMEM106B, a gene encoding a lysosome membrane protein, is tightly associated with brain aging, hypomyelinating leukodystrophy, and multiple neurodegenerative diseases, including frontotemporal lobar degeneration with TDP-43 aggregates (FTLD-TDP). Recently, TMEM106B polymorphisms have been associated with tauopathy in chronic traumatic encephalopathy (CTE) and FTLD-TDP patients. However, how TMEM106B influences Tau pathology and its associated neurodegeneration, is unclear. Here we show that loss of TMEM106B enhances the accumulation of pathological Tau, especially in the neuronal soma in the hippocampus, resulting in severe neuronal loss in the PS19 Tau transgenic mice. Moreover, Tmem106b-/- PS19 mice develop significantly increased abnormalities in the neuronal cytoskeleton, autophagy-lysosome activities, as well as glial activation, compared with PS19 and Tmem106b-/- mice. Together, our findings demonstrate that loss of TMEM106B drastically exacerbates Tau pathology and its associated disease phenotypes, and provide new insights into the roles of TMEM106B in neurodegenerative diseases.
Collapse
Affiliation(s)
- Tuancheng Feng
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, 345 Weill Hall, Ithaca, NY, 14853, USA
| | - Huan Du
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, 345 Weill Hall, Ithaca, NY, 14853, USA
| | - Cha Yang
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, 345 Weill Hall, Ithaca, NY, 14853, USA
| | - Ya Wang
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, 345 Weill Hall, Ithaca, NY, 14853, USA
| | - Fenghua Hu
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, 345 Weill Hall, Ithaca, NY, 14853, USA.
| |
Collapse
|
13
|
Alexander A, Alvarez VE, Huber BR, Alosco ML, Mez J, Tripodis Y, Nicks R, Katz DI, Dwyer B, Daneshvar DH, Martin B, Palmisano J, Goldstein LE, Crary JF, Nowinski C, Cantu RC, Kowall NW, Stern RA, Delalle I, McKee AC, Stein TD. Cortical-sparing chronic traumatic encephalopathy (CSCTE): a distinct subtype of CTE. Acta Neuropathol 2024; 147:45. [PMID: 38407651 PMCID: PMC11348287 DOI: 10.1007/s00401-024-02690-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/27/2024]
Abstract
Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease caused by repetitive head impacts (RHI) and pathologically defined as neuronal phosphorylated tau aggregates around small blood vessels and concentrated at sulcal depths. Cross-sectional studies suggest that tau inclusions follow a stereotyped pattern that begins in the neocortex in low stage disease, followed by involvement of the medial temporal lobe and subcortical regions with significant neocortical burden in high stage CTE. Here, we define a subset of brain donors with high stage CTE and with a low overall cortical burden of tau inclusions (mean semiquantitative value ≤1) and classify them as cortical-sparing CTE (CSCTE). Of 620 brain donors with pathologically diagnosed CTE, 66 (11%) met criteria for CSCTE. Compared to typical high stage CTE, those with CSCTE had a similar age at death and years of contact sports participation and were less likely to carry apolipoprotein ε4 (p < 0.05). CSCTE had less overall tau pathology severity, but a proportional increase of disease burden in medial temporal lobe and brainstem regions compared to the neocortex (p's < 0.001). CSCTE also had lower prevalence of comorbid neurodegenerative disease. Clinically, CSCTE participants were less likely to have dementia (p = 0.023) and had less severe cognitive difficulties (as reported by informants using the Functional Activities Questionnaire (FAQ); p < 0.001, meta-cognitional index T score; p = 0.002 and Cognitive Difficulties Scale (CDS); p < 0.001,) but had an earlier onset age of behavioral (p = 0.006) and Parkinsonian motor (p = 0.013) symptoms when compared to typical high stage CTE. Other comorbid tauopathies likely contributed in part to these differences: when cases with concurrent Alzheimer dementia or frontal temporal lobar degeneration with tau pathology were excluded, differences were largely retained, but only remained significant for FAQ (p = 0.042), meta-cognition index T score (p = 0.014) and age of Parkinsonian motor symptom onset (p = 0.046). Overall, CSCTE appears to be a distinct subtype of high stage CTE with relatively greater involvement of subcortical and brainstem regions and less severe cognitive symptoms.
Collapse
Affiliation(s)
- Abigail Alexander
- Division of Neuropathology, Lifespan Academic Medical Center, The Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Victor E Alvarez
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, USA
- VA Bedford Healthcare System, Bedford, MA, USA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Jamaica Plain, MA, USA
| | - Bertrand R Huber
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Jamaica Plain, MA, USA
| | - Michael L Alosco
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Jesse Mez
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Yorghos Tripodis
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Raymond Nicks
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- VA Bedford Healthcare System, Bedford, MA, USA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Jamaica Plain, MA, USA
| | - Douglas I Katz
- Department of Neurology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Braintree Rehabilitation Hospital, Braintree, MA, USA
| | - Brigid Dwyer
- Department of Neurology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Braintree Rehabilitation Hospital, Braintree, MA, USA
| | - Daniel H Daneshvar
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA
| | - Brett Martin
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, MA, USA
| | - Joseph Palmisano
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, MA, USA
| | - Lee E Goldstein
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Radiology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Departments of Pathology and Laboratory Medicine, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Psychiatry, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Departments of Biomedical, Electrical & Computer Engineering, Boston University College of Engineering, Boston, MA, USA
| | - John F Crary
- Department of Pathology, Nash Family Department of Neuroscience, Department of Artificial Intelligence and Human Health, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christopher Nowinski
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Concussion Legacy Foundation, Boston, MA, USA
| | - Robert C Cantu
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Concussion Legacy Foundation, Boston, MA, USA
- Department of Neurosurgery, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurosurgery, Emerson Hospital, Concord, MA, USA
| | - Neil W Kowall
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Robert A Stern
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurosurgery, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Ivana Delalle
- Division of Neuropathology, Lifespan Academic Medical Center, The Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Ann C McKee
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Jamaica Plain, MA, USA
| | - Thor D Stein
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
- VA Bedford Healthcare System, Bedford, MA, USA.
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Jamaica Plain, MA, USA.
- Departments of Pathology and Laboratory Medicine, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, USA.
- , 150 S. Huntington Avenue, Boston, MA, 02130, USA.
| |
Collapse
|
14
|
Saltiel N, Tripodis Y, Menzin T, Olaniyan A, Baucom Z, Yhang E, Palmisano JN, Martin B, Uretsky M, Nair E, Abdolmohammadi B, Shah A, Nicks R, Nowinski C, Cantu RC, Daneshvar DH, Dwyer B, Katz DI, Stern RA, Alvarez V, Huber B, Boyle PA, Schneider JA, Mez J, McKee A, Alosco ML, Stein TD. Relative Contributions of Mixed Pathologies to Cognitive and Functional Symptoms in Brain Donors Exposed to Repetitive Head Impacts. Ann Neurol 2024; 95:314-324. [PMID: 37921042 PMCID: PMC10842014 DOI: 10.1002/ana.26823] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 10/12/2023] [Accepted: 10/19/2023] [Indexed: 11/04/2023]
Abstract
OBJECTIVE Exposure to repetitive head impacts (RHI) is associated with later-life cognitive symptoms and neuropathologies, including chronic traumatic encephalopathy (CTE). Cognitive decline in community cohorts is often due to multiple pathologies; however, the frequency and contributions of these pathologies to cognitive impairment in people exposed to RHI are unknown. Here, we examined the relative contributions of 13 neuropathologies to cognitive symptoms and dementia in RHI-exposed brain donors. METHODS Neuropathologists examined brain tissue from 571 RHI-exposed donors and assessed for the presence of 13 neuropathologies, including CTE, Alzheimer disease (AD), Lewy body disease (LBD), and transactive response DNA-binding protein 43 (TDP-43) inclusions. Cognitive status was assessed by presence of dementia, Functional Activities Questionnaire, and Cognitive Difficulties Scale. Spearman rho was calculated to assess intercorrelation of pathologies. Additionally, frequencies of pathological co-occurrence were compared to a simulated distribution assuming no intercorrelation. Logistic and linear regressions tested associations between neuropathologies and dementia status and cognitive scale scores. RESULTS The sample age range was 18-97 years (median = 65.0, interquartile range = 46.0-76.0). Of the donors, 77.2% had at least one moderate-severe neurodegenerative or cerebrovascular pathology. Stage III-IV CTE was the most common neurodegenerative disease (43.1%), followed by TDP-43 pathology, AD, and hippocampal sclerosis. Neuropathologies were intercorrelated, and there were fewer unique combinations than expected if pathologies were independent (p < 0.001). The greatest contributors to dementia were AD, neocortical LBD, hippocampal sclerosis, cerebral amyloid angiopathy, and CTE. INTERPRETATION In this sample of RHI-exposed brain donors with wide-ranging ages, multiple neuropathologies were common and correlated. Mixed neuropathologies, including CTE, underlie cognitive impairment in contact sport athletes. ANN NEUROL 2024;95:314-324.
Collapse
Affiliation(s)
- Nicole Saltiel
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, USA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Jamaica Plain, MA, USA
- VA Bedford Healthcare System, U.S. Department of Veteran Affairs, Bedford, MA
| | - Yorghos Tripodis
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Talia Menzin
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Aliyah Olaniyan
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Zach Baucom
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Eukyung Yhang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Joseph N. Palmisano
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, MA, USA
| | - Brett Martin
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, MA, USA
| | - Madeline Uretsky
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, USA
| | - Evan Nair
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, USA
| | - Bobak Abdolmohammadi
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, USA
| | - Arsal Shah
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, USA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Jamaica Plain, MA, USA
- VA Bedford Healthcare System, U.S. Department of Veteran Affairs, Bedford, MA
| | - Raymond Nicks
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, USA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Jamaica Plain, MA, USA
- VA Bedford Healthcare System, U.S. Department of Veteran Affairs, Bedford, MA
| | | | - Robert C. Cantu
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, USA
- Concussion Legacy Foundation, Boston, MA, USA
- Department of Neurosurgery, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurosurgery, Emerson Hospital, Concord, MA, USA
| | - Daniel H. Daneshvar
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, USA
| | - Brigid Dwyer
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, USA
- Braintree Rehabilitation Hospital, Braintree, MA, USA
| | - Douglas I. Katz
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, USA
- Braintree Rehabilitation Hospital, Braintree, MA, USA
| | - Robert A. Stern
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, USA
- Department of Neurosurgery, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Anatomy and Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Victor Alvarez
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, USA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Jamaica Plain, MA, USA
- VA Bedford Healthcare System, U.S. Department of Veteran Affairs, Bedford, MA
- National Center for PTSD, VA Boston Healthcare System, Jamaica Plain, MA, USA
| | - Bertrand Huber
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, USA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Jamaica Plain, MA, USA
- National Center for PTSD, VA Boston Healthcare System, Jamaica Plain, MA, USA
| | - Patricia A. Boyle
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Behavioral Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Julie A. Schneider
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
- Department of Pathology, Rush University Medical Center, Chicago, IL, USA
| | - Jesse Mez
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, USA
- Framingham Heart Study, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Ann McKee
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, USA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Jamaica Plain, MA, USA
- VA Bedford Healthcare System, U.S. Department of Veteran Affairs, Bedford, MA
- Framingham Heart Study, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Michael L. Alosco
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, USA
| | - Thor D. Stein
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, USA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Jamaica Plain, MA, USA
- VA Bedford Healthcare System, U.S. Department of Veteran Affairs, Bedford, MA
- Framingham Heart Study, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| |
Collapse
|
15
|
Locskai LF, Alyenbaawi H, Allison WT. Antiepileptic Drugs as Potential Dementia Prophylactics Following Traumatic Brain Injury. Annu Rev Pharmacol Toxicol 2024; 64:577-598. [PMID: 37788493 DOI: 10.1146/annurev-pharmtox-051921-013930] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Seizures and other forms of neurovolatility are emerging as druggable prodromal mechanisms that link traumatic brain injury (TBI) to the progression of later dementias. TBI neurotrauma has both acute and long-term impacts on health, and TBI is a leading risk factor for dementias, including chronic traumatic encephalopathy and Alzheimer's disease. Treatment of TBI already considers acute management of posttraumatic seizures and epilepsy, and impressive efforts have optimized regimens of antiepileptic drugs (AEDs) toward that goal. Here we consider that expanding these management strategies could determine which AED regimens best prevent dementia progression in TBI patients. Challenges with this prophylactic strategy include the potential consequences of prolonged AED treatment and that a large subset of patients are refractory to available AEDs. Addressing these challenges is warranted because the management of seizure activity following TBI offers a rare opportunity to prevent the onset or progression of devastating dementias.
Collapse
Affiliation(s)
- Laszlo F Locskai
- Centre for Prions and Protein Folding Diseases and Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada;
| | - Hadeel Alyenbaawi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia
| | - W Ted Allison
- Centre for Prions and Protein Folding Diseases and Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada;
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
16
|
Lei H, Fang F, Yang C, Chen X, Li Q, Shen X. Lifting the veils on transmembrane proteins: Potential anticancer targets. Eur J Pharmacol 2024; 963:176225. [PMID: 38040080 DOI: 10.1016/j.ejphar.2023.176225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/08/2023] [Accepted: 11/24/2023] [Indexed: 12/03/2023]
Abstract
Cancer, as a prevalent cause of mortality, poses a substantial global health burden and hinders efforts to enhance life expectancy. Nevertheless, the prognosis of patients with malignant tumors remains discouraging, owing to the lack of specific diagnostic and therapeutic targets. Therefore, the development of early diagnostic indicators and novel therapeutic drugs for the prevention and treatment of cancer is essential. Transmembrane proteins (TMEMs) are a class of proteins that can span the phospholipid bilayer and are stably anchored. They are associated with fibrotic diseases, neurodegenerative diseases, autoimmune diseases, developmental disorders, and cancer. It has been found that the expression levels of TMEMs were elevated or reduced in cancer cells, exerting pro/anticancer effects. These aberrant expression levels have also been linked to the prognostic and clinicopathological features of diverse tumors. In this review, the structures, functions, and roles of TMEMs in cancer were discussed, and the scientific perspectives were described. This review also explored the potential of TMEMs as tumor drug candidates from the perspective of targeted therapies, and the challenges that need to be overcome in a wide range of preclinical and clinical anticancer research were summarized.
Collapse
Affiliation(s)
- Huan Lei
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Fujin Fang
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Chuanli Yang
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Xiaowei Chen
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Qiong Li
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Xiaobing Shen
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.
| |
Collapse
|
17
|
Feng T, Du H, Hu F. Loss of TMEM106B exacerbates Tau pathology and neurodegeneration in PS19 mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.11.566707. [PMID: 38014238 PMCID: PMC10680640 DOI: 10.1101/2023.11.11.566707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
TMEM106B, a gene encoding a lysosome membrane protein, is tightly associated with brain aging, hypomyelinating leukodystrophy, and multiple neurodegenerative diseases, including frontotemporal lobar degeneration with TDP-43 aggregates (FTLD-TDP). Recently, TMEM106B polymorphisms have been associated with tauopathy in chronic traumatic encephalopathy (CTE) and FTLD-TDP patients. However, how TMEM106B influences Tau pathology and its associated neurodegeneration, is unclear. Here we show that loss of TMEM106B enhances the accumulation of pathological Tau, especially in the neuronal soma in the hippocampus, resulting in severe neuronal loss in the PS19 Tau transgenic mice. Moreover, Tmem106b-/- PS19 mice develop significantly increased disruption of the neuronal cytoskeleton, autophagy-lysosomal function, and lysosomal trafficking along the axon as well as enhanced gliosis compared with PS19 and Tmem106b-/- mice. Together, our findings demonstrate that loss of TMEM106B drastically exacerbates Tau pathology and its associated disease phenotypes, and provide new insights into the roles of TMEM106B in neurodegenerative diseases.
Collapse
Affiliation(s)
- Tuancheng Feng
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Huan Du
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Fenghua Hu
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
18
|
Gowen AM, Yi J, Stauch K, Miles L, Srinivasan S, Odegaard K, Pendyala G, Yelamanchili SV. In utero and post-natal opioid exposure followed by mild traumatic brain injury contributes to cortical neuroinflammation, mitochondrial dysfunction, and behavioral deficits in juvenile rats. Brain Behav Immun Health 2023; 32:100669. [PMID: 37588011 PMCID: PMC10425912 DOI: 10.1016/j.bbih.2023.100669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 08/18/2023] Open
Abstract
Maternal opioid use poses a significant health concern not just to the expectant mother but also to the fetus. Notably, increasing numbers of children born suffering from neonatal opioid withdrawal syndrome (NOWS) further compounds the crisis. While epidemiological research has shown the heightened risk factors associated with NOWS, little research has investigated what molecular mechanisms underly the vulnerabilities these children carry throughout development and into later life. To understand the implications of in utero and post-natal opioid exposure on the developing brain, we sought to assess the response to one of the most common pediatric injuries: minor traumatic brain injury (mTBI). Using a rat model of in utero and post-natal oxycodone (IUO) exposure and a low force weight drop model of mTBI, we show that not only neonatal opioid exposure significantly affects neuroinflammation, brain metabolites, synaptic proteome, mitochondrial function, and altered behavior in juvenile rats, but also, in conjunction with mTBI these aberrations are further exacerbated. Specifically, we observed long term metabolic dysregulation, neuroinflammation, alterations in synaptic mitochondria, and impaired behavior were impacted severely by mTBI. Our research highlights the specific vulnerability caused by IUO exposure to a secondary stressor such as later life brain injury. In summary, we present a comprehensive study to highlight the damaging effects of prenatal opioid abuse in conjunction with mild brain injury on the developing brain.
Collapse
Affiliation(s)
- Austin M. Gowen
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jina Yi
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kelly Stauch
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Luke Miles
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Sanjay Srinivasan
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Biological Sciences, University of Nebraska at Omaha, Omaha, NE, USA
| | - Katherine Odegaard
- Department of Biological Sciences, Florida State University, Tallahassee, FL, USA
| | - Gurudutt Pendyala
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Genetics, Cell Biology and Anatomy, UNMC, Omaha, NE, 68198, USA
- Child Health Research Institute, Omaha, NE, 68198, USA
- National Strategic Research Institute, UNMC, Omaha, NE, USA
| | - Sowmya V. Yelamanchili
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Genetics, Cell Biology and Anatomy, UNMC, Omaha, NE, 68198, USA
- National Strategic Research Institute, UNMC, Omaha, NE, USA
| |
Collapse
|
19
|
Takahashi H, Perez-Canamas A, Ye H, Han X, Strittmatter SM. Lysosomal TMEM106B interacts with galactosylceramidase to regulate myelin lipid metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.14.557804. [PMID: 37745346 PMCID: PMC10515910 DOI: 10.1101/2023.09.14.557804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
TMEM106B is an endolysosomal transmembrane protein not only associated with multiple neurological disorders including frontotemporal dementia, Alzheimer's disease, and hypomyelinating leukodystrophy but also potentially involved in COVID-19. Additionally, recent studies have identified amyloid fibrils of C-terminal TMEM106B in both aged healthy and neurodegenerative brains. However, so far little is known about physiological functions of TMEM106B in the endolysosome and how TMEM106B is involved in a wide range of human conditions at molecular levels. Here, we performed lipidomic analysis of the brain of TMEM106B-deficient mice. We found that TMEM106B deficiency significantly decreases levels of two major classes of myelin lipids, galactosylceramide and its sulfated derivative sulfatide. Subsequent co-immunoprecipitation assay showed that TMEM106B physically interacts with galactosylceramidase. We also found that galactosyceramidase activity was significantly increased in TMEM106B-deficient brains. Thus, our results reveal a novel function of TMEM106B interacting with galactosyceramidase to regulate myelin lipid metabolism and have implications for TMEM106B-associated diseases.
Collapse
Affiliation(s)
- Hideyuki Takahashi
- Cellular Neuroscience, Neurodegeneration, Repair, Departments of Neurology and of Neuroscience, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Azucena Perez-Canamas
- Cellular Neuroscience, Neurodegeneration, Repair, Departments of Neurology and of Neuroscience, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Hongping Ye
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center At San Antonio, San Antonio, TX, 78229, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center At San Antonio, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center At San Antonio, San Antonio, TX, 78229, USA
| | - Stephen M. Strittmatter
- Cellular Neuroscience, Neurodegeneration, Repair, Departments of Neurology and of Neuroscience, Yale University School of Medicine, New Haven, CT 06536, USA
| |
Collapse
|
20
|
Jiao HS, Yuan P, Yu JT. TMEM106B aggregation in neurodegenerative diseases: linking genetics to function. Mol Neurodegener 2023; 18:54. [PMID: 37563705 PMCID: PMC10413548 DOI: 10.1186/s13024-023-00644-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND Mutations of the gene TMEM106B are risk factors for diverse neurodegenerative diseases. Previous understanding of the underlying mechanism focused on the impairment of lysosome biogenesis caused by TMEM106B loss-of-function. However, mutations in TMEM106B increase its expression level, thus the molecular process linking these mutations to the apparent disruption in TMEM106B function remains mysterious. MAIN BODY Recent new studies reported that TMEM106B proteins form intracellular amyloid filaments which universally exist in various neurodegenerative diseases, sometimes being the dominant form of protein aggregation. In light of these new findings, in this review we systematically examined previous efforts in understanding the function of TMEM106B in physiological and pathological conditions. We propose that TMEM106B aggregations could recruit normal TMEM106B proteins and interfere with their function. CONCLUSIONS TMEM106B mutations could lead to lysosome dysfunction by promoting the aggregation of TMEM106B and reducing these aggregations may restore lysosomal function, providing a potential therapeutic target for various neurodegenerative diseases.
Collapse
Affiliation(s)
- Hai-Shan Jiao
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Peng Yuan
- Department of Rehabilitation Medicine, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Huashan Hospital, Institute for Translational Brain Research, Fudan University, Shanghai, China.
| | - Jin-Tai Yu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
21
|
Labadorf A, Agus F, Aytan N, Cherry J, Mez J, McKee A, Stein TD. Inflammation and neuronal gene expression changes differ in early versus late chronic traumatic encephalopathy brain. BMC Med Genomics 2023; 16:49. [PMID: 36895005 PMCID: PMC9996917 DOI: 10.1186/s12920-023-01471-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/23/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Our understanding of the molecular underpinnings of chronic traumatic encephalopathy (CTE) and its associated pathology in post-mortem brain is incomplete. Factors including years of play and genetic risk variants influence the extent of tau pathology associated with disease expression, but how these factors affect gene expression, and whether those effects are consistent across the development of disease, is unknown. METHODS To address these questions, we conducted an analysis of the largest post-mortem brain CTE mRNASeq whole-transcriptome dataset available to date. We examined the genes and biological processes associated with disease by comparing individuals with CTE with control individuals with a history of repetitive head impacts that lack CTE pathology. We then identified genes and biological processes associated with total years of play as a measure of exposure, amount of tau pathology present at time of death, and the presence of APOE and TMEM106B risk variants. Samples were stratified into low and high pathology groups based on McKee CTE staging criteria to model early versus late changes in response to exposure, and the relative effects associated with these factors were compared between these groups. RESULTS Substantial gene expression changes were associated with severe disease for most of these factors, primarily implicating diverse, strongly involved neuroinflammatory and neuroimmune processes. In contrast, low pathology groups had many fewer genes and processes implicated and show striking differences for some factors when compared with severe disease. Specifically, gene expression associated with amount of tau pathology showed a nearly perfect inverse relationship when compared between these two groups. CONCLUSIONS Together, these results suggest the early CTE disease process may be mechanistically different than what occurs in late stages, that total years of play and tau pathology influence disease expression differently, and that related pathology-modifying risk variants may do so via distinct biological pathways.
Collapse
Affiliation(s)
- Adam Labadorf
- Neurology, Boston University School of Medicine, Boston, MA USA
- Bioinformatics Program, Boston University, Boston, MA USA
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, MA USA
- VA Boston Healthcare System, Boston, MA USA
| | - Filisia Agus
- Neurology, Boston University School of Medicine, Boston, MA USA
| | - Nurgul Aytan
- Neurology, Boston University School of Medicine, Boston, MA USA
- VA Boston Healthcare System, Boston, MA USA
| | - Jonathan Cherry
- Neurology, Boston University School of Medicine, Boston, MA USA
- Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA USA
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, MA USA
| | - Jesse Mez
- Neurology, Boston University School of Medicine, Boston, MA USA
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, MA USA
| | - Ann McKee
- Neurology, Boston University School of Medicine, Boston, MA USA
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, MA USA
- Department of Veterans Affairs Medical Center, Medford, MA USA
| | - Thor D. Stein
- Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA USA
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, MA USA
- Department of Veterans Affairs Medical Center, Medford, MA USA
| |
Collapse
|
22
|
Lucke-Wold B. Recent Treatment Strategies in Alzheimer's Disease and Chronic Traumatic Encephalopathy. BIOMEDICAL RESEARCH AND CLINICAL REVIEWS 2022; 7:01-14. [PMID: 36743825 PMCID: PMC9897211 DOI: 10.31579/2692-9406/128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Neurotrauma has been well linked to the progression of neurodegenerative disease. Much work has been done characterizing chronic traumatic encephalopathy, but less has been done regarding the contribution to Alzheimer’s Disease. This review focuses on AD and its association with neurotrauma. Emerging clinical trials are discussed as well as novel mechanisms. We then address how some of these mechanisms are shared with CTE and emerging pre-clinical studies. This paper is a user-friendly resource that summarizes the emerging findings and proposes further investigation into key areas of interest. It is intended to serve as a catalyst for both research teams and clinicians in the quest to improve effective treatment and diagnostic options.
Collapse
|
23
|
Marx GA, Koenigsberg DG, McKenzie AT, Kauffman J, Hanson RW, Whitney K, Signaevsky M, Prastawa M, Iida MA, White CL, Walker JM, Richardson TE, Koll J, Fernandez G, Zeineh J, Cordon-Cardo C, Crary JF, Farrell K. Artificial intelligence-derived neurofibrillary tangle burden is associated with antemortem cognitive impairment. Acta Neuropathol Commun 2022; 10:157. [PMID: 36316708 PMCID: PMC9620665 DOI: 10.1186/s40478-022-01457-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/06/2022] [Indexed: 11/10/2022] Open
Abstract
Tauopathies are a category of neurodegenerative diseases characterized by the presence of abnormal tau protein-containing neurofibrillary tangles (NFTs). NFTs are universally observed in aging, occurring with or without the concomitant accumulation of amyloid-beta peptide (Aβ) in plaques that typifies Alzheimer disease (AD), the most common tauopathy. Primary age-related tauopathy (PART) is an Aβ-independent process that affects the medial temporal lobe in both cognitively normal and impaired subjects. Determinants of symptomology in subjects with PART are poorly understood and require clinicopathologic correlation; however, classical approaches to staging tau pathology have limited quantitative reproducibility. As such, there is a critical need for unbiased methods to quantitatively analyze tau pathology on the histological level. Artificial intelligence (AI)-based convolutional neural networks (CNNs) generate highly accurate and precise computer vision assessments of digitized pathology slides, yielding novel histology metrics at scale. Here, we performed a retrospective autopsy study of a large cohort (n = 706) of human post-mortem brain tissues from normal and cognitively impaired elderly individuals with mild or no Aβ plaques (average age of death of 83.1 yr, range 55-110). We utilized a CNN trained to segment NFTs on hippocampus sections immunohistochemically stained with antisera recognizing abnormal hyperphosphorylated tau (p-tau), which yielded metrics of regional NFT counts, NFT positive pixel density, as well as a novel graph-theory based metric measuring the spatial distribution of NFTs. We found that several AI-derived NFT metrics significantly predicted the presence of cognitive impairment in both the hippocampus proper and entorhinal cortex (p < 0.0001). When controlling for age, AI-derived NFT counts still significantly predicted the presence of cognitive impairment (p = 0.04 in the entorhinal cortex; p = 0.04 overall). In contrast, Braak stage did not predict cognitive impairment in either age-adjusted or unadjusted models. These findings support the hypothesis that NFT burden correlates with cognitive impairment in PART. Furthermore, our analysis strongly suggests that AI-derived metrics of tau pathology provide a powerful tool that can deepen our understanding of the role of neurofibrillary degeneration in cognitive impairment.
Collapse
Affiliation(s)
- Gabriel A Marx
- Department of Pathology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY, 10029, USA
- Department of Artificial Intelligence and Human Health, Nash Family Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1194, New York, NY, 10029, USA
| | - Daniel G Koenigsberg
- Department of Pathology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY, 10029, USA
- Department of Artificial Intelligence and Human Health, Nash Family Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1194, New York, NY, 10029, USA
| | - Andrew T McKenzie
- Department of Pathology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY, 10029, USA
- Department of Artificial Intelligence and Human Health, Nash Family Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1194, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Justin Kauffman
- Department of Pathology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY, 10029, USA
- Department of Artificial Intelligence and Human Health, Nash Family Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1194, New York, NY, 10029, USA
| | - Russell W Hanson
- New York University McSilver Institute for Poverty Policy and Research, New York, NY, USA
| | - Kristen Whitney
- Department of Pathology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY, 10029, USA
- Department of Artificial Intelligence and Human Health, Nash Family Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1194, New York, NY, 10029, USA
| | - Maxim Signaevsky
- Department of Pathology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY, 10029, USA
- Center for Computational and Systems Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marcel Prastawa
- Department of Pathology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY, 10029, USA
- Center for Computational and Systems Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Megan A Iida
- Department of Pathology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY, 10029, USA
- Department of Artificial Intelligence and Human Health, Nash Family Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1194, New York, NY, 10029, USA
| | - Charles L White
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jamie M Walker
- Department of Pathology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY, 10029, USA
| | - Timothy E Richardson
- Department of Pathology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY, 10029, USA
| | - John Koll
- Department of Pathology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY, 10029, USA
- Center for Computational and Systems Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gerardo Fernandez
- Department of Pathology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY, 10029, USA
- Center for Computational and Systems Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jack Zeineh
- Department of Pathology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY, 10029, USA
- Center for Computational and Systems Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carlos Cordon-Cardo
- Department of Pathology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY, 10029, USA
- Center for Computational and Systems Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John F Crary
- Department of Pathology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY, 10029, USA.
- Department of Artificial Intelligence and Human Health, Nash Family Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1194, New York, NY, 10029, USA.
| | - Kurt Farrell
- Department of Pathology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY, 10029, USA.
- Department of Artificial Intelligence and Human Health, Nash Family Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1194, New York, NY, 10029, USA.
| |
Collapse
|
24
|
Stathas S, Alvarez VE, Xia W, Nicks R, Meng G, Daley S, Pothast M, Shah A, Kelley H, Esnault C, McCormack R, Dixon E, Fishbein L, Cherry JD, Huber BR, Tripodis Y, Alosco ML, Mez J, McKee AC, Stein TD. Tau phosphorylation sites serine202 and serine396 are differently altered in chronic traumatic encephalopathy and Alzheimer's disease. Alzheimers Dement 2022; 18:1511-1522. [PMID: 34854540 PMCID: PMC9160206 DOI: 10.1002/alz.12502] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/03/2021] [Accepted: 09/22/2021] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Chronic traumatic encephalopathy (CTE) is a neurodegenerative tauopathy associated with repetitive head impacts (RHI) typically sustained by contact sport athletes. Post-translation modifications to tau in CTE have not been well delineated or compared to Alzheimer's disease (AD). METHODS We measured phosphorylated tau epitopes within dorsolateral frontal cortex from post mortem brains with neither CTE nor AD (n = 108), CTE (n = 109), AD (n = 223), and both CTE and AD (n = 33). RESULTS Levels of hyperphosphorylated tau (p-tau)202 , p-tau231 , and p-tau396 were significantly increased in CTE. Total years of RHI exposure was significantly associated with increased p-tau202 levels (P = .001), but not p-tau396 . Instead, p-tau396 was most closely related to amyloid beta (Aβ)1-42 levels (P < .001). The p-tau202 :p-tau396 ratio was significantly increased in early and late CTE compared to AD. DISCUSSION In frontal cortex, p-tau202 is the most upregulated p-tau species in CTE, while p-tau396 is most increased in AD. p-tau202 and p-tau396 measurements may aid in developing biomarkers for disease.
Collapse
Affiliation(s)
- SpiroAnthony Stathas
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
- VA Bedford Healthcare System, Bedford, MA, 01730, USA
| | - Victor E. Alvarez
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
- VA Bedford Healthcare System, Bedford, MA, 01730, USA
- Department of Neurology, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 20118, USA
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA
| | - Weiming Xia
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
- VA Bedford Healthcare System, Bedford, MA, 01730, USA
| | - Raymond Nicks
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
- VA Bedford Healthcare System, Bedford, MA, 01730, USA
| | - Gaoyuan Meng
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
- VA Bedford Healthcare System, Bedford, MA, 01730, USA
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA
| | - Sarah Daley
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
- VA Bedford Healthcare System, Bedford, MA, 01730, USA
| | - Morgan Pothast
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
| | - Arsal Shah
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA
| | - Hunter Kelley
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
| | - Camille Esnault
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
| | - Robert McCormack
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
| | - Erin Dixon
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
| | - Lucas Fishbein
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
| | - Jonathan D. Cherry
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
- Department of Neurology, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 20118, USA
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA
| | - Bertrand R. Huber
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
- Department of Neurology, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 20118, USA
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA
| | - Yorghos Tripodis
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 20118, USA
| | - Michael L. Alosco
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
- Department of Neurology, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 20118, USA
| | - Jesse Mez
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
- Department of Neurology, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 20118, USA
| | - Ann C. McKee
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
- VA Bedford Healthcare System, Bedford, MA, 01730, USA
- Department of Neurology, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 20118, USA
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
| | - Thor D. Stein
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
- VA Bedford Healthcare System, Bedford, MA, 01730, USA
- Department of Neurology, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 20118, USA
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
| |
Collapse
|
25
|
Buckland ME, Affleck AJ, Pearce AJ, Suter CM. Chronic Traumatic Encephalopathy as a Preventable Environmental Disease. Front Neurol 2022; 13:880905. [PMID: 35769361 PMCID: PMC9234108 DOI: 10.3389/fneur.2022.880905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/06/2022] [Indexed: 11/29/2022] Open
Abstract
In this Perspective we explore the evolution of our understanding of chronic traumatic encephalopathy (CTE) and its relationship with repetitive head injury. As with many neurodegenerative conditions, there is an imperfect correspondence between neuropathology and clinical phenotype, but unlike other neurodegenerative diseases, CTE has a discrete and easily modifiable risk factor: exposure to repetitive head injury. Consequently, evaluation of the evidence regarding exposure to repetitive head injury and CTE risk should be undertaken using public or occupational health frameworks of medical knowledge. The current debate over the existence of CTE as a disease of concern is fuelled in part by immediate medico-legal considerations, and the involvement of high-profile athletes, with inevitable media interest. Moving beyond this debate has significant potential to address and reduce disease impact in the near future, and provide novel insights into mechanisms underlying abnormal protein accumulation in CTE and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Michael E. Buckland
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
- *Correspondence: Michael E. Buckland
| | - Andrew J. Affleck
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Alan J. Pearce
- College of Science, Health and Engineering, La Trobe University, Bundoora, VIC, Australia
| | - Catherine M. Suter
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
26
|
Vink R, Corrigan F. Chronic traumatic encephalopathy: genes load the gun and repeated concussion pulls the trigger. Neural Regen Res 2022; 17:1963-1964. [PMID: 35142676 PMCID: PMC8848591 DOI: 10.4103/1673-5374.335147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Robert Vink
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Frances Corrigan
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
27
|
Cherry JD, Agus F, Dixon E, Huber B, Alvarez VE, Mez J, McKee AC, Labadorf A, Stein TD. Differential gene expression in the cortical sulcus compared to the gyral crest within the early stages of chronic traumatic encephalopathy. FREE NEUROPATHOLOGY 2021; 2:21. [PMID: 34485990 PMCID: PMC8415801 DOI: 10.17879/freeneuropathology-2021-3453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/12/2021] [Indexed: 12/28/2022]
Abstract
Chronic traumatic encephalopathy (CTE) is a progressive neurodegenerative tauopathy found in individuals with a history of repetitive head impacts (RHI). Previous work has demonstrated that neuroinflammation is involved in CTE pathogenesis, however, the specific inflammatory mechanisms are still unclear. Here, using RNA-sequencing and gene set enrichment analysis (GSEA), we investigated the genetic changes found in tissue taken from the region CTE pathology is first found, the cortical sulcus, and compared it to neighboring gryal crest tissue to identify what pathways were directly related to initial hyperphosphorylated tau (p-tau) deposition. 21 cases were chosen for analysis: 6 cases had no exposure to RHI or presence of neurodegenerative disease (Control), 5 cases had exposure to RHI but no presence of neurodegenerative disease (RHI), and 10 cases had exposure to RHI and low stage CTE (CTE). Two sets of genes were identified: genes that changed in both the sulcus and crest and genes that changed specifically in the sulcus relative to the crest. When examining genes that changed in both the sulcus and crest, GSEA demonstrated an increase in immune related processes and a decrease in neuronal processes in RHI and CTE groups. Sulcal specific alterations were observed to be driven by three mechanisms: anatomy, RHI, or p-tau. First, we observed consistent sulcal specific alterations in immune, extracellular matrix, vascular, neuronal, and endocytosis/exocytosis categories across all groups, suggesting the sulcus has a unique molecular signature compared to the neighboring crest independent of pathology. Second, individuals with a history of RHI demonstrated impairment in metabolic and mitochondrial related processes. Finally, in individuals with CTE, we observed impairment of immune and phagocytic related processes. Overall, this work provides the first observation of biological processes specifically altered in the sulcus that could be directly implicated in CTE pathogenesis and provide novel targets for biomarkers and therapies.
Collapse
Affiliation(s)
- Jonathan D. Cherry
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston MAUnited States
- Department of Neurology, Boston University School of Medicine, Boston MAUnited States
- Boston University Alzheimer’s Disease and CTE Centers, Boston University School of Medicine, Boston MAUnited States
- VA Boston Healthcare System, Jamaica Plain MAUnited States
| | - Filisia Agus
- Department of Neurology, Boston University School of Medicine, Boston MAUnited States
- Bioinformatics Program, Boston University, Boston MAUnited States
| | - Erin Dixon
- Boston University Alzheimer’s Disease and CTE Centers, Boston University School of Medicine, Boston MAUnited States
- VA Boston Healthcare System, Jamaica Plain MAUnited States
| | - Bertrand Huber
- Department of Neurology, Boston University School of Medicine, Boston MAUnited States
- Boston University Alzheimer’s Disease and CTE Centers, Boston University School of Medicine, Boston MAUnited States
- VA Boston Healthcare System, Jamaica Plain MAUnited States
- National Center for PTSD, VA Boston Healthcare System, Boston MAUnited States
| | - Victor E. Alvarez
- Department of Neurology, Boston University School of Medicine, Boston MAUnited States
- Boston University Alzheimer’s Disease and CTE Centers, Boston University School of Medicine, Boston MAUnited States
- VA Boston Healthcare System, Jamaica Plain MAUnited States
- VA Bedford Healthcare System, Bedford MAUnited States
| | - Jesse Mez
- Department of Neurology, Boston University School of Medicine, Boston MAUnited States
- Boston University Alzheimer’s Disease and CTE Centers, Boston University School of Medicine, Boston MAUnited States
| | - Ann C. McKee
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston MAUnited States
- Department of Neurology, Boston University School of Medicine, Boston MAUnited States
- Boston University Alzheimer’s Disease and CTE Centers, Boston University School of Medicine, Boston MAUnited States
- VA Boston Healthcare System, Jamaica Plain MAUnited States
- VA Bedford Healthcare System, Bedford MAUnited States
| | - Adam Labadorf
- Department of Neurology, Boston University School of Medicine, Boston MAUnited States
- Bioinformatics Program, Boston University, Boston MAUnited States
- National Center for PTSD, VA Boston Healthcare System, Boston MAUnited States
| | - Thor D. Stein
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston MAUnited States
- Boston University Alzheimer’s Disease and CTE Centers, Boston University School of Medicine, Boston MAUnited States
- VA Boston Healthcare System, Jamaica Plain MAUnited States
- VA Bedford Healthcare System, Bedford MAUnited States
| |
Collapse
|
28
|
Alosco ML, Mariani ML, Adler CH, Balcer LJ, Bernick C, Au R, Banks SJ, Barr WB, Bouix S, Cantu RC, Coleman MJ, Dodick DW, Farrer LA, Geda YE, Katz DI, Koerte IK, Kowall NW, Lin AP, Marcus DS, Marek KL, McClean MD, McKee AC, Mez J, Palmisano JN, Peskind ER, Tripodis Y, Turner RW, Wethe JV, Cummings JL, Reiman EM, Shenton ME, Stern RA. Developing methods to detect and diagnose chronic traumatic encephalopathy during life: rationale, design, and methodology for the DIAGNOSE CTE Research Project. Alzheimers Res Ther 2021; 13:136. [PMID: 34384490 PMCID: PMC8357968 DOI: 10.1186/s13195-021-00872-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/29/2021] [Indexed: 02/01/2023]
Abstract
BACKGROUND Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease that has been neuropathologically diagnosed in brain donors exposed to repetitive head impacts, including boxers and American football, soccer, ice hockey, and rugby players. CTE cannot yet be diagnosed during life. In December 2015, the National Institute of Neurological Disorders and Stroke awarded a seven-year grant (U01NS093334) to fund the "Diagnostics, Imaging, and Genetics Network for the Objective Study and Evaluation of Chronic Traumatic Encephalopathy (DIAGNOSE CTE) Research Project." The objectives of this multicenter project are to: develop in vivo fluid and neuroimaging biomarkers for CTE; characterize its clinical presentation; refine and validate clinical research diagnostic criteria (i.e., traumatic encephalopathy syndrome [TES]); examine repetitive head impact exposure, genetic, and other risk factors; and provide shared resources of anonymized data and biological samples to the research community. In this paper, we provide a detailed overview of the rationale, design, and methods for the DIAGNOSE CTE Research Project. METHODS The targeted sample and sample size was 240 male participants, ages 45-74, including 120 former professional football players, 60 former collegiate football players, and 60 asymptomatic participants without a history of head trauma or participation in organized contact sports. Participants were evaluated at one of four U.S. sites and underwent the following baseline procedures: neurological and neuropsychological examinations; tau and amyloid positron emission tomography; magnetic resonance imaging and spectroscopy; lumbar puncture; blood and saliva collection; and standardized self-report measures of neuropsychiatric, cognitive, and daily functioning. Study partners completed similar informant-report measures. Follow-up evaluations were intended to be in-person and at 3 years post-baseline. Multidisciplinary diagnostic consensus conferences are held, and the reliability and validity of TES diagnostic criteria are examined. RESULTS Participant enrollment and all baseline evaluations were completed in February 2020. Three-year follow-up evaluations began in October 2019. However, in-person evaluation ceased with the COVID-19 pandemic, and resumed as remote, 4-year follow-up evaluations (including telephone-, online-, and videoconference-based cognitive, neuropsychiatric, and neurologic examinations, as well as in-home blood draw) in February 2021. CONCLUSIONS Findings from the DIAGNOSE CTE Research Project should facilitate detection and diagnosis of CTE during life, and thereby accelerate research on risk factors, mechanisms, epidemiology, treatment, and prevention of CTE. TRIAL REGISTRATION NCT02798185.
Collapse
Affiliation(s)
- Michael L Alosco
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Megan L Mariani
- Boston University CTE Center, Boston University School of Medicine, Boston, MA, USA
| | - Charles H Adler
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Laura J Balcer
- Departments of Neurology, Population Health and Ophthalmology, NYU Grossman School of Medicine, New York, NY, USA
| | - Charles Bernick
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
- Department of Neurology, University of Washington, Seattle, WA, USA
| | - Rhoda Au
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Framingham Heart Study, and Slone Epidemiology Center, Boston, MA, USA
- Departments of Anatomy & Neurobiology and Neurology, Boston University School of Medicine, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Sarah J Banks
- Departments of Neuroscience and Psychiatry, University of California, San Diego, CA, USA
| | - William B Barr
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | - Sylvain Bouix
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Robert C Cantu
- Boston University Alzheimer's Disease Research Center, Departments of Neurology and Neurosurgery, Boston University School of Medicine, Boston, MA, USA
| | - Michael J Coleman
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
| | - David W Dodick
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Lindsay A Farrer
- Departments of Medicine (Biomedical Genetics), Neurology, Ophthalmology, Epidemiology, and Biostatistics, BU Schools of Medicine and Public Health, Boston, MA, USA
| | - Yonas E Geda
- Alzheimer's Disease and Memory Disorders Program, Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Douglas I Katz
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Encompass Health Braintree Rehabilitation Hospital, Braintree, MA, USA
| | - Inga K Koerte
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwigs-Maximilians-Universität, Munich, Germany
| | - Neil W Kowall
- Boston University Alzheimer's Disease Research Center, Departments of Neurology and Neurosurgery, Boston University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
| | - Alexander P Lin
- Center for Clinical Spectroscopy, Department of Radiology, Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel S Marcus
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kenneth L Marek
- Institute for Neurodegenerative Disorders, Invicro, LLC, New Haven, CT, USA
| | - Michael D McClean
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Ann C McKee
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
| | - Jesse Mez
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Framingham Heart Study, Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Joseph N Palmisano
- Biostatistics and Epidemiology Data Analytics Center (BEDAC), Boston University School of Public Health, Boston, MA, USA
| | - Elaine R Peskind
- VA Northwest Mental Illness Research, Education, and Clinical Center, VA Puget Sound Health Care System, Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Yorghos Tripodis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Robert W Turner
- Department of Clinical Research & Leadership, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Jennifer V Wethe
- Department of Psychiatry and Psychology, Mayo Clinic School of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Jeffrey L Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Eric M Reiman
- Banner Alzheimer's Institute, University of Arizona, Arizona State University, Translational Genomics Research Institute, and Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Robert A Stern
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Departments of Neurology, Neurosurgery, and Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
29
|
Altered oligodendroglia and astroglia in chronic traumatic encephalopathy. Acta Neuropathol 2021; 142:295-321. [PMID: 34019156 PMCID: PMC8270845 DOI: 10.1007/s00401-021-02322-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/07/2021] [Accepted: 05/01/2021] [Indexed: 12/14/2022]
Abstract
Chronic traumatic encephalopathy (CTE) is a progressive tauopathy found in contact sport athletes, military veterans, and others exposed to repetitive head impacts. White matter rarefaction and axonal loss have been reported in CTE but have not been characterized on a molecular or cellular level. Here, we present RNA sequencing profiles of cell nuclei from postmortem dorsolateral frontal white matter from eight individuals with neuropathologically confirmed CTE and eight age- and sex-matched controls. Analyzing these profiles using unbiased clustering approaches, we identified eighteen transcriptomically distinct cell groups (clusters), reflecting cell types and/or cell states, of which a subset showed differences between CTE and control tissue. Independent in situ methods applied on tissue sections adjacent to that used in the single-nucleus RNA-seq work yielded similar findings. Oligodendrocytes were found to be most severely affected in the CTE white matter samples; they were diminished in number and altered in relative proportions across subtype clusters. Further, the CTE-enriched oligodendrocyte population showed greater abundance of transcripts relevant to iron metabolism and cellular stress response. CTE tissue also demonstrated excessive iron accumulation histologically. In astrocytes, total cell numbers were indistinguishable between CTE and control samples, but transcripts associated with neuroinflammation were elevated in the CTE astrocyte groups compared to controls. These results demonstrate specific molecular and cellular differences in CTE oligodendrocytes and astrocytes and suggest that white matter alterations are a critical aspect of CTE neurodegeneration.
Collapse
|
30
|
Physiological and pathological functions of TMEM106B: a gene associated with brain aging and multiple brain disorders. Acta Neuropathol 2021; 141:327-339. [PMID: 33386471 DOI: 10.1007/s00401-020-02246-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022]
Abstract
TMEM106B, encoding a lysosome membrane protein, has been recently associated with brain aging, hypomyelinating leukodystrophy and multiple neurodegenerative diseases, such as frontotemporal lobar degeneration (FTLD) and limbic-predominant age-related TDP-43 encephalopathy (LATE). During the past decade, considerable progress has been made towards our understanding of the cellular and physiological functions of TMEM106B. TMEM106B regulates many aspects of lysosomal function, including lysosomal pH, lysosome movement, and lysosome exocytosis. Both an increase and decrease in TMEM106B levels result in lysosomal abnormalities. In mouse models, TMEM106B deficiency leads to lysosome trafficking and myelination defects and FTLD related pathology. In humans, alterations in TMEM106B levels or function are intimately linked to neuronal proportions, brain aging, and brain disorders. Further elucidation of the physiological function of TMEM106B and changes in TMEM106B under pathological conditions will facilitate therapeutic development to treat brain disorders associated with TMEM106B.
Collapse
|
31
|
Llibre‐Guerra JJ, Lee SE, Suemoto CK, Ehrenberg AJ, Kovacs GG, Karydas A, Staffaroni A, Franca Resende EDP, Kim E, Hwang J, Ramos EM, Wojta KJ, Pasquini L, Pang SY, Spina S, Allen IE, Kramer J, Miller BL, Seeley WW, Grinberg LT. A novel temporal-predominant neuro-astroglial tauopathy associated with TMEM106B gene polymorphism in FTLD/ALS-TDP. Brain Pathol 2021; 31:267-282. [PMID: 33314436 PMCID: PMC7946775 DOI: 10.1111/bpa.12924] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/30/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022] Open
Abstract
Polymorphisms in TMEM106B, a gene on chromosome 7p21.3 involved in lysosomal trafficking, correlates to worse neuropathological, and clinical outcomes in frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS) with TDP-43 inclusions. In a small cohort of C9orf72 expansion carriers, we previously found an atypical, neuroglial tauopathy in cases harboring a TMEM106B rs1990622 A/A genotype. To test whether TMEM106B genotype affects the risk of developing atypical tauopathy under a recessive genotype model (presence versus absence of two major alleles: A/A vs. A/G and G/G). We characterized the atypical tauopathy neuropathologically and determined its frequency by TMEM106B rs1990622 genotypes in 90 postmortem cases with a primary diagnosis of FTLD/ALS-TDP [mean age at death 65.5 years (±8.1), 40% female]. We investigated the effect of this new atypical tauopathy on demographics and clinical and neuropsychological metrics. We also genotyped TMEM106B in an independent series with phenotypically similar cases. Sixteen cases (16/90, 17.7 %) showed the temporal-predominant neuro-astroglial tauopathy, and 93.7% of them carried an A/A genotype (vs. ~35% in a population cohort). The odds ratio of FTLD/ALS-TDP individuals with the A/A genotype showing neuro-astroglial tauopathy was 13.9. Individuals with this tauopathy were older at onset (p = 0.01). The validation cohort had a similarly high proportion of rs1990622 A/A genotype. TDP-43 and tau changes co-occur in a subset of neurons. Our data add to the growing body of evidence that TMEM106B polymorphisms may modulate neurodegeneration. A distinctive medial temporal predominant, 4-repeat, neuro-astroglial tauopathy strongly correlates to TMEM106B A/A genotype in FTLD/ALS-TDP cases.
Collapse
Affiliation(s)
- Jorge J. Llibre‐Guerra
- Department of NeurologyUCSF Weill Institute for NeurosciencesUniversity of California, San Francisco, San FranciscoCAUSA,National Institute of Neurology and NeurosurgeryLa HabanaCuba,Global Brain Health InstituteUniversity of California, San FranciscoSan FranciscoCAUSA
| | - Suzee E. Lee
- Department of NeurologyUCSF Weill Institute for NeurosciencesUniversity of California, San Francisco, San FranciscoCAUSA
| | - Claudia K. Suemoto
- Biobank for Aging StudiesLIM‐22Department of PathologyUniversity of Sao Paulo Medical SchoolSao PauloBrazil,Division of GeriatricsDepartment of Clinical MedicineUniversity of Sao Paulo Medical SchoolSao PauloBrazil
| | - Alexander J. Ehrenberg
- Department of NeurologyUCSF Weill Institute for NeurosciencesUniversity of California, San Francisco, San FranciscoCAUSA,Department of Integrative BiologyUniversity of California, BerkeleyBerkeleyCAUSA
| | - Gabor G. Kovacs
- Institute of NeurologyMedical University ViennaViennaAustria,Department of Laboratory Medicine and Pathobiology and Tanz Centre for Research in Neurodegenerative DiseaseUniversity of TorontoTorontoONCanada,Laboratory Medicine Program & Krembil Brain InstituteUniversity Health NetworkTorontoONCanada
| | - Anna Karydas
- Department of NeurologyUCSF Weill Institute for NeurosciencesUniversity of California, San Francisco, San FranciscoCAUSA
| | - Adam Staffaroni
- Department of NeurologyUCSF Weill Institute for NeurosciencesUniversity of California, San Francisco, San FranciscoCAUSA
| | - Elisa De Paula Franca Resende
- Department of NeurologyUCSF Weill Institute for NeurosciencesUniversity of California, San Francisco, San FranciscoCAUSA,Global Brain Health InstituteUniversity of California, San FranciscoSan FranciscoCAUSA,Grupo de Pesquisa em Neurologia Cognitiva e do ComportamentoDepartamento de Clínica MédicaFaculdade de Medicina da Universidade Federal de Minas GeraisBelo HorizonteBrazil
| | - Eun‐Joo Kim
- Department of NeurologyPusan National University HospitalPusan National University School of Medicine and Medical Research InstituteBusanRepublic of Korea
| | - Ji‐Hye Hwang
- Department of NeurologyUCSF Weill Institute for NeurosciencesUniversity of California, San Francisco, San FranciscoCAUSA
| | - Eliana Marisa Ramos
- Department of PsychiatryDavid Geffen School of MedicineUniversity of California Los AngelesLos AngelesCAUSA
| | - Kevin J. Wojta
- Department of PsychiatryDavid Geffen School of MedicineUniversity of California Los AngelesLos AngelesCAUSA
| | - Lorenzo Pasquini
- Department of NeurologyUCSF Weill Institute for NeurosciencesUniversity of California, San Francisco, San FranciscoCAUSA
| | - Shirley Yin‐Yu Pang
- Division of NeurologyDepartment of MedicineQueen Mary HospitalThe University of Hong KongHong Kong SARChina
| | - Salvatore Spina
- Department of NeurologyUCSF Weill Institute for NeurosciencesUniversity of California, San Francisco, San FranciscoCAUSA
| | - Isabel E. Allen
- Global Brain Health InstituteUniversity of California, San FranciscoSan FranciscoCAUSA,Department of Epidemiology & BiostatisticsUniversity of California, San FranciscoSan FranciscoCAUSA
| | - Joel Kramer
- Department of NeurologyUCSF Weill Institute for NeurosciencesUniversity of California, San Francisco, San FranciscoCAUSA
| | - Bruce L. Miller
- Department of NeurologyUCSF Weill Institute for NeurosciencesUniversity of California, San Francisco, San FranciscoCAUSA
| | - William W. Seeley
- Department of NeurologyUCSF Weill Institute for NeurosciencesUniversity of California, San Francisco, San FranciscoCAUSA,Department of Pathology and Laboratory MedicineUniversity of California, San FranciscoSan FranciscoCAUSA
| | - Lea T. Grinberg
- Department of NeurologyUCSF Weill Institute for NeurosciencesUniversity of California, San Francisco, San FranciscoCAUSA,Global Brain Health InstituteUniversity of California, San FranciscoSan FranciscoCAUSA,Biobank for Aging StudiesLIM‐22Department of PathologyUniversity of Sao Paulo Medical SchoolSao PauloBrazil,Department of Pathology and Laboratory MedicineUniversity of California, San FranciscoSan FranciscoCAUSA
| |
Collapse
|
32
|
Stroobants S, D'Hooge R, Damme M. Aged Tmem106b knockout mice display gait deficits in coincidence with Purkinje cell loss and only limited signs of non-motor dysfunction. Brain Pathol 2020; 31:223-238. [PMID: 33016371 PMCID: PMC8018119 DOI: 10.1111/bpa.12903] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/14/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022] Open
Abstract
Genetic variants in TMEM106B are a major risk factor for several neurodegenerative diseases including frontotemporal degeneration, limbic‐predominant age‐related TDP‐43 encephalopathy, Parkinson's disease, late‐onset‐Alzheimer's disease and constitute a genetic determinant of differential aging. TMEM106B encodes an integral lysosomal membrane protein but its precise physiological function in the central nervous system remains enigmatic. Presently, we aimed to increase understanding of TMEM106B contribution to general brain function and aging. We analyzed an aged cohort of Tmem106b knockout‐, heterozygote and wild‐type mice in a behavioral test battery including assessments of motor function as well as, social, emotional and cognitive function. Aged Tmem106b knockout (KO) mice displayed diverse behavioral deficits including motor impairment, gait defects and reduced startle reactivity. In contrast, no prominent deficits were observed in social, emotional or cognitive behaviors. Histologically, we observed late‐onset loss of Purkinje cells followed by reactive gliosis in the cerebellum, which likely contributed to progressive decline in motor function and gait defects in particular. Reactive gliosis was not restricted to the cerebellum but observed in different areas of the brain including the brain stem and parts of the cerebral cortex. Surviving Purkinje cells showed vacuolated lysosomes in the axon initial segment, implicating TMEM106B‐dependent lysosomal trafficking defects as the underlying cause of axonal and more general neuronal dysfunction contributing to behavioral impairments. Our experiments help to elucidate how TMEM106B affects spatial neuronal homeostasis and exemplifies a critical role of TMEM106B in neuronal cells for survival.
Collapse
Affiliation(s)
- Stijn Stroobants
- Laboratory of Biological Psychology, KU Leuven, Tiensestraat 102, Leuven, 3000, Belgium
| | - Rudi D'Hooge
- Laboratory of Biological Psychology, KU Leuven, Tiensestraat 102, Leuven, 3000, Belgium
| | - Markus Damme
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Kiel, 24098, Germany
| |
Collapse
|
33
|
Alyenbaawi H, Allison WT, Mok SA. Prion-Like Propagation Mechanisms in Tauopathies and Traumatic Brain Injury: Challenges and Prospects. Biomolecules 2020; 10:E1487. [PMID: 33121065 PMCID: PMC7692808 DOI: 10.3390/biom10111487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/23/2022] Open
Abstract
The accumulation of tau protein in the form of filamentous aggregates is a hallmark of many neurodegenerative diseases such as Alzheimer's disease (AD) and chronic traumatic encephalopathy (CTE). These dementias share traumatic brain injury (TBI) as a prominent risk factor. Tau aggregates can transfer between cells and tissues in a "prion-like" manner, where they initiate the templated misfolding of normal tau molecules. This enables the spread of tau pathology to distinct parts of the brain. The evidence that tauopathies spread via prion-like mechanisms is considerable, but work detailing the mechanisms of spread has mostly used in vitro platforms that cannot fully reveal the tissue-level vectors or etiology of progression. We review these issues and then briefly use TBI and CTE as a case study to illustrate aspects of tauopathy that warrant further attention in vivo. These include seizures and sleep/wake disturbances, emphasizing the urgent need for improved animal models. Dissecting these mechanisms of tauopathy progression continues to provide fresh inspiration for the design of diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Hadeel Alyenbaawi
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, AB T6G 2M8, Canada; (H.A.); (W.T.A.)
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Department of Medical Laboratories, Majmaah University, Majmaah 11952, Saudi Arabia
| | - W. Ted Allison
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, AB T6G 2M8, Canada; (H.A.); (W.T.A.)
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Sue-Ann Mok
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, AB T6G 2M8, Canada; (H.A.); (W.T.A.)
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
34
|
Cherry JD, Kim SH, Stein TD, Pothast MJ, Nicks R, Meng G, Huber BR, Mez J, Alosco ML, Tripodis Y, Farrell K, Alvarez VE, McKee AC, Crary JF. Evolution of neuronal and glial tau isoforms in chronic traumatic encephalopathy. Brain Pathol 2020; 30:913-925. [PMID: 32500646 PMCID: PMC7484331 DOI: 10.1111/bpa.12867] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/23/2020] [Accepted: 05/18/2020] [Indexed: 12/14/2022] Open
Abstract
Chronic traumatic encephalopathy (CTE) is a neurodegenerative tauopathy characterized by accumulation of hyperphosphorylated tau (p-tau) in perivascular aggregates in neurons and glia at the depths of neocortical sulci and progresses to diffuse neocortical, allocortical and brainstem structures. The strongest risk factor is exposure to repetitive head impacts acquired most commonly through contact sports and military service. Given that CTE can only be definitively diagnosed after death, a better understanding of the cellular and molecular changes in CTE brains may lead to identification of mechanisms that could be used for novel biomarkers, monitoring progression or therapeutic development. Disruption of alternative pre-mRNA splicing of tau mRNA plays a pathogenic role in tauopathy, with multiple characteristic patterns of isoform accumulation varying among tauopathies. Limited data are available on CTE, particularly at early stages. Using biochemical and histological approaches, we performed a detailed characterization of tau isoform signatures in post-mortem human brain tissue from individuals with a range of CTE stages (n = 99). In immunoblot analyses, severity was associated with decreased total monomeric tau and increased total oligomeric tau. Immunoblot with isoform-specific antisera revealed that oligomeric tau with three and four microtubule binding domain repeats (3R and 4R) also increased with CTE severity. Similarly, immunohistochemical studies revealed p-tau accumulation consisting of both 3R and 4R in perivascular lesions. When the ratio of 4R:3R was analyzed, there was mixed expression throughout CTE stages, although 4R predominated in early CTE stages (I-II), a 3R shift was observed in later stages (III-IV). While neurons were found to contain both 3R and 4R, astrocytes only contained 4R. These 4R-positive cells were exclusively neuronal at early stages. Overall, these findings demonstrate that CTE is a mixed 4R/3R tauopathy. Furthermore, histologic analysis reveals a progressive shift in tau isoforms that correlates with CTE stage and extent of neuronal pathology.
Collapse
Affiliation(s)
- Jonathan D. Cherry
- Department of Pathology and Laboratory MedicineBoston University School of MedicineBostonMA
- Department of NeurologyBoston University School of MedicineBostonMA
- Boston University Alzheimer’s Disease and CTE CentersBoston University School of MedicineBostonMA
- VA Boston Healthcare SystemU.S. Department of Veteran AffairsBostonMA
| | - Soong Ho Kim
- Neuropathology Brain Bank & Research CoREDepartment of PathologyNash Family Department of NeuroscienceRonald M. Loeb Center for Alzheimer's DiseaseFriedman Brain InstituteIcahn School of Medicine at Mount SinaiNew YorkNY
| | - Thor D. Stein
- Department of Pathology and Laboratory MedicineBoston University School of MedicineBostonMA
- Boston University Alzheimer’s Disease and CTE CentersBoston University School of MedicineBostonMA
- VA Boston Healthcare SystemU.S. Department of Veteran AffairsBostonMA
- Department of Veterans Affairs Medical CenterBedfordMA
| | - Morgan J. Pothast
- Boston University Alzheimer’s Disease and CTE CentersBoston University School of MedicineBostonMA
- VA Boston Healthcare SystemU.S. Department of Veteran AffairsBostonMA
| | - Raymond Nicks
- Boston University Alzheimer’s Disease and CTE CentersBoston University School of MedicineBostonMA
- VA Boston Healthcare SystemU.S. Department of Veteran AffairsBostonMA
- Department of Veterans Affairs Medical CenterBedfordMA
| | - Gaoyuan Meng
- Department of Veterans Affairs Medical CenterBedfordMA
| | - Bertrand R. Huber
- Boston University Alzheimer’s Disease and CTE CentersBoston University School of MedicineBostonMA
- VA Boston Healthcare SystemU.S. Department of Veteran AffairsBostonMA
- Department of Veterans Affairs Medical CenterBedfordMA
| | - Jesse Mez
- Department of NeurologyBoston University School of MedicineBostonMA
- Boston University Alzheimer’s Disease and CTE CentersBoston University School of MedicineBostonMA
- Framingham Heart StudyBoston University School of MedicineBostonMA
| | - Michael L. Alosco
- Department of NeurologyBoston University School of MedicineBostonMA
- Boston University Alzheimer’s Disease and CTE CentersBoston University School of MedicineBostonMA
| | - Yorghos Tripodis
- Department of BiostatisticsSchool of Public HealthBoston UniversityBostonMA
| | - Kurt Farrell
- Neuropathology Brain Bank & Research CoREDepartment of PathologyNash Family Department of NeuroscienceRonald M. Loeb Center for Alzheimer's DiseaseFriedman Brain InstituteIcahn School of Medicine at Mount SinaiNew YorkNY
| | - Victor E. Alvarez
- Boston University Alzheimer’s Disease and CTE CentersBoston University School of MedicineBostonMA
- VA Boston Healthcare SystemU.S. Department of Veteran AffairsBostonMA
- Department of Veterans Affairs Medical CenterBedfordMA
| | - Ann C. McKee
- Department of Pathology and Laboratory MedicineBoston University School of MedicineBostonMA
- Department of NeurologyBoston University School of MedicineBostonMA
- Boston University Alzheimer’s Disease and CTE CentersBoston University School of MedicineBostonMA
- VA Boston Healthcare SystemU.S. Department of Veteran AffairsBostonMA
- Department of Veterans Affairs Medical CenterBedfordMA
| | - John F. Crary
- Neuropathology Brain Bank & Research CoREDepartment of PathologyNash Family Department of NeuroscienceRonald M. Loeb Center for Alzheimer's DiseaseFriedman Brain InstituteIcahn School of Medicine at Mount SinaiNew YorkNY
| |
Collapse
|
35
|
Abdolmohammadi B, Dupre A, Evers L, Mez J. Genetics of Chronic Traumatic Encephalopathy. Semin Neurol 2020; 40:420-429. [DOI: 10.1055/s-0040-1713631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AbstractAlthough chronic traumatic encephalopathy (CTE) garners substantial attention in the media and there have been marked scientific advances in the last few years, much remains unclear about the role of genetic risk in CTE. Two athletes with comparable contact-sport exposure may have varying amounts of CTE neuropathology, suggesting that other factors, including genetics, may contribute to CTE risk and severity. In this review, we explore reasons why genetics may be important for CTE, concepts in genetic study design for CTE (including choosing controls, endophenotypes, gene by environment interaction, and epigenetics), implicated genes in CTE (including APOE, MAPT, and TMEM106B), and whether predictive genetic testing for CTE should be considered.
Collapse
Affiliation(s)
- Bobak Abdolmohammadi
- Boston University Alzheimer’s Disease Center, Boston University School of Medicine, Boston, MA
- Boston University Chronic Traumatic Encephalopathy Center, Boston University School of Medicine, Boston, MA
- Department of Neurology, Boston University School of Medicine, Boston, MA
| | - Alicia Dupre
- Boston University Alzheimer’s Disease Center, Boston University School of Medicine, Boston, MA
- Boston University Chronic Traumatic Encephalopathy Center, Boston University School of Medicine, Boston, MA
- Department of Neurology, Boston University School of Medicine, Boston, MA
| | - Laney Evers
- Boston University Alzheimer’s Disease Center, Boston University School of Medicine, Boston, MA
- Boston University Chronic Traumatic Encephalopathy Center, Boston University School of Medicine, Boston, MA
- Department of Neurology, Boston University School of Medicine, Boston, MA
| | - Jesse Mez
- Boston University Alzheimer’s Disease Center, Boston University School of Medicine, Boston, MA
- Boston University Chronic Traumatic Encephalopathy Center, Boston University School of Medicine, Boston, MA
- Department of Neurology, Boston University School of Medicine, Boston, MA
| |
Collapse
|
36
|
Cherry JD, Babcock KJ, Goldstein LE. Repetitive Head Trauma Induces Chronic Traumatic Encephalopathy by Multiple Mechanisms. Semin Neurol 2020; 40:430-438. [PMID: 32674181 DOI: 10.1055/s-0040-1713620] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Exposure to repetitive neurotrauma increases lifetime risk for developing progressive cognitive deficits, neurobehavioral abnormalities, and chronic traumatic encephalopathy (CTE). CTE is a tau protein neurodegenerative disease first identified in boxers and recently described in athletes participating in other contact sports (notably American football, ice hockey, rugby, and wrestling) and in military veterans with blast exposure. Currently, CTE can only be diagnosed by neuropathological examination of the brain after death. The defining diagnostic lesion of CTE consists of patchy perivascular accumulations of hyperphosphorylated tau protein that localize in the sulcal depths of the cerebral cortex. Neuronal abnormalities, axonopathy, neurovascular dysfunction, and neuroinflammation are triggered by repetitive head impacts (RHIs) and likely act as catalysts for CTE pathogenesis and progression. However, the specific mechanisms that link RHI to CTE are unknown. This review will explore two important areas of CTE pathobiology. First, we will review what is known about the biomechanical properties of RHI that initiate CTE-related pathologies. Second, we will provide an overview of key features of CTE neuropathology and how these contribute to abnormal tau hyperphosphorylation, accumulation, and spread.
Collapse
Affiliation(s)
- Jonathan D Cherry
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts.,Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts.,Department of Neurology, Boston University School of Medicine, Boston, Massachusetts.,VA Boston Healthcare System, Boston, Massachusetts
| | - Katharine J Babcock
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts.,VA Boston Healthcare System, Boston, Massachusetts.,Molecular Aging and Development Laboratory, Boston University School of Medicine, Boston, Massachusetts.,Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts
| | - Lee E Goldstein
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts.,Department of Neurology, Boston University School of Medicine, Boston, Massachusetts.,Molecular Aging and Development Laboratory, Boston University School of Medicine, Boston, Massachusetts.,Boston University College of Engineering, Boston University, Boston, Massachusetts
| |
Collapse
|
37
|
Adjepong D, Malik BH. Associations and Outcomes Between Chronic Traumatic Encephalopathy and Vasculitis in Adult Patients. Cureus 2020; 12:e6795. [PMID: 32140353 PMCID: PMC7045983 DOI: 10.7759/cureus.6795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Chronic traumatic encephalopathy (CTE) results from brain injuries and traumas due to accelerated impacts on the head. In severe cases, the diseases cause brain damage, given the head trauma. On the other hand, vasculitis occurs through antibodies that mistake protein vessels as foreign, hence fighting them and resulting in their damage. Examination is usually conducted through blood tests, with antibodies being identified in the antineutrophil cytoplasm. It is unfortunate that its devastating effects also affect the brain of a human, hence leading to dis-functioning. When vasculitis is left untreated, it results in multiple adverse effects on the human body and health both in the short term and in the long term. This study aims to bring to the awareness of neurosurgeons the associations between CTE and vasculitis. This study has proved that there is a close correlation between the progression of CTE and vasculitis. The inflammatory of the blood vessels, as witnessed in vasculitis, increases the risk factors for CTE. The scaling of the vessels and manifestation of different vasculitis conditions in active central nervous system cells results in the worsening of neurodegeneration of the CTE disease.
Collapse
Affiliation(s)
- Dennis Adjepong
- Neurological Surgery, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Bilal Haider Malik
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| |
Collapse
|
38
|
Alosco ML, Tripodis Y, Koerte IK, Jackson JD, Chua AS, Mariani M, Haller O, Foley ÉM, Martin BM, Palmisano J, Singh B, Green K, Lepage C, Muehlmann M, Makris N, Cantu RC, Lin AP, Coleman M, Pasternak O, Mez J, Bouix S, Shenton ME, Stern RA. Interactive Effects of Racial Identity and Repetitive Head Impacts on Cognitive Function, Structural MRI-Derived Volumetric Measures, and Cerebrospinal Fluid Tau and Aβ. Front Hum Neurosci 2019; 13:440. [PMID: 31920598 PMCID: PMC6933867 DOI: 10.3389/fnhum.2019.00440] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 12/02/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Factors of increased prevalence among individuals with Black racial identity (e.g., cardiovascular disease, CVD) may influence the association between exposure to repetitive head impacts (RHI) from American football and later-life neurological outcomes. Here, we tested the interaction between racial identity and RHI on neurobehavioral outcomes, brain volumetric measures, and cerebrospinal fluid (CSF) total tau (t-tau), phosphorylated tau (p-tau181), and Aβ1 - 42 in symptomatic former National Football League (NFL) players. METHODS 68 symptomatic male former NFL players (ages 40-69; n = 27 Black, n = 41 White) underwent neuropsychological testing, structural MRI, and lumbar puncture. FreeSurfer derived estimated intracranial volume (eICV), gray matter volume (GMV), white matter volume (WMV), subcortical GMV, hippocampal volume, and white matter (WM) hypointensities. Multivariate generalized linear models examined the main effects of racial identity and its interaction with a cumulative head impact index (CHII) on all outcomes. Age, years of education, Wide Range Achievement Test, Fourth Edition (WRAT-4) scores, CVD risk factors, and APOEε4 were included as covariates; eICV was included for MRI models. P-values were false discovery rate adjusted. RESULTS Compared to White former NFL players, Black participants were 4 years younger (p = 0.04), had lower WRAT-4 scores (mean difference = 8.03, p = 0.002), and a higher BMI (mean difference = 3.09, p = 0.01) and systolic blood pressure (mean difference = 8.15, p = 0.03). With regards to group differences on the basis of racial identity, compared to White former NFL players, Black participants had lower GMV (mean adjusted difference = 45649.00, p = 0.001), lower right hippocampal volume (mean adjusted difference = 271.96, p = 0.02), and higher p-tau181/t-tau ratio (mean adjusted difference = -0.25, p = 0.01). There was not a statistically significant association between the CHII with GMV, right hippocampal volume, or p-tau181/t-tau ratio. However, there was a statistically significant Race x CHII interaction for GMV (b = 2206.29, p = 0.001), right hippocampal volume (b = 12.07, p = 0.04), and p-tau181/t-tau ratio concentrations (b = -0.01, p = 0.004). CONCLUSION Continued research on racial neurological disparities could provide insight into risk factors for long-term neurological disorders associated with American football play.
Collapse
Affiliation(s)
- Michael L. Alosco
- Boston University Alzheimer’s Disease Center and Boston University CTE Center, Boston University School of Medicine, Boston, MA, United States
- Department of Neurology, Boston University School of Medicine, Boston, MA, United States
| | - Yorghos Tripodis
- Boston University Alzheimer’s Disease Center and Boston University CTE Center, Boston University School of Medicine, Boston, MA, United States
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, United States
| | - Inga K. Koerte
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatic, and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany
| | - Jonathan D. Jackson
- CARE Research Center, Massachusetts General Hospital, Boston, MA, United States
| | - Alicia S. Chua
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, United States
| | - Megan Mariani
- Boston University Alzheimer’s Disease Center and Boston University CTE Center, Boston University School of Medicine, Boston, MA, United States
- Department of Neurology, Boston University School of Medicine, Boston, MA, United States
| | - Olivia Haller
- Boston University Alzheimer’s Disease Center and Boston University CTE Center, Boston University School of Medicine, Boston, MA, United States
- Department of Neurology, Boston University School of Medicine, Boston, MA, United States
| | - Éimear M. Foley
- Boston University Alzheimer’s Disease Center and Boston University CTE Center, Boston University School of Medicine, Boston, MA, United States
| | - Brett M. Martin
- Boston University Alzheimer’s Disease Center and Boston University CTE Center, Boston University School of Medicine, Boston, MA, United States
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, MA, United States
| | - Joseph Palmisano
- Boston University Alzheimer’s Disease Center and Boston University CTE Center, Boston University School of Medicine, Boston, MA, United States
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, MA, United States
| | - Bhupinder Singh
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, United States
| | - Katie Green
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Christian Lepage
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Marc Muehlmann
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Nikos Makris
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Center for Morphometric Analysis, Massachusetts General Hospital, Boston, MA, United States
- Center for Neural Systems Investigations, Massachusetts General Hospital, Boston, MA, United States
| | - Robert C. Cantu
- Boston University Alzheimer’s Disease Center and Boston University CTE Center, Boston University School of Medicine, Boston, MA, United States
- Department of Neurology, Boston University School of Medicine, Boston, MA, United States
- Concussion Legacy Foundation, Boston, MA, United States
- Department of Neurosurgery, Boston University School of Medicine, Boston, MA, United States
- Department of Neurosurgery, Emerson Hospital, Concord, MA, United States
| | - Alexander P. Lin
- Department of Radiology, Center for Clinical Spectroscopy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Michael Coleman
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Ofer Pasternak
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Jesse Mez
- Boston University Alzheimer’s Disease Center and Boston University CTE Center, Boston University School of Medicine, Boston, MA, United States
- Department of Neurology, Boston University School of Medicine, Boston, MA, United States
| | - Sylvain Bouix
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Martha E. Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Brockton, MA, United States
| | - Robert A. Stern
- Boston University Alzheimer’s Disease Center and Boston University CTE Center, Boston University School of Medicine, Boston, MA, United States
- Department of Neurology, Boston University School of Medicine, Boston, MA, United States
- Department of Neurosurgery, Boston University School of Medicine, Boston, MA, United States
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
39
|
Standring OJ, Friedberg J, Tripodis Y, Chua AS, Cherry JD, Alvarez VE, Huber BR, Xia W, Mez J, Alosco ML, Nicks R, Mahar I, Pothast MJ, Gardner HM, Meng G, Palmisano JN, Martin BM, Dwyer B, Kowall NW, Cantu RC, Goldstein LE, Katz DI, Stern RA, McKee AC, Stein TD. Contact sport participation and chronic traumatic encephalopathy are associated with altered severity and distribution of cerebral amyloid angiopathy. Acta Neuropathol 2019; 138:401-413. [PMID: 31183671 DOI: 10.1007/s00401-019-02031-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 05/24/2019] [Accepted: 05/26/2019] [Indexed: 12/14/2022]
Abstract
Cerebral amyloid angiopathy (CAA) consists of beta-amyloid deposition in the walls of the cerebrovasculature and is commonly associated with Alzheimer's disease (AD). However, the association of CAA with repetitive head impacts (RHI) and with chronic traumatic encephalopathy (CTE) is unknown. We evaluated the relationship between RHI from contact sport participation, CTE, and CAA within a group of deceased contact sport athletes (n = 357), a community-based cohort (n = 209), and an AD cohort from Boston University AD Center (n = 241). Unsupervised hierarchal cluster analysis demonstrated a unique cluster (n = 11) with increased CAA in the leptomeningeal vessels compared to the intracortical vessels (p < 0.001) comprised of participants with significantly greater frequencies of CTE (7/11) and history of RHI. Overall, participants with CTE (n = 251) had more prevalent (p < 0.001) and severe (p = 0.010) CAA within the frontal leptomeningeal vessels compared to intracortical vessels. Compared to those with AD, participants with CTE had more severe CAA in frontal than parietal lobes (p < 0.001) and more severe CAA in leptomeningeal than intracortical vessels (p = 0.002). The overall frequency of CAA in participants with CTE was low, and there was no significant association between contact sport participation and the presence of CAA. However, in those with CAA, a history of contact sports was associated with increased CAA severity in the frontal leptomeningeal vessels (OR = 4.01, 95% CI 2.52-6.38, p < 0.001) adjusting for AD, APOE ε4 status, and age. Participants with CAA had increased levels of sulcal tau pathology and decreased levels of the synaptic marker PSD-95 (p's < 0.05), and CAA was a predictor of dementia (OR = 1.75, 95% CI 1.02-2.99, p = 0.043) adjusting for age, sex, and comorbid pathology. Overall, contact sport participation and CTE were associated with more severe frontal and leptomeningeal CAA, and CAA was independently associated with worse pathological and clinical outcomes.
Collapse
Affiliation(s)
- Oliver J Standring
- Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston University, Boston, MA, 02118, USA
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA
| | - Jacob Friedberg
- Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston University, Boston, MA, 02118, USA
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA
| | - Yorghos Tripodis
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, 20118, USA
| | - Alicia S Chua
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, 20118, USA
| | - Jonathan D Cherry
- Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston University, Boston, MA, 02118, USA
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, 20118, USA
| | - Victor E Alvarez
- Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston University, Boston, MA, 02118, USA
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, 20118, USA
- Department of Veterans Affairs Medical Centers, Bedford, MA, 01730, USA
| | - Bertrand R Huber
- Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston University, Boston, MA, 02118, USA
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, 20118, USA
| | - Weiming Xia
- Department of Veterans Affairs Medical Centers, Bedford, MA, 01730, USA
| | - Jesse Mez
- Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston University, Boston, MA, 02118, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, 20118, USA
| | - Michael L Alosco
- Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston University, Boston, MA, 02118, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, 20118, USA
| | - Raymond Nicks
- Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston University, Boston, MA, 02118, USA
- Department of Veterans Affairs Medical Centers, Bedford, MA, 01730, USA
| | - Ian Mahar
- Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston University, Boston, MA, 02118, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, 20118, USA
| | - Morgan J Pothast
- Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston University, Boston, MA, 02118, USA
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA
- Department of Veterans Affairs Medical Centers, Bedford, MA, 01730, USA
| | - Hannah M Gardner
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA
| | - Gaoyuan Meng
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA
- Department of Veterans Affairs Medical Centers, Bedford, MA, 01730, USA
| | - Joseph N Palmisano
- Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston University, Boston, MA, 02118, USA
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, USA
| | - Brett M Martin
- Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston University, Boston, MA, 02118, USA
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, USA
| | - Brigid Dwyer
- Department of Neurology, Boston University School of Medicine, Boston, MA, 20118, USA
- Braintree Rehabilitation Hospital, Braintree, MA, 02118, USA
| | - Neil W Kowall
- Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston University, Boston, MA, 02118, USA
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, 20118, USA
| | - Robert C Cantu
- Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston University, Boston, MA, 02118, USA
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, 20119, USA
- Concussion Legacy Foundation, Boston, MA, 02115, USA
- Department of Neurosurgery, Boston University School of Medicine, Boston, MA, 02118, USA
- Department of Neurosurgery, Emerson Hospital, Concord, MA, 01742, USA
| | - Lee E Goldstein
- Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston University, Boston, MA, 02118, USA
- Departments of Psychiatry, Ophthalmology, Boston University School of Medicine, Boston, USA
- Departments of Biomedical, Electrical and Computer Engineering, Boston University College of Engineering, Boston, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Douglas I Katz
- Department of Neurology, Boston University School of Medicine, Boston, MA, 20118, USA
- Braintree Rehabilitation Hospital, Braintree, MA, 02118, USA
| | - Robert A Stern
- Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston University, Boston, MA, 02118, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, 20118, USA
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, 20119, USA
- Department of Neurosurgery, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Ann C McKee
- Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston University, Boston, MA, 02118, USA
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, 20118, USA
- Department of Veterans Affairs Medical Centers, Bedford, MA, 01730, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Thor D Stein
- Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston University, Boston, MA, 02118, USA.
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA.
- Department of Veterans Affairs Medical Centers, Bedford, MA, 01730, USA.
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, 02118, USA.
| |
Collapse
|
40
|
Dallmeier JD, Meysami S, Merrill DA, Raji CA. Emerging advances of in vivo detection of chronic traumatic encephalopathy and traumatic brain injury. Br J Radiol 2019; 92:20180925. [PMID: 31287716 PMCID: PMC6732918 DOI: 10.1259/bjr.20180925] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 07/04/2019] [Accepted: 07/07/2019] [Indexed: 12/14/2022] Open
Abstract
Chronic traumatic encephalopathy (CTE) is a neurodegenerative disorder that is of epidemic proportions in contact sports athletes and is linked to subconcussive and concussive repetitive head impacts (RHI). Although postmortem analysis is currently the only confirmatory method to diagnose CTE, there has been progress in early detection techniques of fluid biomarkers as well as in advanced neuroimaging techniques. Specifically, promising new methods of diffusion MRI and radionucleotide PET scans could aid in the early detection of CTE.The authors examine early detection methods focusing on various neuroimaging techniques. Advances in structural and diffusion MRI have demonstrated the ability to measure volumetric and white matter abnormalities associated with CTE. Recent studies using radionucleotides such as flortaucipir and 18F-FDDNP have shown binding patterns that are consistent with the four stages of neurofibrillary tangle (NFT) distribution postmortem. Additional research undertakings focusing on fMRI, MR spectroscopy, susceptibility-weighted imaging, and singlephoton emission CT are also discussed as are advanced MRI methods such as diffusiontensor imaging and arterial spin labeled. Neuroimaging is fast becoming a key instrument in early detection and could prove essential for CTE quantification. This review explores a global approach to in vivo early detection.Limited data of in vivo CTE biomarkers with postmortem confirmation are available. While some data exist, they are limited by selection bias. It is unlikely that a single test will be sufficient to properly diagnosis and distinguish CTE from other neurodegenerative diseases such as Alzheimer disease or Frontotemporal Dementia. However, with a combination of fluid biomarkers, neuroimaging, and genetic testing, early detection may become possible.
Collapse
Affiliation(s)
- Julian D. Dallmeier
- Department of Neuroscience, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Somayeh Meysami
- Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - David A. Merrill
- Psychiatry and Biobehavioral Sciences and Pacific Brain Health Center, UCLA and Pacific Neuroscience Institute, Los Angeles, California, United States
| | - Cyrus A. Raji
- Radiology, Washington University Mallinckrodt Institute of Radiology, St. Louis, Missouri, United States
| |
Collapse
|
41
|
Tau and TDP-43 proteinopathies: kindred pathologic cascades and genetic pleiotropy. J Transl Med 2019; 99:993-1007. [PMID: 30742063 PMCID: PMC6609463 DOI: 10.1038/s41374-019-0196-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 12/11/2022] Open
Abstract
We review the literature on Tau and TDP-43 proteinopathies in aged human brains and the relevant underlying pathogenetic cascades. Complex interacting pathways are implicated in Alzheimer's disease and related dementias (ADRD), wherein multiple proteins tend to misfold in a manner that is "reactive," but, subsequently, each proteinopathy may contribute strongly to the clinical symptoms. Tau proteinopathy exists in brains of individuals across a broad spectrum of primary underlying conditions-e.g., developmental, traumatic, and inflammatory/infectious diseases. TDP-43 proteinopathy is also expressed in a wide range of clinical disorders. Although TDP-43 proteinopathy was first described in the central nervous system of patients with amyotrophic lateral sclerosis (ALS) and in subtypes of frontotemporal dementia (FTD/FTLD), TDP-43 proteinopathy is also present in chronic traumatic encephalopathy, cognitively impaired persons in advanced age with hippocampal sclerosis, Huntington's disease, and other diseases. We list known Tau and TDP-43 proteinopathies. There is also evidence of cellular co-localization between Tau and TDP-43 misfolded proteins, suggesting common pathways or protein interactions facilitating misfolding in one protein by the other. Multiple pleiotropic gene variants can alter risk for Tau or TDP-43 pathologies, and certain gene variants (e.g., APOE ε4, Huntingtin triplet repeats) are associated with increases of both Tau and TDP-43 proteinopathies. Studies of genetic risk factors have provided insights into multiple nodes of the pathologic cascades involved in Tau and TDP-43 proteinopathies. Variants from a specific gene can be either a low-penetrant risk factor for a group of diseases, or alternatively, a different variant of the same gene may be a disease-driving allele that is associated with a relatively aggressive and early-onset version of a clinically and pathologically specific disease type. Overall, a complex but enlightening paradigm has emerged, wherein both Tau and TDP-43 proteinopathies are linked to numerous overlapping upstream influences, and both are associated with multiple downstream pathologically- and clinically-defined deleterious effects.
Collapse
|
42
|
Nelson PT, Dickson DW, Trojanowski JQ, Jack CR, Boyle PA, Arfanakis K, Rademakers R, Alafuzoff I, Attems J, Brayne C, Coyle-Gilchrist ITS, Chui HC, Fardo DW, Flanagan ME, Halliday G, Hokkanen SRK, Hunter S, Jicha GA, Katsumata Y, Kawas CH, Keene CD, Kovacs GG, Kukull WA, Levey AI, Makkinejad N, Montine TJ, Murayama S, Murray ME, Nag S, Rissman RA, Seeley WW, Sperling RA, White III CL, Yu L, Schneider JA. Limbic-predominant age-related TDP-43 encephalopathy (LATE): consensus working group report. Brain 2019; 142:1503-1527. [PMID: 31039256 PMCID: PMC6536849 DOI: 10.1093/brain/awz099] [Citation(s) in RCA: 953] [Impact Index Per Article: 158.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/10/2019] [Accepted: 02/25/2019] [Indexed: 12/18/2022] Open
Abstract
We describe a recently recognized disease entity, limbic-predominant age-related TDP-43 encephalopathy (LATE). LATE neuropathological change (LATE-NC) is defined by a stereotypical TDP-43 proteinopathy in older adults, with or without coexisting hippocampal sclerosis pathology. LATE-NC is a common TDP-43 proteinopathy, associated with an amnestic dementia syndrome that mimicked Alzheimer's-type dementia in retrospective autopsy studies. LATE is distinguished from frontotemporal lobar degeneration with TDP-43 pathology based on its epidemiology (LATE generally affects older subjects), and relatively restricted neuroanatomical distribution of TDP-43 proteinopathy. In community-based autopsy cohorts, ∼25% of brains had sufficient burden of LATE-NC to be associated with discernible cognitive impairment. Many subjects with LATE-NC have comorbid brain pathologies, often including amyloid-β plaques and tauopathy. Given that the 'oldest-old' are at greatest risk for LATE-NC, and subjects of advanced age constitute a rapidly growing demographic group in many countries, LATE has an expanding but under-recognized impact on public health. For these reasons, a working group was convened to develop diagnostic criteria for LATE, aiming both to stimulate research and to promote awareness of this pathway to dementia. We report consensus-based recommendations including guidelines for diagnosis and staging of LATE-NC. For routine autopsy workup of LATE-NC, an anatomically-based preliminary staging scheme is proposed with TDP-43 immunohistochemistry on tissue from three brain areas, reflecting a hierarchical pattern of brain involvement: amygdala, hippocampus, and middle frontal gyrus. LATE-NC appears to affect the medial temporal lobe structures preferentially, but other areas also are impacted. Neuroimaging studies demonstrated that subjects with LATE-NC also had atrophy in the medial temporal lobes, frontal cortex, and other brain regions. Genetic studies have thus far indicated five genes with risk alleles for LATE-NC: GRN, TMEM106B, ABCC9, KCNMB2, and APOE. The discovery of these genetic risk variants indicate that LATE shares pathogenetic mechanisms with both frontotemporal lobar degeneration and Alzheimer's disease, but also suggests disease-specific underlying mechanisms. Large gaps remain in our understanding of LATE. For advances in prevention, diagnosis, and treatment, there is an urgent need for research focused on LATE, including in vitro and animal models. An obstacle to clinical progress is lack of diagnostic tools, such as biofluid or neuroimaging biomarkers, for ante-mortem detection of LATE. Development of a disease biomarker would augment observational studies seeking to further define the risk factors, natural history, and clinical features of LATE, as well as eventual subject recruitment for targeted therapies in clinical trials.
Collapse
Affiliation(s)
| | | | | | | | | | - Konstantinos Arfanakis
- Rush University Medical Center, Chicago, IL, USA
- Illinois Institute of Technology, Chicago, IL, USA
| | | | | | | | | | | | - Helena C Chui
- University of Southern California, Los Angeles, CA, USA
| | | | | | - Glenda Halliday
- The University of Sydney Brain and Mind Centre and Central Clinical School Faculty of Medicine and Health, Sydney, Australia
| | | | | | | | | | | | | | - Gabor G Kovacs
- Institute of Neurology Medical University of Vienna, Vienna, Austria
| | | | | | | | | | - Shigeo Murayama
- Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | | | - Sukriti Nag
- Rush University Medical Center, Chicago, IL, USA
| | | | | | | | | | - Lei Yu
- Rush University Medical Center, Chicago, IL, USA
| | | |
Collapse
|
43
|
Novel tau filament fold in chronic traumatic encephalopathy encloses hydrophobic molecules. Nature 2019; 568:420-423. [PMID: 30894745 PMCID: PMC6472968 DOI: 10.1038/s41586-019-1026-5] [Citation(s) in RCA: 516] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/19/2019] [Indexed: 12/14/2022]
Abstract
Chronic traumatic encephalopathy (CTE) is a neurodegenerative tauopathy that is associated with repetitive head impacts or exposure to blast waves. First described as punch-drunk syndrome and dementia pugilistica in retired boxers1-3, CTE has since been identified in former participants of other contact sports, ex-military personnel and after physical abuse4-7. No disease-modifying therapies currently exist, and diagnosis requires an autopsy. CTE is defined by an abundance of hyperphosphorylated tau protein in neurons, astrocytes and cell processes around blood vessels8,9. This, together with the accumulation of tau inclusions in cortical layers II and III, distinguishes CTE from Alzheimer's disease and other tauopathies10,11. However, the morphologies of tau filaments in CTE and the mechanisms by which brain trauma can lead to their formation are unknown. Here we determine the structures of tau filaments from the brains of three individuals with CTE at resolutions down to 2.3 Å, using cryo-electron microscopy. We show that filament structures are identical in the three cases but are distinct from those of Alzheimer's and Pick's diseases, and from those formed in vitro12-15. Similar to Alzheimer's disease12,14,16-18, all six brain tau isoforms assemble into filaments in CTE, and residues K274-R379 of three-repeat tau and S305-R379 of four-repeat tau form the ordered core of two identical C-shaped protofilaments. However, a different conformation of the β-helix region creates a hydrophobic cavity that is absent in tau filaments from the brains of patients with Alzheimer's disease. This cavity encloses an additional density that is not connected to tau, which suggests that the incorporation of cofactors may have a role in tau aggregation in CTE. Moreover, filaments in CTE have distinct protofilament interfaces to those of Alzheimer's disease. Our structures provide a unifying neuropathological criterion for CTE, and support the hypothesis that the formation and propagation of distinct conformers of assembled tau underlie different neurodegenerative diseases.
Collapse
|