1
|
Yin A, Gui Y, Wan L, Cai Q, Luo Y, Wang JZ, Liu R, Ying C, Wang X, Yang F. p53 SUMOylation promotes neurogenesis defects in APP/PS1 mice. J Alzheimers Dis 2025:13872877251340432. [PMID: 40336408 DOI: 10.1177/13872877251340432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Backgroundp53 is a transcriptional factor that regulates numerous cellular processes, the stability and activity of p53 is essential to maintain its function. Post-translational modifications (PTMs), particularly SUMOylation, play a vital role in regulating p53 activity.ObjectiveTo investigate the neurogenesis related genes that downregulated by p53 SUMOylation in APP/PS1 mice, and the protected effect by overexpressing non-SUMOylated p53 (p53 K386R). Furthermore, to provide new clues for the mechanisms of Alzheimer's disease (AD).MethodsCo-immunoprecipitation was used to detect the p53 SUMOylation levels in neuro2a (N2a) cells and APP/PS1 mice overexpressing wild-type p53 (p53 WT) or p53 K386R. In addition, RNA sequencing (RNA-seq) was used to detect the p53 SUMOylation regulated genes. Then we used qPCR, western blot, and immunofluorescence to measure the expression of neuroglobin (ngb) and the effect of neurogenesis defects induced by p53 SUMOylation.ResultsWe verified that overexpression of p53 WT promoted p53 SUMOylation and p53 K386R decreased p53 SUMOylation in N2a cells and APP/PS1 mice. Ngb was related to neurogenesis which dramatically downregulated by p53 SUMOylation. In addition, we found p53 SUMOylation caused neuron reduction and impairment of neurogenesis.ConclusionsOur data support that p53 SUMOylation may lead to neurogenesis defects by downregulating ngb in AD, suggesting that inhibition of p53 SUMOylation may be served as a therapeutic strategy for preventing AD and provide a new target for future researches and interventions.
Collapse
Affiliation(s)
- Anqi Yin
- Department of Pathophysiology, Key Laboratory of Education Ministry of China for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Nutrition & Food Hygiene and Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Yuran Gui
- Hubei Key Laboratory of Cognitive and Affective Disorders, School of Medicine, Jianghan University, Wuhan, China
| | - Lu Wan
- Department of Pathophysiology, Key Laboratory of Education Ministry of China for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinfeng Cai
- Department of Nutrition & Food Hygiene and Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Yong Luo
- Department of Pathophysiology, Key Laboratory of Education Ministry of China for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Zhi Wang
- Department of Pathophysiology, Key Laboratory of Education Ministry of China for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Cognitive and Affective Disorders, School of Medicine, Jianghan University, Wuhan, China
| | - Rong Liu
- Department of Pathophysiology, Key Laboratory of Education Ministry of China for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenjiang Ying
- Department of Nutrition & Food Hygiene and Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Xiaochuan Wang
- Department of Pathophysiology, Key Laboratory of Education Ministry of China for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Cognitive and Affective Disorders, School of Medicine, Jianghan University, Wuhan, China
| | - Fumin Yang
- Department of Pathophysiology, Key Laboratory of Education Ministry of China for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Bryan Iii MR, Tian X, Tseng JH, Evangelista BA, Ragusa JV, Bryan AF, Trotman W, Irwin D, Cohen TJ. Development and characterization of novel anti-acetylated tau monoclonal antibodies to probe pathogenic tau species in Alzheimer's disease. Acta Neuropathol Commun 2024; 12:163. [PMID: 39396065 PMCID: PMC11470691 DOI: 10.1186/s40478-024-01865-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 09/22/2024] [Indexed: 10/14/2024] Open
Abstract
Tauopathies, including Alzheimer's disease (AD), are a class of neurodegenerative diseases characterized by the presence of insoluble tau inclusions. Tau phosphorylation has traditionally been viewed as the dominant post-translational modification (PTM) controlling tau function and pathogenesis in tauopathies. However, we and others have identified tau acetylation as a primary PTM regulating both normal tau function as well as abnormal pathogenic features including aggregation. Prior work showed robust tau acetylation in aggregation hotspots located within the 2nd and 3rd repeat regions of tau (residues K280 and K311) in tauopathy brains, including AD, compared to non-tauopathy controls. By screening thousands of hybridoma clones, we generated site-specific and modification-specific monoclonal antibodies targeting acetylated tau at residues K280 or K311. To validate these antibodies in a bona fide neuronal system, we targeted the acetyltransferase CBP to the cytoplasm of neurons to promote tau acetylation. Several antibody clones specifically detected CBP-acetylated tau and co-localized with ac-tau in neurons. Additionally, our lead optimal anti-acetylated-tau monoclonal antibodies detected robust tau pathology in tangles and neuritic plaques of human AD brains. Given the now emerging interest in acetylated tau as critical regulator of tau functions, these sensitive and highly specific tools will allow us to further unravel the tau PTM code and, importantly, could be deployed as diagnostic or disease-modifying agents.
Collapse
Affiliation(s)
- Miles R Bryan Iii
- Department of Neurology, UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Xu Tian
- Department of Neurology, UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jui-Heng Tseng
- Department of Neurology, UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Baggio A Evangelista
- Department of Neurology, UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Joey V Ragusa
- Department of Cell Biology and Physiology, University of North Carolia at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Audra F Bryan
- Department of Neurology, UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Winifred Trotman
- Digital Neuropathology Laboratory, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - David Irwin
- Digital Neuropathology Laboratory, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Todd J Cohen
- Department of Neurology, UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Cell Biology and Physiology, University of North Carolia at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
3
|
Li X, Ba Z, Huang J, Chen J, Jiang J, Huang N, Luo Y. Comprehensive review on Alzheimer's disease: From the posttranslational modifications of Tau to corresponding treatments. IBRAIN 2024; 10:427-438. [PMID: 39691421 PMCID: PMC11649392 DOI: 10.1002/ibra.12176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/17/2024] [Accepted: 09/03/2024] [Indexed: 12/19/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease, which is mainly characterized by the abnormal deposition of β-amyloid peptide (Aβ) and Tau. Since Tau aggregation is more closely associated with synaptic loss, neurodegeneration, and cognitive decline than Aβ, the correlation between Tau and cognitive function in AD has gradually gained attention. The posttranslational modifications (PTMs) of Tau are key factors contributing to its pathological changes, which include phosphorylation, acetylation, ubiquitination, glycosylation, glycation, small ubiquitin-like modifier mediated modification (SUMOylation), methylation, succinylation, etc. These modifications change the structure of Tau, regulating Tau microtubule interactions, localization, degradation, and aggregation, thereby affecting its propensity to aggregate and leading to neuronal injury and cognitive impairments. Among numerous PTMs, drug development based on phosphorylation, acetylation, ubiquitination, and SUMOylation primarily involves enzymatic reactions, affecting either the phosphorylation or degradation processes of Tau. Meanwhile, methylation, glycosylation, and succinylation are associated with maintaining the structural stability of Tau. Current research is more extensive on phosphorylation, acetylation, ubiquitination, and methylation, with related drugs already developed, particularly focusing on phosphorylation and ubiquitination. In contrast, there is less research on SUMOylation, glycosylation, and succinylation, requiring further basic research, with the potential to become novel drug targets. In conclusion, this review summarized the latest research on PTMs of Tau and related drugs, highlighting the potential of targeting specific PTMs for developing novel therapeutic strategies in AD.
Collapse
Affiliation(s)
- Xin Li
- Department of NeurologyThe Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi)ZunyiChina
| | - Zhisheng Ba
- National Drug Clinical Trial InstitutionThe Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi)ZunyiChina
| | - Juan Huang
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of EducationZunyi Medical UniversityZunyiChina
| | - Jianhua Chen
- Department of NeurologyThe Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi)ZunyiChina
| | - Jinyu Jiang
- Department of medicineGuizhou Aerospace HospitalZunyiChina
| | - Nanqu Huang
- National Drug Clinical Trial InstitutionThe Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi)ZunyiChina
| | - Yong Luo
- Department of NeurologyThe Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi)ZunyiChina
| |
Collapse
|
4
|
Silva GD, Milan TM, Chagas PS, Trevisan GL, Ferraz CL, Leopoldino AM. SET protein as an epigenetics target. Epigenomics 2024; 16:249-257. [PMID: 38131159 DOI: 10.2217/epi-2023-0297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
The SET gene has four transcripts reported in NCBI, coding two isoforms of SET proteins. The most known function of SET protein is inhibiting protein phosphatase 2A, a tumor suppressor, which has been associated with different biological processes. In this review, our focus was on exploring the other SET functions related to epigenetic mechanisms, which impact cellular migration, cell cycle and apoptosis.
Collapse
Affiliation(s)
- Gabriel da Silva
- Department of Clinical Analyses, Toxicology & Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Brazil
| | - Thaís Moré Milan
- Department of Clinical Analyses, Toxicology & Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Brazil
| | - Pablo Shimaoka Chagas
- Department of Clinical Analyses, Toxicology & Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Brazil
| | - Glauce Lunardelli Trevisan
- Department of Clinical Analyses, Toxicology & Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Brazil
| | - Camila Lopes Ferraz
- Department of Clinical Analyses, Toxicology & Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Brazil
| | - Andréia Machado Leopoldino
- Department of Clinical Analyses, Toxicology & Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Brazil
| |
Collapse
|
5
|
Kalyaanamoorthy S, Opare SK, Xu X, Ganesan A, Rao PPN. Post-Translational Modifications in Tau and Their Roles in Alzheimer's Pathology. Curr Alzheimer Res 2024; 21:24-49. [PMID: 38623984 DOI: 10.2174/0115672050301407240408033046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/17/2024]
Abstract
Microtubule-Associated Protein Tau (also known as tau) has been shown to accumulate into paired helical filaments and neurofibrillary tangles, which are known hallmarks of Alzheimer's disease (AD) pathology. Decades of research have shown that tau protein undergoes extensive post-translational modifications (PTMs), which can alter the protein's structure, function, and dynamics and impact the various properties such as solubility, aggregation, localization, and homeostasis. There is a vast amount of information describing the impact and role of different PTMs in AD pathology and neuroprotection. However, the complex interplay between these PTMs remains elusive. Therefore, in this review, we aim to comprehend the key post-translational modifications occurring in tau and summarize potential connections to clarify their impact on the physiology and pathophysiology of tau. Further, we describe how different computational modeling methods have helped in understanding the impact of PTMs on the structure and functions of the tau protein. Finally, we highlight the tau PTM-related therapeutics strategies that are explored for the development of AD therapy.
Collapse
Affiliation(s)
| | - Stanley Kojo Opare
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | - Xiaoxiao Xu
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | - Aravindhan Ganesan
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | - Praveen P N Rao
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
6
|
Singh R, Hussain J, Kaur A, Jamdare BG, Pathak D, Garg K, Kaur R, Shankar S, Sunkaria A. The hidden players: Shedding light on the significance of post-translational modifications and miRNAs in Alzheimer's disease development. Ageing Res Rev 2023; 90:102002. [PMID: 37423542 DOI: 10.1016/j.arr.2023.102002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent, expensive, lethal, and burdening neurodegenerative disease of this century. The initial stages of this disease are characterized by a reduced ability to encode and store new memories. Subsequent cognitive and behavioral deterioration occurs during the later stages. Abnormal cleavage of amyloid precursor protein (APP) resulting in amyloid-beta (Aβ) accumulation along with hyperphosphorylation of tau protein are the two characteristic hallmarks of AD. Recently, several post-translational modifications (PTMs) have been identified on both Aβ as well as tau proteins. However, a complete understanding of how different PTMs influence the structure and function of proteins in both healthy and diseased conditions is still lacking. It has been speculated that these PTMs might play vital roles in the progression of AD. In addition, several short non-coding microRNA (miRNA) sequences have been found to be deregulated in the peripheral blood of Alzheimer patients. The miRNAs are single-stranded RNAs that control gene expression by causing mRNA degradation, deadenylation, or translational repression and have been implicated in the regulation of several neuronal and glial activities. The lack of comprehensive understanding regarding disease mechanisms, biomarkers, and therapeutic targets greatly hampers the development of effective strategies for early diagnosis and the identification of viable therapeutic targets. Moreover, existing treatment options for managing the disease have proven to be ineffective and provide only temporary relief. Therefore, understanding the role of miRNAs and PTMs in AD can provide valuable insights into disease mechanisms, aid in the identification of biomarkers, facilitate the discovery of novel therapeutic targets, and inspire innovative treatments for this challenging condition.
Collapse
Affiliation(s)
- Ravinder Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Julfequar Hussain
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Amandeep Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Balaji Gokul Jamdare
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Deepti Pathak
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Kanchan Garg
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Ramanpreet Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Shivani Shankar
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Aditya Sunkaria
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India.
| |
Collapse
|
7
|
Zhao G, Zhang H, Zhang Y, Zhao N, Mao J, Shang P, Gao K, Meng Y, Tao Y, Wang A, Chen Z, Guo C. Oncoprotein SET dynamically regulates cellular stress response through nucleocytoplasmic transport in breast cancer. Cell Biol Toxicol 2023; 39:1795-1814. [PMID: 36534342 DOI: 10.1007/s10565-022-09784-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
SETβ is the predominant isoform of oncoprotein SE translocation (SET) in various breast cancer cell lines. Interactome-transcriptome analysis has shown that SETβ is intimately associated with cellular stress response. Among various exogenous stimuli, formaldehyde (FA) causes distinct biological effects in a dose-dependent manner. In response to FA at different concentrations, SET dynamically shuttles between the nucleus and cytoplasm, performing diverse biofunctions to restore homeostasis. At a low concentration, FA acts as an epidermal growth factor (EGF) and activates the HER2 receptor and downstream signaling pathways in HER2+ breast cancer cells, resulting in enhanced cell proliferation. Nucleocytoplasmic transport of SETβ is controlled by the PI3K/PKCα/CK2α axis and depletion or blockade of the transport of SETβ suppresses EGF-induced activation of AKT and ERK. SETβ also inhibits not only stress-induced activation of p38 MAPK signaling pathway, but also assembly of stress granules by hindering formation of the G3BP1-RNA complex. Our findings suggest that SET functions as an important regulator which modulates cellular stress signaling pathways dynamically.
Collapse
Affiliation(s)
- Guomeng Zhao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Hongying Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yanchao Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Na Zhao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Jinlei Mao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Pengzhao Shang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Kun Gao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yao Meng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yuhang Tao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Anlei Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Ziyi Chen
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China.
| | - Changying Guo
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China.
| |
Collapse
|
8
|
Opland CK, Bryan MR, Harris B, McGillion-Moore J, Tian X, Chen Y, Itano MS, Diering GH, Meeker RB, Cohen TJ. Activity-dependent tau cleavage by caspase-3 promotes neuronal dysfunction and synaptotoxicity. iScience 2023; 26:106905. [PMID: 37305696 PMCID: PMC10251131 DOI: 10.1016/j.isci.2023.106905] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/08/2023] [Accepted: 05/12/2023] [Indexed: 06/13/2023] Open
Abstract
Tau-mediated toxicity is associated with cognitive decline and Alzheimer's disease (AD) progression. In particular, tau post-translational modifications (PTMs) are thought to generate aberrant tau species resulting in neuronal dysfunction. Despite being well characterized in postmortem AD brain, it is unclear how caspase-mediated C-terminal tau cleavage promotes neurodegeneration, as few studies have developed the models to dissect this pathogenic mechanism. Here, we show that proteasome impairment results in cleaved tau accumulation at the post-synaptic density (PSD), a process that is modulated by neuronal activity. Cleaved tau (at residue D421) impairs neuronal firing and causes inefficient initiation of network bursts, consistent with reduced excitatory drive. We propose that reduced neuronal activity, or silencing, is coupled to proteasome dysfunction, which drives cleaved tau accumulation at the PSD and subsequent synaptotoxicity. Our study connects three common themes in the progression of AD: impaired proteostasis, caspase-mediated tau cleavage, and synapse degeneration.
Collapse
Affiliation(s)
- Carli K. Opland
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Miles R. Bryan
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Braxton Harris
- Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jake McGillion-Moore
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Xu Tian
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Youjun Chen
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Michelle S. Itano
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Graham H. Diering
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Rick B. Meeker
- Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Todd J. Cohen
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, USA
| |
Collapse
|
9
|
The Involvement of Post-Translational Modifications in Regulating the Development and Progression of Alzheimer's Disease. Mol Neurobiol 2023; 60:3617-3632. [PMID: 36877359 DOI: 10.1007/s12035-023-03277-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 02/16/2023] [Indexed: 03/07/2023]
Abstract
Post-translational modifications (PTMs) have been recently reported to be involved in the development and progression of Alzheimer's disease (AD). In detail, PTMs include phosphorylation, glycation, acetylation, sumoylation, ubiquitination, methylation, nitration, and truncation, which are associated with pathological functions of AD-related proteins, such as β-amyloid (Aβ), β-site APP-cleavage enzyme 1 (BACE1), and tau protein. In particular, the roles of aberrant PTMs in the trafficking, cleavage, and degradation of AD-associated proteins, leading to the cognitive decline of the disease, are summarized under AD conditions. By summarizing these research progress, the gaps will be filled between PMTs and AD, which will facilitate the discovery of potential biomarkers, leading to the establishment of novel clinical intervention methods against AD.
Collapse
|
10
|
Di Mambro A, Esposito M. Thirty years of SET/TAF1β/I2PP2A: from the identification of the biological functions to its implications in cancer and Alzheimer's disease. Biosci Rep 2022; 42:BSR20221280. [PMID: 36345878 PMCID: PMC9679398 DOI: 10.1042/bsr20221280] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/17/2022] [Accepted: 11/07/2022] [Indexed: 10/29/2023] Open
Abstract
The gene encoding for the protein SE translocation (SET) was identified for the first time 30 years ago as part of a chromosomal translocation in a patient affected by leukemia. Since then, accumulating evidence have linked overexpression of SET, aberrant SET splicing, and cellular localization to cancer progression and development of neurodegenerative tauopathies such as Alzheimer's disease. Molecular biology tools, such as targeted genetic deletion, and pharmacological approaches based on SET antagonist peptides, have contributed to unveil the molecular functions of SET and its implications in human pathogenesis. In this review, we provide an overview of the functions of SET as inhibitor of histone and non-histone protein acetylation and as a potent endogenous inhibitor of serine-threonine phosphatase PP2A. We discuss the role of SET in multiple cellular processes, including chromatin remodelling and gene transcription, DNA repair, oxidative stress, cell cycle, apoptosis cell migration and differentiation. We review the molecular mechanisms linking SET dysregulation to tumorigenesis and discuss how SET commits neurons to progressive cell death in Alzheimer's disease, highlighting the rationale of exploiting SET as a therapeutic target for cancer and neurodegenerative tauopathies.
Collapse
Affiliation(s)
- Antonella Di Mambro
- The Centre for Integrated Research in Life and Health Sciences, School of Health and Life Science, University of Roehampton, London, U.K
| | - Maria Teresa Esposito
- The Centre for Integrated Research in Life and Health Sciences, School of Health and Life Science, University of Roehampton, London, U.K
| |
Collapse
|
11
|
Gogia N, Ni L, Olmos V, Haidery F, Luttik K, Lim J. Exploring the Role of Posttranslational Modifications in Spinal and Bulbar Muscular Atrophy. Front Mol Neurosci 2022; 15:931301. [PMID: 35726299 PMCID: PMC9206542 DOI: 10.3389/fnmol.2022.931301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Spinal and Bulbar Muscular Atrophy (SBMA) is an X-linked adult-onset progressive neuromuscular disease that affects the spinal and bulbar motor neurons and skeletal muscles. SBMA is caused by expansion of polymorphic CAG trinucleotide repeats in the Androgen Receptor (AR) gene, resulting in expanded glutamine tract in the AR protein. Polyglutamine (polyQ) expansion renders the mutant AR protein toxic, resulting in the formation of mutant protein aggregates and cell death. This classifies SBMA as one of the nine known polyQ diseases. Like other polyQ disorders, the expansion of the polyQ tract in the AR protein is the main genetic cause of the disease; however, multiple other mechanisms besides the polyQ tract expansion also contribute to the SBMA disease pathophysiology. Posttranslational modifications (PTMs), including phosphorylation, acetylation, methylation, ubiquitination, and SUMOylation are a category of mechanisms by which the functionality of AR has been found to be significantly modulated and can alter the neurotoxicity of SBMA. This review summarizes the different PTMs and their effects in regulating the AR function and discusses their pathogenic or protective roles in context of SBMA. This review also includes the therapeutic approaches that target the PTMs of AR in an effort to reduce the mutant AR-mediated toxicity in SBMA.
Collapse
Affiliation(s)
- Neha Gogia
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Luhan Ni
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Victor Olmos
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Fatema Haidery
- Yale College, Yale University, New Haven, CT, United States
| | - Kimberly Luttik
- Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, United States
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, United States
| | - Janghoo Lim
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, United States
- Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, United States
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, United States
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
12
|
Wen W, Li P, Liu P, Xu S, Wang F, Huang JH. Post-Translational Modifications of BACE1 in Alzheimer's Disease. Curr Neuropharmacol 2021; 20:211-222. [PMID: 33475074 PMCID: PMC9199555 DOI: 10.2174/1570159x19666210121163224] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/27/2020] [Accepted: 01/21/2021] [Indexed: 11/23/2022] Open
Abstract
Beta-Amyloid Cleaving Enzyme1 (BACE1) is a monospecific enzyme for the key rate-limiting step in the synthesis of beta-amyloid(Aβ) from cleavage of amyloid precursor protein (APP), to form senile plaques and causes cognitive dysfunction in Alzheimer's disease (AD). Post-translation modifications of BACE1, such as acetylation, glycosylation, palmitoylation, phosphorylation, play a crucial role in the trafficking and maturation process of BACE1. The study of BACE1 is of great importance not only for understanding the formation of toxic Aβ but also for the development of an effective therapeutic target for the treatment of AD. This paper review recent advances in the studies about BACE1, with focuses being paid to the relationship of Aβ, BACE1 with post- translational regulation of BACE1. In addition, we specially reviewed studies about the compounds that can be used to affect post-translational regulation of BACE1 or regulate BACE1 in the literature, which can be used for subsequent research on whether BACE1 is a post-translationally modified drug.
Collapse
Affiliation(s)
- Wen Wen
- Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137. China
| | - Ping Li
- Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137. China
| | - Panwang Liu
- Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137. China
| | - Shijun Xu
- Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137. China
| | - Fushun Wang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, Sichuan 610000. China
| | - Jason H Huang
- Department of Neurosurgery, Baylor Scott & White Health Science Center, Temple, TX 79409. United States
| |
Collapse
|
13
|
Liu Y, Guo C, Ding Y, Long X, Li W, Ke D, Wang Q, Liu R, Wang JZ, Zhang H, Wang X. Blockage of AEP attenuates TBI-induced tau hyperphosphorylation and cognitive impairments in rats. Aging (Albany NY) 2020; 12:19421-19439. [PMID: 33040048 PMCID: PMC7732271 DOI: 10.18632/aging.103841] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 06/29/2020] [Indexed: 01/24/2023]
Abstract
Traumatic brain injury (TBI) is regarded as a high-risk factor for Alzheimer's disease (AD). Asparaginyl endopeptidase (AEP), a lysosomal cysteine protease involved in AD pathogenesis, is normally activated under acidic conditions and also in TBI. However, both the molecular mechanism underlying AEP activation-mediated TBI-related AD pathologies, and the role of AEP as an AD therapeutic target, still remain unclear. Here, we report that TBI induces hippocampus dependent cognitive deficit and synaptic dysfunction, accompanied with AEP activation, I2PP2A (inhibitor 2 of PP2A, also called SET) mis-translocation from neuronal nucleus to cytoplasm, an obvious increase in AEP interaction with SET, and tau hyperphosphorylation in hippocampus of rats. Oxygen-glucose deprivation (OGD), mimicking an acidic condition, also leads to AEP activation, SET mis-translocation, PP2A inhibition, tau hyperphosphorylation, and a decrease in synaptic proteins, all of which are abrogated by AEP inhibitor AENK in primary neurons. Interestingly, AENK restores SET back to the nucleus, mitigates tau pathologies, rescuing TBI-induced cognitive deficit in rats. These findings highlight a novel etiopathogenic mechanism of TBI-related AD, which is initiated by AEP activation, accumulating SET in cytoplasm, and favoring tau pathology and cognitive impairments. Lowering AEP activity by AEP inhibitor would be beneficial to AD patients with TBI.
Collapse
Affiliation(s)
- Yi Liu
- Department of Pathophysiology, Weifang Medical University, Weifang 261053, China
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Cuiping Guo
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yi Ding
- Department of Pathophysiology, Weifang Medical University, Weifang 261053, China
| | - Xiaobing Long
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan 430030, China
| | - Wensheng Li
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dan Ke
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qun Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Rong Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, JS, China
| | - Huaqiu Zhang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan 430030, China
| | - Xiaochuan Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, JS, China
| |
Collapse
|
14
|
Yadikar H, Torres I, Aiello G, Kurup M, Yang Z, Lin F, Kobeissy F, Yost R, Wang KK. Screening of tau protein kinase inhibitors in a tauopathy-relevant cell-based model of tau hyperphosphorylation and oligomerization. PLoS One 2020; 15:e0224952. [PMID: 32692785 PMCID: PMC7373298 DOI: 10.1371/journal.pone.0224952] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 06/15/2020] [Indexed: 12/15/2022] Open
Abstract
Tauopathies are a class of neurodegenerative disorders characterized by abnormal deposition of post-translationally modified tau protein in the human brain. Tauopathies are associated with Alzheimer's disease (AD), chronic traumatic encephalopathy (CTE), and other diseases. Hyperphosphorylation increases tau tendency to aggregate and form neurofibrillary tangles (NFT), a pathological hallmark of AD. In this study, okadaic acid (OA, 100 nM), a protein phosphatase 1/2A inhibitor, was treated for 24h in mouse neuroblastoma (N2a) and differentiated rat primary neuronal cortical cell cultures (CTX) to induce tau-hyperphosphorylation and oligomerization as a cell-based tauopathy model. Following the treatments, the effectiveness of different kinase inhibitors was assessed using the tauopathy-relevant tau antibodies through tau-immunoblotting, including the sites: pSer202/pThr205 (AT8), pThr181 (AT270), pSer202 (CP13), pSer396/pSer404 (PHF-1), and pThr231 (RZ3). OA-treated samples induced tau phosphorylation and oligomerization at all tested epitopes, forming a monomeric band (46-67 kDa) and oligomeric bands (170 kDa and 240 kDa). We found that TBB (a casein kinase II inhibitor), AR and LiCl (GSK-3 inhibitors), cyclosporin A (calcineurin inhibitor), and Saracatinib (Fyn kinase inhibitor) caused robust inhibition of OA-induced monomeric and oligomeric p-tau in both N2a and CTX culture. Additionally, a cyclin-dependent kinase 5 inhibitor (Roscovitine) and a calcium chelator (EGTA) showed contrasting results between the two neuronal cultures. This study provides a comprehensive view of potential drug candidates (TBB, CsA, AR, and Saracatinib), and their efficacy against tau hyperphosphorylation and oligomerization processes. These findings warrant further experimentation, possibly including animal models of tauopathies, which may provide a putative Neurotherapy for AD, CTE, and other forms of tauopathy-induced neurodegenerative diseases.
Collapse
Affiliation(s)
- Hamad Yadikar
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry, University of Florida, Gainesville, Florida, United States of America
- Department of Biological Sciences, Faculty of Science, Kuwait University, Safat, Kuwait
- Department of Chemistry, Chemistry Laboratory Building, University of Florida, Gainesville, FL, United States of America
- * E-mail:
| | - Isabel Torres
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry, University of Florida, Gainesville, Florida, United States of America
| | - Gabrielle Aiello
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry, University of Florida, Gainesville, Florida, United States of America
| | - Milin Kurup
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry, University of Florida, Gainesville, Florida, United States of America
| | - Zhihui Yang
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry, University of Florida, Gainesville, Florida, United States of America
| | - Fan Lin
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry, University of Florida, Gainesville, Florida, United States of America
| | - Firas Kobeissy
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry, University of Florida, Gainesville, Florida, United States of America
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Richard Yost
- Department of Chemistry, Chemistry Laboratory Building, University of Florida, Gainesville, FL, United States of America
| | - Kevin K. Wang
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry, University of Florida, Gainesville, Florida, United States of America
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, United States of America
| |
Collapse
|