1
|
Dincer A, Kim M, Hüseyinoglu Z, Millares Chavez M, McGuone D, Moliterno J. Reclassification of pineal tumor as high-grade astrocytoma with piloid features through methylation profiling: illustrative case. JOURNAL OF NEUROSURGERY. CASE LESSONS 2025; 9:CASE24778. [PMID: 40324324 PMCID: PMC12051993 DOI: 10.3171/case24778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/12/2025] [Indexed: 05/07/2025]
Abstract
BACKGROUND The recent WHO 2021 CNS classification system defines new tumor types and subtypes based on molecular features. Among them, high-grade astrocytoma with piloid features (HGAP) is a glioma subtype whose classification depends on its DNA methylation profiling signature. These tumors can have a varied histological appearance and are often misclassified. OBSERVATIONS A 41-year-old male presented with right-sided weakness and headache. MRI detected a heterogeneously enhancing mass in the pineal region. The patient underwent an endoscopic third ventriculostomy, and a biopsy sample was obtained. The pathology was initially consistent with a high-grade neuroepithelial tumor. Repeat imaging 3 weeks postoperatively demonstrated an interval increase in tumor size. He underwent a suboccipital craniectomy for gross-total resection. DNA methylation profiling was performed and was consistent with the diagnosis of HGAP. The patient was given chemoradiotherapy due to the high-grade pathology. LESSONS Integration of molecular pathology has led to crucial and clinically relevant changes in CNS tumor classification. Utilizing these advanced diagnostic techniques to classify tumors could lead to changes in management, targeted therapeutics, and enrollment in clinical trials. https://thejns.org/doi/10.3171/CASE24778.
Collapse
Affiliation(s)
- Alper Dincer
- Department of Neurosurgery, Tufts Medical Center, Boston, Massachusetts
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut
- Yale Brain Tumor Center, Smilow Cancer Hospital, New Haven, Connecticut
| | - Miri Kim
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut
- Yale Brain Tumor Center, Smilow Cancer Hospital, New Haven, Connecticut
| | - Zeynep Hüseyinoglu
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut
- Yale Brain Tumor Center, Smilow Cancer Hospital, New Haven, Connecticut
| | - Miguel Millares Chavez
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut
- Yale Brain Tumor Center, Smilow Cancer Hospital, New Haven, Connecticut
| | - Declan McGuone
- Yale Brain Tumor Center, Smilow Cancer Hospital, New Haven, Connecticut
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Jennifer Moliterno
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut
- Yale Brain Tumor Center, Smilow Cancer Hospital, New Haven, Connecticut
| |
Collapse
|
2
|
Hersh DS, Bulsara K, Becker K, Wu Q, Bulsara KR. Tumor genomics and clinical methylation. Neurol Res 2025:1-3. [PMID: 40170599 DOI: 10.1080/01616412.2025.2486521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Accepted: 03/24/2025] [Indexed: 04/03/2025]
Abstract
Next-generation sequencing and clinical methylation were explored as evolving necessities for personalized medicine to augment surgery. The routine integration of these technologies into patient care has heralded an age of precision tumor treatment. This personalization of treatment and precision of diagnosis afforded by it will likely to lead to improved outcomes.
Collapse
Affiliation(s)
- David S Hersh
- Department of Neurosurgery, University of Connecticut School of Medicine, Farmington, CT, USA
- Division of Neurosurgery, Connecticut Children's Hospital, Hartford, CT, USA
| | | | - Kevin Becker
- Department of Neurosurgery, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Qian Wu
- Department of Pathology, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Ketan R Bulsara
- Department of Neurosurgery, University of Connecticut School of Medicine, Farmington, CT, USA
| |
Collapse
|
3
|
Brändl B, Steiger M, Kubelt C, Rohrandt C, Zhu Z, Evers M, Wang G, Schuldt B, Afflerbach AK, Wong D, Lum A, Halldorsson S, Djirackor L, Leske H, Magadeeva S, Smičius R, Quedenau C, Schmidt NO, Schüller U, Vik-Mo EO, Proescholdt M, Riemenschneider MJ, Zadeh G, Ammerpohl O, Yip S, Synowitz M, van Bömmel A, Kretzmer H, Müller FJ. Rapid brain tumor classification from sparse epigenomic data. Nat Med 2025; 31:840-848. [PMID: 40021833 PMCID: PMC11922770 DOI: 10.1038/s41591-024-03435-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 11/27/2024] [Indexed: 03/03/2025]
Abstract
Although the intraoperative molecular diagnosis of the approximately 100 known brain tumor entities described to date has been a goal of neuropathology for the past decade, achieving this within a clinically relevant timeframe of under 1 h after biopsy collection remains elusive. Advances in third-generation sequencing have brought this goal closer, but established machine learning techniques rely on computationally intensive methods, making them impractical for live diagnostic workflows in clinical applications. Here we present MethyLYZR, a naive Bayesian framework enabling fully tractable, live classification of cancer epigenomes. For evaluation, we used nanopore sequencing to classify over 200 brain tumor samples, including 10 sequenced in a clinical setting next to the operating room, achieving highly accurate results within 15 min of sequencing. MethyLYZR can be run in parallel with an ongoing nanopore experiment with negligible computational overhead. Therefore, the only limiting factors for even faster time to results are DNA extraction time and the nanopore sequencer's maximum parallel throughput. Although more evidence from prospective studies is needed, our study suggests the potential applicability of MethyLYZR for live molecular classification of nervous system malignancies using nanopore sequencing not only for the neurosurgical intraoperative use case but also for other oncologic indications and the classification of tumors from cell-free DNA in liquid biopsies.
Collapse
Affiliation(s)
- Björn Brändl
- Department of Psychiatry and Psychotherapy, Christian-Albrecht University of Kiel, Kiel, Germany
| | - Mara Steiger
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Digital Health Cluster, Hasso Plattner Institute for Digital Engineering, Digital Engineering Faculty, University of Potsdam, Potsdam, Germany
- Department of Mathematics and Computer Science, Free University Berlin, Berlin, Germany
| | - Carolin Kubelt
- Department of Neurosurgery, University Medical Center Schleswig-Holstein (UKSH), Campus Kiel, Kiel, Germany
| | - Christian Rohrandt
- Department of Psychiatry and Psychotherapy, Christian-Albrecht University of Kiel, Kiel, Germany
| | - Zhihan Zhu
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Maximilian Evers
- Altona Diagnostics GmbH, Hamburg, Germany
- Institute for Biology and Biotechnology of Plants, University of Münster, Münster, Germany
| | - Gaojianyong Wang
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Bernhard Schuldt
- Mathematische Modellierung, Entwicklung und Beratung, Düsseldorf, Germany
| | - Ann-Kristin Afflerbach
- Institute for Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Derek Wong
- Molecular Oncology, BC Cancer, Vancouver, British Columbia, Canada
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Amy Lum
- Molecular Oncology, BC Cancer, Vancouver, British Columbia, Canada
| | - Skarphedinn Halldorsson
- Vilhelm Magnus Laboratory for Neurosurgical Research, Institute for Surgical Research/Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
| | - Luna Djirackor
- Vilhelm Magnus Laboratory for Neurosurgical Research, Institute for Surgical Research/Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
| | - Henning Leske
- Vilhelm Magnus Laboratory for Neurosurgical Research, Institute for Surgical Research/Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
- Section of Neuropathology, Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Svetlana Magadeeva
- Department of Psychiatry and Psychotherapy, Christian-Albrecht University of Kiel, Kiel, Germany
| | - Romualdas Smičius
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Claudia Quedenau
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Nils O Schmidt
- Department of Neurosurgery, University Medical Center Regensburg, Regensburg, Germany
- Brain Tumor Center, University Medical Center Regensburg, Regensburg, Germany
| | - Ulrich Schüller
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, Hamburg, Germany
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Einar O Vik-Mo
- Vilhelm Magnus Laboratory for Neurosurgical Research, Institute for Surgical Research/Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
- Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Martin Proescholdt
- Department of Neurosurgery, University Medical Center Regensburg, Regensburg, Germany
- Brain Tumor Center, University Medical Center Regensburg, Regensburg, Germany
| | - Markus J Riemenschneider
- Brain Tumor Center, University Medical Center Regensburg, Regensburg, Germany
- Department of Neuropathology, Regensburg University Hospital, Regensburg, Germany
| | - Gelareh Zadeh
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ole Ammerpohl
- Institute for Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Stephen Yip
- Molecular Oncology, BC Cancer, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael Synowitz
- Department of Neurosurgery, University Medical Center Schleswig-Holstein (UKSH), Campus Kiel, Kiel, Germany
| | - Alena van Bömmel
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany.
- Hoffmann Group, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany.
| | - Helene Kretzmer
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany.
- Digital Health Cluster, Hasso Plattner Institute for Digital Engineering, Digital Engineering Faculty, University of Potsdam, Potsdam, Germany.
| | - Franz-Josef Müller
- Department of Psychiatry and Psychotherapy, Christian-Albrecht University of Kiel, Kiel, Germany.
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
4
|
Benfatto S, Sill M, Jones DTW, Pfister SM, Sahm F, von Deimling A, Capper D, Hovestadt V. Explainable artificial intelligence of DNA methylation-based brain tumor diagnostics. Nat Commun 2025; 16:1787. [PMID: 39979307 PMCID: PMC11842776 DOI: 10.1038/s41467-025-57078-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/07/2025] [Indexed: 02/22/2025] Open
Abstract
We have recently developed a machine learning classifier that enables fast, accurate, and affordable classification of brain tumors based on genome-wide DNA methylation profiles that is widely employed in the clinic. Neuro-oncology research would benefit greatly from understanding the underlying artificial intelligence decision process, which currently remains unclear. Here, we describe an interpretable framework to explain the classifier's decisions. We show that functional genomic regions of various sizes are predominantly employed to distinguish between different tumor classes, ranging from enhancers and CpG islands to large-scale heterochromatic domains. We detect a high degree of genomic redundancy, with many genes distinguishing individual tumor classes, explaining the robustness of the classifier and revealing potential targets for further therapeutic investigation. We anticipate that our resource will build up trust in machine learning in clinical settings, foster biomarker discovery and development of compact point-of-care assays, and enable further epigenome research of brain tumors. Our interpretable framework is accessible to the research community via an interactive web application ( https://hovestadtlab.shinyapps.io/shinyMNP/ ).
Collapse
Affiliation(s)
- Salvatore Benfatto
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Martin Sill
- Division of Pediatric Neurooncology, Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - David T W Jones
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Division of Pediatric Glioma Research, Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
| | - Stefan M Pfister
- Division of Pediatric Neurooncology, Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology & Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Andreas von Deimling
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - David Capper
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Volker Hovestadt
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
5
|
Sojka C, Wang HLV, Bhatia TN, Li Y, Chopra P, Sing A, Voss A, King A, Wang F, Joseph K, Ravi VM, Olson J, Hoang K, Nduom E, Corces VG, Yao B, Sloan SA. Mapping the developmental trajectory of human astrocytes reveals divergence in glioblastoma. Nat Cell Biol 2025; 27:347-359. [PMID: 39779941 DOI: 10.1038/s41556-024-01583-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025]
Abstract
Glioblastoma (GBM) is defined by heterogeneous and resilient cell populations that closely reflect neurodevelopmental cell types. Although it is clear that GBM echoes early and immature cell states, identifying the specific developmental programmes disrupted in these tumours has been hindered by a lack of high-resolution trajectories of glial and neuronal lineages. Here we delineate the course of human astrocyte maturation to uncover discrete developmental stages and attributes mirrored by GBM. We generated a transcriptomic and epigenomic map of human astrocyte maturation using cortical organoids maintained in culture for nearly 2 years. Through this approach, we chronicled a multiphase developmental process. Our time course of human astrocyte maturation includes a molecularly distinct intermediate period that serves as a lineage commitment checkpoint upstream of mature quiescence. This intermediate stage acts as a site of developmental deviation separating IDH-wild-type neoplastic astrocyte-lineage cells from quiescent astrocyte populations. Interestingly, IDH1-mutant tumour astrocyte-lineage cells are the exception to this developmental perturbation, where immature properties are suppressed as a result of D-2-hydroxyglutarate oncometabolite exposure. We propose that this defiance is a consequence of IDH1-mutant-associated epigenetic dysregulation, and we identified biased DNA hydroxymethylation (5hmC) in maturation genes as a possible mechanism. Together, this study illustrates a distinct cellular state aberration in GBM astrocyte-lineage cells and presents developmental targets for experimental and therapeutic exploration.
Collapse
Affiliation(s)
- Caitlin Sojka
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Hsiao-Lin V Wang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
- Emory Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Tarun N Bhatia
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Yangping Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Pankaj Chopra
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Anson Sing
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Anna Voss
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Alexia King
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Feng Wang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Kevin Joseph
- Department of Neurosurgery, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Vidhya M Ravi
- Department of Neurosurgery, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jeffrey Olson
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Kimberly Hoang
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Edjah Nduom
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Victor G Corces
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
- Emory Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Bing Yao
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Steven A Sloan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.
- Emory Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
6
|
Lebrun L, Gilis N, Dausort M, Gillard C, Rusu S, Slimani K, De Witte O, Escande F, Lefranc F, D'Haene N, Maurage CA, Salmon I. Diagnostic impact of DNA methylation classification in adult and pediatric CNS tumors. Sci Rep 2025; 15:2857. [PMID: 39843975 PMCID: PMC11754448 DOI: 10.1038/s41598-025-87079-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/15/2025] [Indexed: 01/24/2025] Open
Abstract
Over the past decade, neuropathological diagnosis has undergone significant changes, integrating morphological features with molecular biomarkers. The molecular era has successfully refined neuropathological diagnostic accuracy; however, a substantial number of CNS tumor diagnoses remain challenging, particularly in children. DNA methylation classification has emerged as a powerful machine learning approach for clinical decision-making in CNS tumors. The aim of this study is to share our experience using DNA methylation classification in daily routine practice, illustrated through clinical cases. We employed a classification system to evaluate discrepancies between histo-molecular and DNA methylation diagnoses, with a specific focus on adult versus pediatric CNS tumors. In our study, we observed that 40% of cases fell into Class I, 47% into Class II, and 13% into Class III among the "matched cases" (≥ 0.84). In other words, DNA methylation classification confirmed morphological diagnoses in 63% of adult and 23% of pediatric cases. Refinement of diagnosis was particularly evident in the pediatric population (65% vs. 21% for the adult population, p = 0.006). Additionally, we discussed cases classified with low calibrated scores. In conclusion, our study confirms that DNA methylation classification provides significant added-value for CNS tumors diagnosis, particularly in pediatric cases.
Collapse
Affiliation(s)
- Laetitia Lebrun
- Department of Pathology, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, Erasme University Hospital, Rue Meylemeersch 90, 1070, Brussels, Belgium.
| | - Nathalie Gilis
- Department of Neurosurgery, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, Erasme University Hospital, 1070, Brussels, Belgium
| | - Manon Dausort
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), UCLouvain, Louvain-La-Neuve, Belgium
| | - Chloé Gillard
- DIAPath, Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles (ULB), 6041, Gosselies, Belgium
| | - Stefan Rusu
- Department of Pathology, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, Erasme University Hospital, Rue Meylemeersch 90, 1070, Brussels, Belgium
| | - Karim Slimani
- Department of Pathology, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, Erasme University Hospital, Rue Meylemeersch 90, 1070, Brussels, Belgium
| | - Olivier De Witte
- Department of Neurosurgery, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, Erasme University Hospital, 1070, Brussels, Belgium
| | - Fabienne Escande
- Service de Biochimie et Biologie Moléculaire, Pole Pathologie Biologie, CHU Lille, Lille, France
| | - Florence Lefranc
- Department of Neurosurgery, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, Erasme University Hospital, 1070, Brussels, Belgium
| | - Nicky D'Haene
- Department of Pathology, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, Erasme University Hospital, Rue Meylemeersch 90, 1070, Brussels, Belgium
| | - Claude Alain Maurage
- UFR3S - Laboratoire d'Histologie, Univ. Lille, 59000, Lille, France
- Inserm, U1172 - Lille Neuroscience & Cognition, 59000, Lille, France
- Institut de Pathologie, CHU Lille, 59000, Lille, France
| | - Isabelle Salmon
- DIAPath, Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles (ULB), 6041, Gosselies, Belgium
- Department of Pathology, Centre Universitaire Inter Regional d'Expertise en Anatomie Pathologique Hospitaliere (CurePath), 6040, Charleroi, Belgium
| |
Collapse
|
7
|
Aldape K, Capper D, von Deimling A, Giannini C, Gilbert MR, Hawkins C, Hench J, Jacques TS, Jones D, Louis DN, Mueller S, Orr BA, Nasrallah M, Pfister SM, Sahm F, Snuderl M, Solomon D, Varlet P, Wesseling P. cIMPACT-NOW update 9: Recommendations on utilization of genome-wide DNA methylation profiling for central nervous system tumor diagnostics. Neurooncol Adv 2025; 7:vdae228. [PMID: 39902391 PMCID: PMC11788596 DOI: 10.1093/noajnl/vdae228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025] Open
Abstract
Genome-wide DNA methylation signatures correlate with and distinguish central nervous system (CNS) tumor types. Since the publication of the initial CNS tumor DNA methylation classifier in 2018, this platform has been increasingly used as a diagnostic tool for CNS tumors, with multiple studies showing the value and utility of DNA methylation-based classification of CNS tumors. A Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy (cIMPACT-NOW) Working Group was therefore convened to describe the current state of the field and to provide advice based on lessons learned to date. Here, we provide recommendations for the use of DNA methylation-based classification in CNS tumor diagnostics, emphasizing the attributes and limitations of the modality. We emphasize that the methylation classifier is one diagnostic tool to be used alongside previously established diagnostic tools in a fully integrated fashion. In addition, we provide examples of the inclusion of DNA methylation data within the layered diagnostic reporting format endorsed by the World Health Organization (WHO) and the International Collaboration on Cancer Reporting. We emphasize the need for backward compatibility of future platforms to enable accumulated data to be compatible with new versions of the array. Finally, we outline the specific connections between methylation classes and CNS WHO tumor types to aid in the interpretation of classifier results. It is hoped that this update will assist the neuro-oncology community in the interpretation of DNA methylation classifier results to facilitate the accurate diagnosis of CNS tumors and thereby help guide patient management.
Collapse
Affiliation(s)
- Kenneth Aldape
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MarylandUSA
| | - David Capper
- German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neuropathology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas von Deimling
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Caterina Giannini
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum, Bologna, Italy
- Department of Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Mark R Gilbert
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Cynthia Hawkins
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Jürgen Hench
- Institut für Medizinische Genetik und Pathologie, Universitätsspital Basel, Basel, Switzerland
| | - Thomas S Jacques
- Department of Histopathology, Great Ormond Street Hospital for Children, London, UK
- Paediatric Neuropathology, University College London, UCL GOS Institute of Child Health, London, UK
| | - David Jones
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - David N Louis
- Department of Pathology, Massachusetts General Hospital, Brigham and Women’s Hospital, Harvard Medical School, Boston Massachusetts, USA
| | - Sabine Mueller
- Department of Pediatric, University of Zurich, Zürich, Switzerland
- Department of Neurology, Neurosurgery, and Pediatrics, University of California San Francisco, San Francisco, California, USA
| | - Brent A Orr
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - MacLean Nasrallah
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stefan M Pfister
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Hopp Children´s Cancer Center Heidelberg (KiTZ), Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Felix Sahm
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Matija Snuderl
- Department of Pathology, New York University Langone Health and Grossman School of Medicine, New York, New York, USA
| | - David Solomon
- Department of Pathology, University of California San Francisco, San Francisco, California, USA
| | - Pascale Varlet
- Department of Neuropathology, GHU Paris - Psychiatry and Neuroscience, Sainte-Anne Hospital, Paris, France
| | - Pieter Wesseling
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pathology, Amsterdam University Medical Centers/VU University, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Cakmak P, Jurmeister P, Divé I, Zeiner PS, Steinbach JP, Fenton TR, Plate KH, Czabanka M, Harter PN, Weber KJ. DNA methylation-based analysis reveals accelerated epigenetic aging in giant cell-enriched adult-type glioblastoma. Clin Epigenetics 2024; 16:179. [PMID: 39663543 PMCID: PMC11636044 DOI: 10.1186/s13148-024-01793-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/24/2024] [Indexed: 12/13/2024] Open
Abstract
BACKGROUND Giant cell (gc)-enriched glioblastoma (gcGB) represents a distinct histological variant of isocitrate dehydrogenase wild-type adult-type glioblastoma with notable enlarged mono- or multinuclear tumor cells. While some studies suggest a survival advantage for gcGB patients, the underlying causes remain elusive. GcGBs are associated with TP53 mutations, and gcs were shown to accumulate DNA double-strand breaks and show deficient mitosis, potentially triggering cellular senescence programs. Epigenetic clocks have emerged as valuable tools for assessing tumor-induced age acceleration (DNAMethAgeAcc), which has lately proved itself as prognostic biomarker in glioblastoma. Our study aimed to comprehensively analyze the methylome and key metabolic proteins of gcGBs, hypothesizing that they undergo cellular aging programs compared to non-gcGBs. RESULTS A total of 310 epigenetically classified GBs, including 26 gcGBs, and nine adults with malignant gliomas allocating to pediatric high-grade glioma molecular subclasses (summarized as "pediatric GB") were included. DNAMethAgeAcc was computed by subtraction of chronological patient ages from DNA methylome-derived age estimations and its increase was associated with better survival within gcGB and non-gcGB. GcGBs were significantly more often allocated to the subgroup with increased DNAMethAgeAcc and demonstrated the highest DNAMethAgeAcc. Hypothetical senescence/aging-induced changes of the tumor microenvironment were addressed by tumor deconvolution, which was able to identify a cluster enriched for tumors with increased DNAMethAgeAcc. Key metabolic protein expression did not differ between gcGB and non-gcGB and tumor with versus without increased DNAMethAgeAcc but for elevated levels of one single mitochondrial marker, anti-mitochondrial protein MT-C02, in gcGBs. CONCLUSIONS With its sped-up epigenetic aging, gcGB presented as the epigenetic oldest GB variant in our cohort. Whereas the correlation between accelerated tumor-intrinsic epigenetic aging and cellular senescence in gcGB stays elusive, fostering epigenetic aging programs in GB might be of interest for future exploration of alternative treatment options in GB patients.
Collapse
Affiliation(s)
- Pinar Cakmak
- Goethe University Frankfurt, University Hospital, Neurological Institute (Edinger Institute), Frankfurt, Germany
- Goethe University Frankfurt, Frankfurt Cancer Institute (FCI), Frankfurt, Germany
| | - Philipp Jurmeister
- Ludwig Maximilians University Munich, University Hospital, Institute of Pathology, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, a partnership between German Cancer Research Center (DKFZ) and University/University Hospital, Ludwig Maximilians University Munich, Munich, Germany
| | - Iris Divé
- Goethe University Frankfurt, Frankfurt Cancer Institute (FCI), Frankfurt, Germany
- Goethe University Frankfurt, University Hospital, Dr. Senckenberg Institute of Neurooncology, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Goethe University Frankfurt, University Hospital, University Cancer Center (UCT), Frankfurt, Germany
| | - Pia S Zeiner
- Goethe University Frankfurt, Frankfurt Cancer Institute (FCI), Frankfurt, Germany
- Goethe University Frankfurt, University Hospital, Dr. Senckenberg Institute of Neurooncology, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Goethe University Frankfurt, University Hospital, University Cancer Center (UCT), Frankfurt, Germany
- Goethe University Frankfurt, University Hospital, Department of Neurology, Frankfurt, Germany
| | - Joachim P Steinbach
- Goethe University Frankfurt, Frankfurt Cancer Institute (FCI), Frankfurt, Germany
- Goethe University Frankfurt, University Hospital, Dr. Senckenberg Institute of Neurooncology, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Goethe University Frankfurt, University Hospital, University Cancer Center (UCT), Frankfurt, Germany
| | - Tim R Fenton
- Somers Cancer Research, Southampton General Hospital, Southampton, UK
| | - Karl H Plate
- Goethe University Frankfurt, University Hospital, Neurological Institute (Edinger Institute), Frankfurt, Germany
- Goethe University Frankfurt, Frankfurt Cancer Institute (FCI), Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Goethe University Frankfurt, University Hospital, University Cancer Center (UCT), Frankfurt, Germany
| | - Marcus Czabanka
- Goethe University Frankfurt, University Hospital, Department of Neurosurgery, Frankfurt, Germany
| | - Patrick N Harter
- German Cancer Consortium (DKTK), Partner Site Munich, a partnership between German Cancer Research Center (DKFZ) and University/University Hospital, Ludwig Maximilians University Munich, Munich, Germany
- Ludwig Maximilians University Munich, University Hospital, Center for Neuropathology and Prion Research, Munich, Germany
| | - Katharina J Weber
- Goethe University Frankfurt, University Hospital, Neurological Institute (Edinger Institute), Frankfurt, Germany.
- Goethe University Frankfurt, Frankfurt Cancer Institute (FCI), Frankfurt, Germany.
- German Cancer Consortium (DKTK), Partner Site Frankfurt, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Goethe University Frankfurt, University Hospital, University Cancer Center (UCT), Frankfurt, Germany.
| |
Collapse
|
9
|
Lita A, Sjöberg J, Păcioianu D, Siminea N, Celiku O, Dowdy T, Păun A, Gilbert MR, Noushmehr H, Petre I, Larion M. Raman-based machine-learning platform reveals unique metabolic differences between IDHmut and IDHwt glioma. Neuro Oncol 2024; 26:1994-2009. [PMID: 38828478 PMCID: PMC11534323 DOI: 10.1093/neuonc/noae101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND Formalin-fixed, paraffin-embedded (FFPE) tissue slides are routinely used in cancer diagnosis, clinical decision-making, and stored in biobanks, but their utilization in Raman spectroscopy-based studies has been limited due to the background coming from embedding media. METHODS Spontaneous Raman spectroscopy was used for molecular fingerprinting of FFPE tissue from 46 patient samples with known methylation subtypes. Spectra were used to construct tumor/non-tumor, IDH1WT/IDH1mut, and methylation-subtype classifiers. Support vector machine and random forest were used to identify the most discriminatory Raman frequencies. Stimulated Raman spectroscopy was used to validate the frequencies identified. Mass spectrometry of glioma cell lines and TCGA were used to validate the biological findings. RESULTS Here, we develop APOLLO (rAman-based PathOLogy of maLignant gliOma)-a computational workflow that predicts different subtypes of glioma from spontaneous Raman spectra of FFPE tissue slides. Our novel APOLLO platform distinguishes tumors from nontumor tissue and identifies novel Raman peaks corresponding to DNA and proteins that are more intense in the tumor. APOLLO differentiates isocitrate dehydrogenase 1 mutant (IDH1mut) from wild-type (IDH1WT) tumors and identifies cholesterol ester levels to be highly abundant in IDHmut glioma. Moreover, APOLLO achieves high discriminative power between finer, clinically relevant glioma methylation subtypes, distinguishing between the CpG island hypermethylated phenotype (G-CIMP)-high and G-CIMP-low molecular phenotypes within the IDH1mut types. CONCLUSIONS Our results demonstrate the potential of label-free Raman spectroscopy to classify glioma subtypes from FFPE slides and to extract meaningful biological information thus opening the door for future applications on these archived tissues in other cancers.
Collapse
Affiliation(s)
- Adrian Lita
- National Cancer Institute, National Institutes of Health, Neuro-Oncology Branch, Bethesda, Maryland, USA
| | - Joel Sjöberg
- Department of Mathematics and Statistics, University of Turku, Turku, Finland
| | - David Păcioianu
- Faculty of Mathematics and Computer Science, University of Bucharest, Bucharest, Romania
| | - Nicoleta Siminea
- Department of Bioinformatics, National Institute for Research and Development in Biological Sciences, Bucharest, Romania
- Faculty of Mathematics and Computer Science, University of Bucharest, Bucharest, Romania
| | - Orieta Celiku
- National Cancer Institute, National Institutes of Health, Neuro-Oncology Branch, Bethesda, Maryland, USA
| | - Tyrone Dowdy
- National Cancer Institute, National Institutes of Health, Neuro-Oncology Branch, Bethesda, Maryland, USA
| | - Andrei Păun
- Department of Bioinformatics, National Institute for Research and Development in Biological Sciences, Bucharest, Romania
- Faculty of Mathematics and Computer Science, University of Bucharest, Bucharest, Romania
- SCORE Lab, I3US, Universidad de Sevilla, Sevilla, Spain
| | - Mark R Gilbert
- National Cancer Institute, National Institutes of Health, Neuro-Oncology Branch, Bethesda, Maryland, USA
| | - Houtan Noushmehr
- Department of Neurosurgery, Henry Ford Health System, Detroit, Michigan, USA
| | - Ion Petre
- Department of Bioinformatics, National Institute for Research and Development in Biological Sciences, Bucharest, Romania
- Department of Mathematics and Statistics, University of Turku, Turku, Finland
| | - Mioara Larion
- National Cancer Institute, National Institutes of Health, Neuro-Oncology Branch, Bethesda, Maryland, USA
| |
Collapse
|
10
|
Barresi V, Poliani PL. When do I ask for a DNA methylation array for primary brain tumor diagnosis? Curr Opin Oncol 2024; 36:530-535. [PMID: 39246157 DOI: 10.1097/cco.0000000000001089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
PURPOSE OF REVIEW Despite remarkable advances in molecular characterization, the diagnosis of brain tumors remains challenging, particularly in cases with ambiguous histology or contradictory molecular features. In this context, DNA methylation profiling plays an important role in improving diagnostic and prognostic accuracy. This review aims to provide diagnostic guidance regarding when DNA methylation arrays represent a useful tool for the diagnosis of primary brain tumors. RECENT FINDINGS Large-scale profiling has revealed that DNA methylation profiles of brain tumors are highly reproducible and stable. Therefore, DNA methylation profiling has been successfully used to classify brain tumors and identify new entities. This approach seems to be particularly promising for heterogeneous groups of tumors, such as IDH -wildtype gliomas, and glioneuronal and embryonal tumors, which include a variety of entities that are still under characterization. SUMMARY As underlined in the fifth edition of the WHO classification of central nervous system tumors, the diagnosis of brain tumors requires the integration of histological, molecular, clinical, and radiological features. Although advanced imaging and histological examination remain the standard diagnostic tools, DNA methylation analysis can significantly improve diagnostic accuracy, with a substantial impact on patient management.
Collapse
Affiliation(s)
- Valeria Barresi
- Department of Diagnostics and Public Health, University of Verona, Verona
| | - Pietro Luigi Poliani
- Pathology Unit, San Raffaele Hospital Scientific Institute
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
11
|
Nuechterlein N, Cimino S, Shelbourn A, Ha V, Arora S, Rajan S, Shapiro LG, Holland EC, Aldape K, McGranahan T, Gilbert MR, Cimino PJ. HOXD12 defines an age-related aggressive subtype of oligodendroglioma. Acta Neuropathol 2024; 148:41. [PMID: 39259414 PMCID: PMC11390787 DOI: 10.1007/s00401-024-02802-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/10/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
Oligodendroglioma, IDH-mutant and 1p/19q-codeleted has highly variable outcomes that are strongly influenced by patient age. The distribution of oligodendroglioma age is non-Gaussian and reportedly bimodal, which motivated our investigation of age-associated molecular alterations that may drive poorer outcomes. We found that elevated HOXD12 expression was associated with both older patient age and shorter survival in the TCGA (FDR < 0.01, FDR = 1e-5) and the CGGA (p = 0.03, p < 1e-3). HOXD12 gene body hypermethylation was associated with older age, higher WHO grade, and shorter survival in the TCGA (p < 1e-6, p < 0.001, p < 1e-3) and with older age and higher WHO grade in Capper et al. (p < 0.002, p = 0.014). In the TCGA, HOXD12 gene body hypermethylation and elevated expression were independently prognostic of NOTCH1 and PIK3CA mutations, loss of 15q, MYC activation, and standard histopathological features. Single-nucleus RNA and ATAC sequencing data showed that HOXD12 activity was elevated in neoplastic tissue, particularly within cycling and OPC-like cells, and was associated with a stem-like phenotype. A pan-HOX DNA methylation analysis revealed an age and survival-associated HOX-high signature that was tightly associated with HOXD12 gene body methylation. Overall, HOXD12 expression and gene body hypermethylation were associated with an older, atypically aggressive subtype of oligodendroglioma.
Collapse
Affiliation(s)
- Nicholas Nuechterlein
- Neuropathology Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, Building 10/3D17, Bethesda, MD, 20892, USA
| | - Sadie Cimino
- School of Interdisciplinary Arts and Sciences, University of Washington, Bothell, WA, USA
| | - Allison Shelbourn
- Neuropathology Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, Building 10/3D17, Bethesda, MD, 20892, USA
| | - Vinny Ha
- Neuropathology Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, Building 10/3D17, Bethesda, MD, 20892, USA
| | - Sonali Arora
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Sharika Rajan
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Linda G Shapiro
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | - Eric C Holland
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Kenneth Aldape
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tresa McGranahan
- Division of Hematology and Oncology, Scripps Cancer Center, La Jolla, CA, USA
| | - Mark R Gilbert
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Patrick J Cimino
- Neuropathology Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, Building 10/3D17, Bethesda, MD, 20892, USA.
| |
Collapse
|
12
|
Yuen CA, Bao S, Kong XT, Terry M, Himstead A, Zheng M, Pekmezci M. A High-Grade Glioma, Not Elsewhere Classified in an Older Adult with Discordant Genetic and Epigenetic Analyses. Biomedicines 2024; 12:2042. [PMID: 39335555 PMCID: PMC11428674 DOI: 10.3390/biomedicines12092042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
The World Health Organization's (WHO) classification of central nervous system (CNS) tumors is continually being refined to improve the existing diagnostic criteria for high-grade gliomas (HGGs), including glioblastoma. In 2021, advances in molecular analyses and DNA methylation profiling were incorporated to expand upon the diagnostic criteria for HGG, including the introduction of high-grade astrocytoma with piloid features (HGAP), a new tumor entity for which a match to the HGAP class in DNA methylation profiling is an essential criterion. We present an equivocal case of a 72-year-old male with an HGG exhibiting features of both HGAP and glioblastoma, but which did not conform to any existing 2021 WHO classification of CNS tumor entities. This "no match" in DNA methylation profiling resulted in a final diagnosis of HGG not elsewhere classified (NEC), for which standard treatment options do not exist.
Collapse
Affiliation(s)
- Carlen A. Yuen
- Neuro-Oncology Division, Department of Neurology, University of California, Irvine, CA 92868, USA
| | - Silin Bao
- Neurosciences Division, Department of Internal Medicine, Community Regional Medical Center, Fresno, CA 93721, USA
| | - Xiao-Tang Kong
- Neuro-Oncology Division, Department of Neurology, University of California, Irvine, CA 92868, USA
| | - Merryl Terry
- Department of Pathology, University of California, San Francisco, CA 94143, USA
| | - Alexander Himstead
- Department of Neurosurgery, University of California, Irvine, CA 92868, USA
| | - Michelle Zheng
- UC Irvine Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Melike Pekmezci
- Department of Pathology, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
13
|
Kling T, Ferreyra Vega S, Suman M, Dénes A, Lipatnikova A, Lagerström S, Olsson Bontell T, Jakola AS, Carén H. Refinement of prognostication for IDH-mutant astrocytomas using DNA methylation-based classification. Brain Pathol 2024; 34:e13233. [PMID: 38168467 PMCID: PMC11328339 DOI: 10.1111/bpa.13233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
The 2021 World Health Organization (WHO) grading system of isocitrate dehydrogenase (IDH)-mutant astrocytomas relies on histological features and the presence of homozygous deletion of the cyclin-dependent kinase inhibitor 2A and 2B (CDKN2A/B). DNA methylation profiling has become highly relevant in the diagnosis of central nervous system (CNS) tumors including gliomas, and it has been incorporated into routine clinical diagnostics in some countries. In this study, we, therefore, examined the value of DNA methylation-based classification for prognostication of patients with IDH-mutant astrocytomas. We analyzed histopathological diagnoses, genome-wide DNA methylation array data, and chromosomal copy number alteration profiles from a cohort of 385 adult-type IDH-mutant astrocytomas, including a local cohort of 127 cases and 258 cases from public repositories. Prognosis based on WHO 2021 CNS criteria (histological grade and CDKN2A/B homozygous deletion status), other relevant chromosomal/gene alterations in IDH-mutant astrocytomas and DNA methylation-based subclassification according to the molecular neuropathology classifier were assessed. We demonstrate that DNA methylation-based classification of IDH-mutant astrocytomas can be used to predict outcome of the patients equally well as WHO 2021 CNS criteria. In addition, methylation-based subclassification enabled the identification of IDH-mutant astrocytoma patients with poor survival among patients with grade 3 tumors and patients with grade 4 tumors with a more favorable outcome. In conclusion, DNA methylation-based subclassification adds prognostic information for IDH-mutant astrocytomas that can further refine the current WHO 2021 grading scheme for these patients.
Collapse
Affiliation(s)
- Teresia Kling
- Sahlgrenska Center for Cancer Research, Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sandra Ferreyra Vega
- Sahlgrenska Center for Cancer Research, Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Medha Suman
- Sahlgrenska Center for Cancer Research, Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Dénes
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Lipatnikova
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Stina Lagerström
- Sahlgrenska Center for Cancer Research, Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Thomas Olsson Bontell
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Asgeir Store Jakola
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Helena Carén
- Sahlgrenska Center for Cancer Research, Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
14
|
Simon M, Kuschel LP, von Hoff K, Yuan D, Hernáiz Driever P, Hain EG, Koch A, Capper D, Schulz M, Thomale UW, Euskirchen P. Rapid DNA methylation-based classification of pediatric brain tumors from ultrasonic aspirate specimens. J Neurooncol 2024; 169:73-83. [PMID: 38769169 PMCID: PMC11269392 DOI: 10.1007/s11060-024-04702-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/30/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Although cavitating ultrasonic aspirators are commonly used in neurosurgical procedures, the suitability of ultrasonic aspirator-derived tumor material for diagnostic procedures is still controversial. Here, we explore the feasibility of using ultrasonic aspirator-resected tumor tissue to classify otherwise discarded sample material by fast DNA methylation-based analysis using low pass nanopore whole genome sequencing. METHODS Ultrasonic aspirator-derived specimens from pediatric patients undergoing brain tumor resection were subjected to low-pass nanopore whole genome sequencing. DNA methylation-based classification using a neural network classifier and copy number variation analysis were performed. Tumor purity was estimated from copy number profiles. Results were compared to microarray (EPIC)-based routine neuropathological histomorphological and molecular evaluation. RESULTS 19 samples with confirmed neuropathological diagnosis were evaluated. All samples were successfully sequenced and passed quality control for further analysis. DNA and sequencing characteristics from ultrasonic aspirator-derived specimens were comparable to routinely processed tumor tissue. Classification of both methods was concordant regarding methylation class in 17/19 (89%) cases. Application of a platform-specific threshold for nanopore-based classification ensured a specificity of 100%, whereas sensitivity was 79%. Copy number variation profiles were generated for all cases and matched EPIC results in 18/19 (95%) samples, even allowing the identification of diagnostically or therapeutically relevant genomic alterations. CONCLUSION Methylation-based classification of pediatric CNS tumors based on ultrasonic aspirator-reduced and otherwise discarded tissue is feasible using time- and cost-efficient nanopore sequencing.
Collapse
Affiliation(s)
- Michèle Simon
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Luis P Kuschel
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Katja von Hoff
- Department of Paediatric and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Dongsheng Yuan
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Pablo Hernáiz Driever
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Elisabeth G Hain
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Arend Koch
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - David Capper
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, a partnership between DKFZ and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Matthias Schulz
- Department of Pediatric Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Ulrich-Wilhelm Thomale
- Department of Pediatric Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Philipp Euskirchen
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- German Cancer Consortium (DKTK), partner site Berlin, a partnership between DKFZ and Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
15
|
Cornelli L, Van Paemel R, Ferro Dos Santos MR, Roelandt S, Willems L, Vandersteene J, Baert E, Mus LM, Van Roy N, De Wilde B, De Preter K. Diagnosis of pediatric central nervous system tumors using methylation profiling of cfDNA from cerebrospinal fluid. Clin Epigenetics 2024; 16:87. [PMID: 38970137 PMCID: PMC11225235 DOI: 10.1186/s13148-024-01696-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/17/2024] [Indexed: 07/07/2024] Open
Abstract
Pediatric central nervous system tumors remain challenging to diagnose. Imaging approaches do not provide sufficient detail to discriminate between different tumor types, while the histopathological examination of tumor tissue shows high inter-observer variability. Recent studies have demonstrated the accurate classification of central nervous system tumors based on the DNA methylation profile of a tumor biopsy. However, a brain biopsy holds significant risk of bleeding and damaging the surrounding tissues. Liquid biopsy approaches analyzing circulating tumor DNA show high potential as an alternative and less invasive tool to study the DNA methylation pattern of tumors. Here, we explore the potential of classifying pediatric brain tumors based on methylation profiling of the circulating cell-free DNA (cfDNA) in cerebrospinal fluid (CSF). For this proof-of-concept study, we collected cerebrospinal fluid samples from 19 pediatric brain cancer patients via a ventricular drain placed for reasons of increased intracranial pressure. Analyses on the cfDNA showed high variability of cfDNA quantities across patients ranging from levels below the limit of quantification to 40 ng cfDNA per milliliter of CSF. Classification based on methylation profiling of cfDNA from CSF was correct for 7 out of 20 samples in our cohort. Accurate results were mostly observed in samples of high quality, more specifically those with limited high molecular weight DNA contamination. Interestingly, we show that centrifugation of the CSF prior to processing increases the fraction of fragmented cfDNA to high molecular weight DNA. In addition, classification was mostly correct for samples with high tumoral cfDNA fraction as estimated by computational deconvolution (> 40%). In summary, analysis of cfDNA in the CSF shows potential as a tool for diagnosing pediatric nervous system tumors especially in patients with high levels of tumoral cfDNA in the CSF. Further optimization of the collection procedure, experimental workflow and bioinformatic approach is required to also allow classification for patients with low tumoral fractions in the CSF.
Collapse
Affiliation(s)
- Lotte Cornelli
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Biotechnology, VIB-UGent, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Ruben Van Paemel
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Maísa R Ferro Dos Santos
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Biotechnology, VIB-UGent, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Sofie Roelandt
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Biotechnology, VIB-UGent, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Leen Willems
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | | | - Edward Baert
- Department of Neurosurgery, Ghent University Hospital, Ghent, Belgium
| | - Liselot M Mus
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Nadine Van Roy
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Bram De Wilde
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Katleen De Preter
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
- Center for Medical Biotechnology, VIB-UGent, Ghent, Belgium.
- Cancer Research Institute Ghent, Ghent, Belgium.
| |
Collapse
|
16
|
Alturkustani M. Unraveling morphology, methylation profiling, and diagnostic challenges in BRAF-Mutant pediatric glial and glioneuronal tumors. NEUROSCIENCES (RIYADH, SAUDI ARABIA) 2024; 29:168-176. [PMID: 38981632 PMCID: PMC11305341 DOI: 10.17712/nsj.2024.3.20230108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/09/2024] [Indexed: 07/11/2024]
Abstract
OBJECTIVES To elucidate the relationship between DNA methylation profiling (DMP) and pathological diagnosis (PD) in pediatric glial and glioneuronal tumors with B-Raf proto-oncogene, serine/threonine kinase (BRAF) mutations, addressing their diagnostic challenges. METHODS This retrospective study, conducted in Saudi Arabia, analyzed 47 cases from the Children's Brain Tumor Network online database using scanned images, next-generation sequencing data, and methylation profiles processed using the Heidelberg methylation brain tumor classifiers v12.5 and v12.8. The data was last access on 10 November 2023. RESULTS The highest prevalence of BRAF mutations was observed in pilocytic astrocytoma and ganglioglioma. The DMP was consistent with PD in 23 cases, but discrepancies emerged in others, including diagnostic changes in diffuse leptomeningeal glioneuronal tumor and polymorphous low-grade neuroepithelial tumor of the young. A key inconsistency appeared between a pilocytic astrocytoma MC and a glioneuronal tumor PD. Two high-grade astrocytomas were misclassified as pleomorphic xanthoastrocytomas. Additionally, low variant allelic frequency in gangliogliomas likely contributed to misclassifications as control in 5 cases. CONCLUSION This study emphasized the importance of integrating DMP with PD in diagnosing pediatric glial and glioneuronal tumors with BRAF mutations. Although DMP offers significant diagnostic insights, its limitations, particularly in cases with low tumor content, necessitate cautious interpretation, as well as its use as a complementary diagnostic tool, rather than a definitive method.
Collapse
Affiliation(s)
- Murad Alturkustani
- From the Department of Pathology, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia, and from the Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| |
Collapse
|
17
|
Hou Y, Du Y, Wang J, Zhang X, Zhao X, Xian X, Yuan L, Li H, Wang Y, Xi S, Huang G, Zhu W, Wang J, Zhu J, Yu Q, Cao Y, Wu J, Zeng J, Dong G, Hu W. Pediatric central nervous system tumor with CIC::LEUTX fusion: a diagnostic challenge. Acta Neuropathol Commun 2024; 12:106. [PMID: 38926750 PMCID: PMC11210039 DOI: 10.1186/s40478-024-01824-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024] Open
Affiliation(s)
- Yanghao Hou
- Department of Pathology, Center for Molecular Medicine Testing, College of Basic Medicine, Chongqing Medical University, Chongqing, P. R. China
| | - Yanru Du
- Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, Beijing, P. R. China
| | - Juan Wang
- Department of Pathology, Nanjing Brain Hospital, Nanjing, P. R. China
| | - Xinke Zhang
- Department of Pathology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Xueyan Zhao
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| | - Xinyi Xian
- Department of Pathology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Li Yuan
- Department of Pathology, Guangzhou Women and Children Medical Center, Guangzhou, P. R. China
| | - Haigang Li
- Department of Pathology, Sun Yat-sen Memorial Hospital, Guangzhou, P. R. China
| | - Yu Wang
- Department of Pathology, Zhujiang Hospital of Southern Medical University, Zhujiang, P. R. China
| | - Shaoyan Xi
- Department of Pathology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Guan Huang
- Department of Pathology, Longgang District Central Hospital of Shenzhen, Shenzhen, P. R. China
| | - Wenbiao Zhu
- Department of Pathology, Meizhou People's Hospital, Meizhou, P. R. China
| | - Juan Wang
- Department of Pediatric tumor, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Jin Zhu
- Department of Pathology, Center for Molecular Medicine Testing, College of Basic Medicine, Chongqing Medical University, Chongqing, P. R. China
- Department of Pathology, Children's hospital of Chongqing medical university, Chongqing, P. R. China
| | - Qiubo Yu
- Department of Pathology, Center for Molecular Medicine Testing, College of Basic Medicine, Chongqing Medical University, Chongqing, P. R. China
| | - Youde Cao
- Department of Pathology, Center for Molecular Medicine Testing, College of Basic Medicine, Chongqing Medical University, Chongqing, P. R. China
| | - JingXian Wu
- Department of Pathology, Center for Molecular Medicine Testing, College of Basic Medicine, Chongqing Medical University, Chongqing, P. R. China
| | - Jing Zeng
- Department of Pathology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.
| | - Gehong Dong
- Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, Beijing, P. R. China.
| | - Wanming Hu
- Department of Pathology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.
| |
Collapse
|
18
|
Gue R, Lakhani DA. The 2021 World Health Organization Central Nervous System Tumor Classification: The Spectrum of Diffuse Gliomas. Biomedicines 2024; 12:1349. [PMID: 38927556 PMCID: PMC11202067 DOI: 10.3390/biomedicines12061349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The 2021 edition of the World Health Organization (WHO) classification of central nervous system tumors introduces significant revisions across various tumor types. These updates, encompassing changes in diagnostic techniques, genomic integration, terminology, and grading, are crucial for radiologists, who play a critical role in interpreting brain tumor imaging. Such changes impact the diagnosis and management of nearly all central nervous system tumor categories, including the reclassification, addition, and removal of specific tumor entities. Given their pivotal role in patient care, radiologists must remain conversant with these revisions to effectively contribute to multidisciplinary tumor boards and collaborate with peers in neuro-oncology, neurosurgery, radiation oncology, and neuropathology. This knowledge is essential not only for accurate diagnosis and staging, but also for understanding the molecular and genetic underpinnings of tumors, which can influence treatment decisions and prognostication. This review, therefore, focuses on the most pertinent updates concerning the classification of adult diffuse gliomas, highlighting the aspects most relevant to radiological practice. Emphasis is placed on the implications of new genetic information on tumor behavior and imaging findings, providing necessary tools to stay abreast of advancements in the field. This comprehensive overview aims to enhance the radiologist's ability to integrate new WHO classification criteria into everyday practice, ultimately improving patient outcomes through informed and precise imaging assessments.
Collapse
Affiliation(s)
- Racine Gue
- Department of Neuroradiology, West Virginia University, Morgantown, WV 26506, USA
| | - Dhairya A. Lakhani
- Department of Neuroradiology, West Virginia University, Morgantown, WV 26506, USA
- Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
19
|
Shelton WJ, Zandpazandi S, Nix JS, Gokden M, Bauer M, Ryan KR, Wardell CP, Vaske OM, Rodriguez A. Long-read sequencing for brain tumors. Front Oncol 2024; 14:1395985. [PMID: 38915364 PMCID: PMC11194609 DOI: 10.3389/fonc.2024.1395985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/27/2024] [Indexed: 06/26/2024] Open
Abstract
Brain tumors and genomics have a long-standing history given that glioblastoma was the first cancer studied by the cancer genome atlas. The numerous and continuous advances through the decades in sequencing technologies have aided in the advanced molecular characterization of brain tumors for diagnosis, prognosis, and treatment. Since the implementation of molecular biomarkers by the WHO CNS in 2016, the genomics of brain tumors has been integrated into diagnostic criteria. Long-read sequencing, also known as third generation sequencing, is an emerging technique that allows for the sequencing of longer DNA segments leading to improved detection of structural variants and epigenetics. These capabilities are opening a way for better characterization of brain tumors. Here, we present a comprehensive summary of the state of the art of third-generation sequencing in the application for brain tumor diagnosis, prognosis, and treatment. We discuss the advantages and potential new implementations of long-read sequencing into clinical paradigms for neuro-oncology patients.
Collapse
Affiliation(s)
- William J Shelton
- Department of Neurosurgery, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Sara Zandpazandi
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, United States
| | - J Stephen Nix
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Murat Gokden
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Michael Bauer
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Katie Rose Ryan
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Christopher P Wardell
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Olena Morozova Vaske
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, United States
| | - Analiz Rodriguez
- Department of Neurosurgery, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
20
|
Rich K, Tosefsky K, Martin KC, Bashashati A, Yip S. Practical Application of Deep Learning in Diagnostic Neuropathology-Reimagining a Histological Asset in the Era of Precision Medicine. Cancers (Basel) 2024; 16:1976. [PMID: 38893099 PMCID: PMC11171052 DOI: 10.3390/cancers16111976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/10/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
In the past few decades, neuropathology has experienced several paradigm shifts with the introduction of new technologies. Deep learning, a rapidly progressing subfield of machine learning, seems to be the next innovation to alter the diagnostic workflow. In this review, we will explore the recent changes in the field of neuropathology and how this has led to an increased focus on molecular features in diagnosis and prognosis. Then, we will examine the work carried out to train deep learning models for various diagnostic tasks in neuropathology, as well as the machine learning frameworks they used. Focus will be given to both the challenges and successes highlighted therein, as well as what these trends may tell us about future roadblocks in the widespread adoption of this new technology. Finally, we will touch on recent trends in deep learning, as applied to digital pathology more generally, and what this may tell us about the future of deep learning applications in neuropathology.
Collapse
Affiliation(s)
- Katherine Rich
- Bioinformatics Graduate Program, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| | - Kira Tosefsky
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (K.T.); (K.C.M.)
| | - Karina C. Martin
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (K.T.); (K.C.M.)
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Ali Bashashati
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Stephen Yip
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (K.T.); (K.C.M.)
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
21
|
Yuan J, Siakallis L, Li HB, Brandner S, Zhang J, Li C, Mancini L, Bisdas S. Structural- and DTI- MRI enable automated prediction of IDH Mutation Status in CNS WHO Grade 2-4 glioma patients: a deep Radiomics Approach. BMC Med Imaging 2024; 24:104. [PMID: 38702613 PMCID: PMC11067215 DOI: 10.1186/s12880-024-01274-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 04/15/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND The role of isocitrate dehydrogenase (IDH) mutation status for glioma stratification and prognosis is established. While structural magnetic resonance image (MRI) is a promising biomarker, it may not be sufficient for non-invasive characterisation of IDH mutation status. We investigated the diagnostic value of combined diffusion tensor imaging (DTI) and structural MRI enhanced by a deep radiomics approach based on convolutional neural networks (CNNs) and support vector machine (SVM), to determine the IDH mutation status in Central Nervous System World Health Organization (CNS WHO) grade 2-4 gliomas. METHODS This retrospective study analyzed the DTI-derived fractional anisotropy (FA) and mean diffusivity (MD) images and structural images including fluid attenuated inversion recovery (FLAIR), non-enhanced T1-, and T2-weighted images of 206 treatment-naïve gliomas, including 146 IDH mutant and 60 IDH-wildtype ones. The lesions were manually segmented by experienced neuroradiologists and the masks were applied to the FA and MD maps. Deep radiomics features were extracted from each subject by applying a pre-trained CNN and statistical description. An SVM classifier was applied to predict IDH status using imaging features in combination with demographic data. RESULTS We comparatively assessed the CNN-SVM classifier performance in predicting IDH mutation status using standalone and combined structural and DTI-based imaging features. Combined imaging features surpassed stand-alone modalities for the prediction of IDH mutation status [area under the curve (AUC) = 0.846; sensitivity = 0.925; and specificity = 0.567]. Importantly, optimal model performance was noted following the addition of demographic data (patients' age) to structural and DTI imaging features [area under the curve (AUC) = 0.847; sensitivity = 0.911; and specificity = 0.617]. CONCLUSIONS Imaging features derived from DTI-based FA and MD maps combined with structural MRI, have superior diagnostic value to that provided by standalone structural or DTI sequences. In combination with demographic information, this CNN-SVM model offers a further enhanced non-invasive prediction of IDH mutation status in gliomas.
Collapse
Affiliation(s)
- Jialin Yuan
- Department of Radiology, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
- Queen Square Institute of Neurology, University College London, London, UK
| | - Loizos Siakallis
- Queen Square Institute of Neurology, University College London, London, UK
| | - Hongwei Bran Li
- Department of Informatics, Technical University of Munich, Munich, Germany
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA
| | - Sebastian Brandner
- Division of Neuropathology, Queen Square Institute of Neurology, University College London, London, UK
| | - Jianguo Zhang
- Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Chenming Li
- Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Laura Mancini
- Queen Square Institute of Neurology, University College London, London, UK
- Lysholm Department of Neuroradiology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Sotirios Bisdas
- Queen Square Institute of Neurology, University College London, London, UK.
- Lysholm Department of Neuroradiology, University College London Hospitals NHS Foundation Trust, London, UK.
| |
Collapse
|
22
|
Kibe Y, Ohka F, Aoki K, Yamaguchi J, Motomura K, Ito E, Takeuchi K, Nagata Y, Ito S, Mizutani N, Shiba Y, Maeda S, Nishikawa T, Shimizu H, Saito R. Pediatric-type high-grade gliomas with PDGFRA amplification in adult patients with Li-Fraumeni syndrome: clinical and molecular characterization of three cases. Acta Neuropathol Commun 2024; 12:57. [PMID: 38605367 PMCID: PMC11010357 DOI: 10.1186/s40478-024-01762-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/22/2024] [Indexed: 04/13/2024] Open
Abstract
Li-Fraumeni syndrome (LFS) is an autosomal dominant tumor predisposition syndrome caused by heterozygous germline mutations or deletions in the TP53 tumor suppressor gene. Central nervous system tumors, such as choroid plexus tumors, medulloblastomas, and diffuse gliomas, are frequently found in patients with LFS. Although molecular profiles of diffuse gliomas that develop in pediatric patients with LFS have been elucidated, those in adults are limited. Recently, diffuse gliomas have been divided into pediatric- and adult-type gliomas, based on their distinct molecular profiles. In the present study, we investigated the molecular profiles of high-grade gliomas in three adults with LFS. These tumors revealed characteristic histopathological findings of high-grade glioma or glioblastoma and harbored wild-type IDH1/2 according to whole exome sequencing (WES). However, these tumors did not exhibit the key molecular alterations of glioblastoma, IDH-wildtype such as TERT promoter mutation, EGFR amplification, or chromosome 7 gain and 10 loss. Although WES revealed no other characteristic gene mutations or copy number alterations in high-grade gliomas, such as those in histone H3 genes, PDGFRA amplification was found in all three cases together with uniparental disomy of chromosome 17p, where the TP53 gene is located. DNA methylation analyses revealed that all tumors exhibited DNA methylation profiles similar to those of pediatric-type high-grade glioma H3-wildtype and IDH-wildtype (pHGG H3-/IDH-wt), RTK1 subtype. These data suggest that high-grade gliomas developed in adult patients with LFS may be involved in pHGG H3-/IDH-wt. PDGFRA and homozygous alterations in TP53 may play pivotal roles in the development of this type of glioma in adult patients with LFS.
Collapse
Affiliation(s)
- Yuji Kibe
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Fumiharu Ohka
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Kosuke Aoki
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Junya Yamaguchi
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Kazuya Motomura
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Eiji Ito
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Kazuhito Takeuchi
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yuichi Nagata
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Satoshi Ito
- Department of Neurosurgery, Konan Kosei Hospital, 137 Oomatsubara, Takaya-cho, Konan, 483-8703, Japan
| | - Nobuhiko Mizutani
- Department of Neurosurgery, Konan Kosei Hospital, 137 Oomatsubara, Takaya-cho, Konan, 483-8703, Japan
| | - Yoshiki Shiba
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Sachi Maeda
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Tomohide Nishikawa
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Hiroki Shimizu
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Ryuta Saito
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| |
Collapse
|
23
|
Ying Y, Liu X, Li X, Mei N, Ruan Z, Lu Y, Yin B. Distinct MRI characteristics of spinal cord diffuse midline glioma, H3 K27-altered in comparison to spinal cord glioma without H3 K27-alteration and demyelination disorder. Acta Radiol 2024; 65:284-293. [PMID: 38115811 DOI: 10.1177/02841851231215803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
BACKGROUND An applicable magnetic resonance imaging (MRI) biomarker for diffuse midline glioma (DMG), H3 K27-altered of the spinal cord is important for non-invasive diagnosis. PURPOSE To evaluate the efficacy of conventional MRI (cMRI) in distinguishing between DMGs, H3 K27-altered, gliomas without H3 K27-alteration, and demyelinating lesions in the spinal cord. MATERIAL AND METHODS Between January 2017 and February 2023, patients with pathology-confirmed spinal cord gliomas (including ependymomas) with definite H3 K27 status and demyelinating diseases diagnosed by recognized criteria were recruited as the training set for this retrospective study. Morphologic parameter assessment was performed by two neuroradiologists on T1-weighted, T2-weighted, and contrast-enhanced T1-weighted imaging. Variables with high inter- and intra-observer agreement were included in univariable correlation analysis and multivariable logistic regression. The performance of the final model was verified by internal and external testing sets. RESULTS The training cohort included 21 patients with DMGs (13 men; mean age = 34.57 ± 13.489 years), 21 with wild-type gliomas (10 men; mean age = 46.76 ± 17.017 years), and 20 with demyelinating diseases (5 men; mean age = 49.50 ± 18.872 years). A significant difference was observed in MRI features, including cyst(s), hemorrhage, pial thickening with enhancement, and the maximum anteroposterior diameter of the spinal cord. The prediction model, integrating age, age2, and morphological characteristics, demonstrated good performance in the internal and external testing cohort (accuracy: 0.810 and 0.800, specificity: 0.810 and 0.720, sensitivity: 0.872 and 0.849, respectively). CONCLUSION Based on cMRI, we developed a model with good performance for differentiating among DMGs, H3 K27-altered, wild-type glioma, and demyelinating lesions in the spinal cord.
Collapse
Affiliation(s)
- Yinwei Ying
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Xiujuan Liu
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Xuanxuan Li
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Nan Mei
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Zhuoying Ruan
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Yiping Lu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Bo Yin
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, PR China
| |
Collapse
|
24
|
Bertero L, Mangherini L, Ricci AA, Cassoni P, Sahm F. Molecular neuropathology: an essential and evolving toolbox for the diagnosis and clinical management of central nervous system tumors. Virchows Arch 2024; 484:181-194. [PMID: 37658995 PMCID: PMC10948579 DOI: 10.1007/s00428-023-03632-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/04/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023]
Abstract
Molecular profiling has transformed the diagnostic workflow of CNS tumors during the last years. The latest WHO classification of CNS tumors (5th edition), published in 2021, pushed forward the integration between histopathological features and molecular hallmarks to achieve reproducible and clinically relevant diagnoses. To address these demands, pathologists have to appropriately deal with multiple molecular assays mainly including DNA methylation profiling and DNA/RNA next generation sequencing. Tumor classification by DNA methylation profiling is now a critical tool for many diagnostic tasks in neuropathology including the assessment of complex cases, to evaluate novel tumor types and to perform tumor subgrouping in hetereogenous entities like medulloblastoma or ependymoma. DNA/RNA NGS allow the detection of multiple molecular alterations including single nucleotide variations, small insertions/deletions (InDel), and gene fusions. These molecular markers can provide key insights for diagnosis, for example, if a tumor-specific mutation is detected, but also for treatment since targeted therapies are progressively entering the clinical practice. In the present review, a brief, but comprehensive overview of these tools will be provided, discussing their technical specifications, diagnostic value, and potential limitations. Moreover, the importance of molecular profiling will be shown in a representative series of CNS neoplasms including both the most frequent tumor types and other selected entities for which molecular characterization plays a critical role.
Collapse
Affiliation(s)
- Luca Bertero
- Pathology Unit, Department of Medical Sciences, University of Turin and Città Della Salute E Della Scienza University Hospital, Via Santena 7, 10126, Turin, Italy
| | - Luca Mangherini
- Pathology Unit, Department of Medical Sciences, University of Turin and Città Della Salute E Della Scienza University Hospital, Via Santena 7, 10126, Turin, Italy
| | - Alessia Andrea Ricci
- Pathology Unit, Department of Medical Sciences, University of Turin and Città Della Salute E Della Scienza University Hospital, Via Santena 7, 10126, Turin, Italy
| | - Paola Cassoni
- Pathology Unit, Department of Medical Sciences, University of Turin and Città Della Salute E Della Scienza University Hospital, Via Santena 7, 10126, Turin, Italy
| | - Felix Sahm
- Department of Neuropathology, Heidelberg University Hospital, Im Neuenheimer Feld 672, 69120, Heidelberg, Germany.
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany.
| |
Collapse
|
25
|
Drexler R, Brembach F, Sauvigny J, Ricklefs FL, Eckhardt A, Bode H, Gempt J, Lamszus K, Westphal M, Schüller U, Mohme M. Unclassifiable CNS tumors in DNA methylation-based classification: clinical challenges and prognostic impact. Acta Neuropathol Commun 2024; 12:9. [PMID: 38229158 DOI: 10.1186/s40478-024-01728-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/02/2024] [Indexed: 01/18/2024] Open
Abstract
DNA methylation analysis has become a powerful tool in neuropathology. Although DNA methylation-based classification usually shows high accuracy, certain samples cannot be classified and remain clinically challenging. We aimed to gain insight into these cases from a clinical perspective. To address, central nervous system (CNS) tumors were subjected to DNA methylation profiling and classified according to their calibrated score using the DKFZ brain tumor classifier (V11.4) as "≥ 0.84" (score ≥ 0.84), "0.3-0.84" (score 0.3-0.84), or "< 0.3" (score < 0.3). Histopathology, patient characteristics, DNA input amount, and tumor purity were correlated. Clinical outcome parameters were time to treatment decision, progression-free, and overall survival. In 1481 patients, the classifier identified 69 (4.6%) tumors with an unreliable score as "< 0.3". Younger age (P < 0.01) and lower tumor purity (P < 0.01) compromised accurate classification. A clinical impact was demonstrated as unclassifiable cases ("< 0.3") had a longer time to treatment decision (P < 0.0001). In a subset of glioblastomas, these cases experienced an increased time to adjuvant treatment start (P < 0.001) and unfavorable survival (P < 0.025). Although DNA methylation profiling adds an important contribution to CNS tumor diagnostics, clinicians should be aware of a potentially longer time to treatment initiation, especially in malignant brain tumors.
Collapse
Affiliation(s)
- Richard Drexler
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Florian Brembach
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Jennifer Sauvigny
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Franz L Ricklefs
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Alicia Eckhardt
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Radiation Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Helena Bode
- Research Institute Children's Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jens Gempt
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Katrin Lamszus
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Manfred Westphal
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Ulrich Schüller
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malte Mohme
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| |
Collapse
|
26
|
Nakhate V, Gonzalez Castro LN. Artificial intelligence in neuro-oncology. Front Neurosci 2023; 17:1217629. [PMID: 38161802 PMCID: PMC10755952 DOI: 10.3389/fnins.2023.1217629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/14/2023] [Indexed: 01/03/2024] Open
Abstract
Artificial intelligence (AI) describes the application of computer algorithms to the solution of problems that have traditionally required human intelligence. Although formal work in AI has been slowly advancing for almost 70 years, developments in the last decade, and particularly in the last year, have led to an explosion of AI applications in multiple fields. Neuro-oncology has not escaped this trend. Given the expected integration of AI-based methods to neuro-oncology practice over the coming years, we set to provide an overview of existing technologies as they are applied to the neuropathology and neuroradiology of brain tumors. We highlight current benefits and limitations of these technologies and offer recommendations on how to appraise novel AI-tools as they undergo consideration for integration into clinical workflows.
Collapse
Affiliation(s)
- Vihang Nakhate
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - L. Nicolas Gonzalez Castro
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- The Center for Neuro-Oncology, Dana–Farber Cancer Institute, Boston, MA, United States
| |
Collapse
|
27
|
Toader C, Eva L, Costea D, Corlatescu AD, Covache-Busuioc RA, Bratu BG, Glavan LA, Costin HP, Popa AA, Ciurea AV. Low-Grade Gliomas: Histological Subtypes, Molecular Mechanisms, and Treatment Strategies. Brain Sci 2023; 13:1700. [PMID: 38137148 PMCID: PMC10741942 DOI: 10.3390/brainsci13121700] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Low-Grade Gliomas (LGGs) represent a diverse group of brain tumors originating from glial cells, characterized by their unique histopathological and molecular features. This article offers a comprehensive exploration of LGGs, shedding light on their subtypes, histological and molecular aspects. By delving into the World Health Organization's grading system, 5th edition, various specificities were added due to an in-depth understanding of emerging laboratory techniques, especially genomic analysis. Moreover, treatment modalities are extensively discussed. The degree of surgical resection should always be considered according to postoperative quality of life and cognitive status. Adjuvant therapies focused on chemotherapy and radiotherapy depend on tumor grading and invasiveness. In the current literature, emerging targeted molecular therapies are well discussed due to their succinctly therapeutic effect; in our article, those therapies are summarized based on posttreatment results and possible adverse effects. This review serves as a valuable resource for clinicians, researchers, and medical professionals aiming to deepen their knowledge on LGGs and enhance patient care.
Collapse
Affiliation(s)
- Corneliu Toader
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (A.D.C.); (R.-A.C.-B.); (B.-G.B.); (L.A.G.); (H.P.C.); (A.A.P.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Lucian Eva
- Department of Neurosurgery, Dunarea de Jos University, 800010 Galati, Romania
- Department of Neurosurgery, Clinical Emergency Hospital “Prof. Dr. Nicolae Oblu”, 700309 Iasi, Romania
| | - Daniel Costea
- Department of Neurosurgery, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Antonio Daniel Corlatescu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (A.D.C.); (R.-A.C.-B.); (B.-G.B.); (L.A.G.); (H.P.C.); (A.A.P.); (A.V.C.)
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (A.D.C.); (R.-A.C.-B.); (B.-G.B.); (L.A.G.); (H.P.C.); (A.A.P.); (A.V.C.)
| | - Bogdan-Gabriel Bratu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (A.D.C.); (R.-A.C.-B.); (B.-G.B.); (L.A.G.); (H.P.C.); (A.A.P.); (A.V.C.)
| | - Luca Andrei Glavan
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (A.D.C.); (R.-A.C.-B.); (B.-G.B.); (L.A.G.); (H.P.C.); (A.A.P.); (A.V.C.)
| | - Horia Petre Costin
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (A.D.C.); (R.-A.C.-B.); (B.-G.B.); (L.A.G.); (H.P.C.); (A.A.P.); (A.V.C.)
| | - Andrei Adrian Popa
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (A.D.C.); (R.-A.C.-B.); (B.-G.B.); (L.A.G.); (H.P.C.); (A.A.P.); (A.V.C.)
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (A.D.C.); (R.-A.C.-B.); (B.-G.B.); (L.A.G.); (H.P.C.); (A.A.P.); (A.V.C.)
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
| |
Collapse
|
28
|
Yan X, Li J, Zhang Y, Liang C, Liang P, Li T, Liu Q, Hui X. Alterations in cellular metabolism under different grades of glioma staging identified based on a multi-omics analysis strategy. Front Endocrinol (Lausanne) 2023; 14:1292944. [PMID: 38111705 PMCID: PMC10726964 DOI: 10.3389/fendo.2023.1292944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/30/2023] [Indexed: 12/20/2023] Open
Abstract
Glioma is a type of brain tumor closely related to abnormal cell metabolism. Firstly, multiple combinatorial sequencing studies have revealed this relationship. Genomic studies have identified gene mutations and gene expression disorders related to the development of gliomas, which affect cell metabolic pathways. In addition, transcriptome studies have revealed the genes and regulatory networks that regulate cell metabolism in glioma tissues. Metabonomics studies have shown that the metabolic pathway of glioma cells has changed, indicating their distinct energy and nutritional requirements. This paper focuses on the retrospective analysis of multiple groups combined with sequencing to analyze the changes in various metabolites during metabolism in patients with glioma. Finally, the changes in genes, regulatory networks, and metabolic pathways regulating cell metabolism in patients with glioma under different metabolic conditions were discussed. It is also proposed that multi-group metabolic analysis is expected to better understand the mechanism of abnormal metabolism of gliomas and provide more personalized methods and guidance for early diagnosis, treatment, and prognosis evaluation of gliomas.
Collapse
Affiliation(s)
- Xianlei Yan
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Neurosurgery, Liuzhou Workers Hospital, Liuzhou, Guangxi, China
| | - Jinwei Li
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yang Zhang
- Department of Vascular Surgery, Fuwai Yunnan Cardiovascular Hospital, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Cong Liang
- Department of Pharmacy, Liuzhou Workers Hospital, Liuzhou, Guangxi, China
| | - Pengcheng Liang
- Department of Neurosurgery, Liuzhou Workers Hospital, Liuzhou, Guangxi, China
| | - Tao Li
- Department of Medical Imaging, Liuzhou Workers Hospital, Liuzhou, Guangxi, China
| | - Quan Liu
- Department of Neurosurgery, Liuzhou Workers Hospital, Liuzhou, Guangxi, China
| | - Xuhui Hui
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
29
|
Singh J, Sahu S, Mohan T, Mahajan S, Sharma MC, Sarkar C, Suri V. Current status of DNA methylation profiling in neuro-oncology as a diagnostic support tool: A review. Neurooncol Pract 2023; 10:518-526. [PMID: 38009119 PMCID: PMC10666812 DOI: 10.1093/nop/npad040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023] Open
Abstract
Over the last 2 decades, high throughput genome-wide molecular profiling has revealed characteristic genetic and epigenetic alterations associated with different types of central nervous system (CNS) tumors. DNA methylation profiling has emerged as an important molecular platform for CNS tumor classification with improved diagnostic accuracy and patient risk stratification in comparison to the standard of care histopathological analysis and any single molecular tests. The emergence of DNA methylation arrays have also played a crucial role in refining existing types and the discovery of new tumor types or subtypes. The adoption of methylation data into neuro-oncology has been greatly aided by the development of a freely accessible machine learning-based classifier. In this review, we discuss methylation workflow, address the utility of DNA methylation profiling in CNS tumors in a routine diagnostic setting, and provide an overview of the methylation-based tumor types and new types or subtypes identified with this platform.
Collapse
Affiliation(s)
- Jyotsna Singh
- Neuropathology Laboratory, Neurosciences Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Saumya Sahu
- Neuropathology Laboratory, Neurosciences Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Trishala Mohan
- Neuropathology Laboratory, Neurosciences Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Swati Mahajan
- Neuropathology Laboratory, Neurosciences Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Mehar C Sharma
- Neuropathology Laboratory, Neurosciences Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Chitra Sarkar
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Vaishali Suri
- Neuropathology Laboratory, Neurosciences Centre, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
30
|
Abarna R, J R, Chacko G, Pai R. Droplet digital PCR (ddPCR) using FFPE DNA to assess methylation status of MGMT gene among patients with IDH mutant astrocytoma and IDH wild-type glioblastoma. J Clin Pathol 2023; 76:860-864. [PMID: 37709490 DOI: 10.1136/jcp-2023-208953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/21/2023] [Indexed: 09/16/2023]
Abstract
MGMT promoter methylation analysis in formalin-fixed paraffin-embedded (FFPE) tissues can be challenging since the DNA obtained is often fragmented. Bisulfite conversion, which is essential to determine methylation status, further degrades DNA. While conventional methylation-specific PCR (MSP) and pyrosequencing assays have long been used to determine the methylation status of MGMT, this study was designed to determine the utility of one-tube DNA extraction method coupled with a droplet digital PCR (ddPCR) assay, to study the epigenetic changes in the promoter region of the MGMT gene using DNA obtained from FFPE.The FFPE blocks of 30 (n=30) patients with Central Nervous System (CNS) WHO grade 4 tumours, previously tested by MSP (2011-2021) were retrieved; DNA was extracted using one-tube extraction method and bisulfite converted. All converted samples were analyzed for methylation status of the MGMT promoter region with a laboratory designed Methylation-Specific ddPCR (MS ddPCR) using degenerate primers and probes that were labelled with FAM or HEX flurocein dye.Of the 30 cases, 20 cases were MGMT methylated and 10 cases were unmethylated by MS ddPCR. The results of MS ddPCR were then compared with those obtained by MSP and found to be concordant in 93.3% (28/30) of the cases and discordant in 2 cases. The Cohen's kappa coefficient (κ) was 0.84. The sensitivity, specificity, positive predictive value and negative predictive value of the assay in detecting the methylation status was found to be 95%, 90%, 95% and 90%.The results show that MS ddPCR is a valuable tool to detect the methylation status of MGMT in FFPE with high sensitivity. This method is cost-effective and easy to perform and could be an attractive alternative to the routine method of MSP.
Collapse
Affiliation(s)
- Rajadurai Abarna
- Pathology, Christian Medical College and Hospital Vellore, Vellore, Tamil Nadu, India
| | - Ranjani J
- Pathology, Christian Medical College and Hospital Vellore, Vellore, Tamil Nadu, India
| | - Geeta Chacko
- Pathology, Christian Medical College and Hospital Vellore, Vellore, Tamil Nadu, India
| | - Rekha Pai
- Pathology, Christian Medical College and Hospital Vellore, Vellore, Tamil Nadu, India
| |
Collapse
|
31
|
Ruffle JK, Mohinta S, Pombo G, Gray R, Kopanitsa V, Lee F, Brandner S, Hyare H, Nachev P. Brain tumour genetic network signatures of survival. Brain 2023; 146:4736-4754. [PMID: 37665980 PMCID: PMC10629773 DOI: 10.1093/brain/awad199] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/12/2023] [Accepted: 05/30/2023] [Indexed: 09/06/2023] Open
Abstract
Tumour heterogeneity is increasingly recognized as a major obstacle to therapeutic success across neuro-oncology. Gliomas are characterized by distinct combinations of genetic and epigenetic alterations, resulting in complex interactions across multiple molecular pathways. Predicting disease evolution and prescribing individually optimal treatment requires statistical models complex enough to capture the intricate (epi)genetic structure underpinning oncogenesis. Here, we formalize this task as the inference of distinct patterns of connectivity within hierarchical latent representations of genetic networks. Evaluating multi-institutional clinical, genetic and outcome data from 4023 glioma patients over 14 years, across 12 countries, we employ Bayesian generative stochastic block modelling to reveal a hierarchical network structure of tumour genetics spanning molecularly confirmed glioblastoma, IDH-wildtype; oligodendroglioma, IDH-mutant and 1p/19q codeleted; and astrocytoma, IDH-mutant. Our findings illuminate the complex dependence between features across the genetic landscape of brain tumours and show that generative network models reveal distinct signatures of survival with better prognostic fidelity than current gold standard diagnostic categories.
Collapse
Affiliation(s)
- James K Ruffle
- Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Samia Mohinta
- Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Guilherme Pombo
- Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Robert Gray
- Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Valeriya Kopanitsa
- Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Faith Lee
- Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Sebastian Brandner
- Division of Neuropathology and Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Harpreet Hyare
- Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Parashkev Nachev
- Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| |
Collapse
|
32
|
Sahm F, Brandner S, Bertero L, Capper D, French PJ, Figarella-Branger D, Giangaspero F, Haberler C, Hegi ME, Kristensen BW, Kurian KM, Preusser M, Tops BBJ, van den Bent M, Wick W, Reifenberger G, Wesseling P. Molecular diagnostic tools for the World Health Organization (WHO) 2021 classification of gliomas, glioneuronal and neuronal tumors; an EANO guideline. Neuro Oncol 2023; 25:1731-1749. [PMID: 37279174 PMCID: PMC10547522 DOI: 10.1093/neuonc/noad100] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Indexed: 06/08/2023] Open
Abstract
In the 5th edition of the WHO CNS tumor classification (CNS5, 2021), multiple molecular characteristics became essential diagnostic criteria for many additional CNS tumor types. For those tumors, an integrated, "histomolecular" diagnosis is required. A variety of approaches exists for determining the status of the underlying molecular markers. The present guideline focuses on the methods that can be used for assessment of the currently most informative diagnostic and prognostic molecular markers for the diagnosis of gliomas, glioneuronal and neuronal tumors. The main characteristics of the molecular methods are systematically discussed, followed by recommendations and information on available evidence levels for diagnostic measures. The recommendations cover DNA and RNA next-generation-sequencing, methylome profiling, and select assays for single/limited target analyses, including immunohistochemistry. Additionally, because of its importance as a predictive marker in IDH-wildtype glioblastomas, tools for the analysis of MGMT promoter methylation status are covered. A structured overview of the different assays with their characteristics, especially their advantages and limitations, is provided, and requirements for input material and reporting of results are clarified. General aspects of molecular diagnostic testing regarding clinical relevance, accessibility, cost, implementation, regulatory, and ethical aspects are discussed as well. Finally, we provide an outlook on new developments in the landscape of molecular testing technologies in neuro-oncology.
Collapse
Affiliation(s)
- Felix Sahm
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany
- CCU Neuropathology, German Concortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sebastian Brandner
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology and Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Luca Bertero
- Pathology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | - David Capper
- Department of Neuropathology, Charité, Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pim J French
- Department of Neurology, Brain Tumor Center at Erasmus MC Cancer Center, 3015 GD Rotterdam, The Netherlands
| | - Dominique Figarella-Branger
- Aix-Marseille University, APHM, CNRS, INP, Institute Neurophysiopathol, CHU Timone, Service d’Anatomie Pathologique et de Neuropathologie, Marseille, France
| | - Felice Giangaspero
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, University Sapienza of Rome, Rome, Italy
| | - Christine Haberler
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Austria
| | - Monika E Hegi
- Neuroscience Research Center and Neurosurgery, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Bjarne W Kristensen
- Department of Clinical Medicine and Biotech Research and Innovation Center (BRIC), University of Copenhagen, Denmark
- Department of Pathology, The Bartholin Institute, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Austria
| | - Bastiaan B J Tops
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Martin van den Bent
- The Brain Tumor Center at Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Wolfgang Wick
- Department of Neurology and Neurooncology Program, National Center for Tumor Diseases, Heidelberg University Hospital
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Guido Reifenberger
- Institute of Neuropathology, Heinrich Heine University, Medical Faculty, and University Hospital Düsseldorf, and German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Düsseldorf, Germany
| | - Pieter Wesseling
- Department of Pathology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands (P.W.)
| |
Collapse
|
33
|
Chapman RJ, Ghasemi DR, Andreiuolo F, Zschernack V, Espariat AT, Buttarelli FR, Giangaspero F, Grill J, Haberler C, Paine SML, Scott I, Jacques TS, Sill M, Pfister S, Kilday JP, Leblond P, Massimino M, Witt H, Modena P, Varlet P, Pietsch T, Grundy RG, Pajtler KW, Ritzmann TA. Optimizing biomarkers for accurate ependymoma diagnosis, prognostication, and stratification within International Clinical Trials: A BIOMECA study. Neuro Oncol 2023; 25:1871-1882. [PMID: 36916248 PMCID: PMC10547510 DOI: 10.1093/neuonc/noad055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND Accurate identification of brain tumor molecular subgroups is increasingly important. We aimed to establish the most accurate and reproducible ependymoma subgroup biomarker detection techniques, across 147 cases from International Society of Pediatric Oncology (SIOP) Ependymoma II trial participants, enrolled in the pan-European "Biomarkers of Ependymoma in Children and Adolescents (BIOMECA)" study. METHODS Across 6 European BIOMECA laboratories, we evaluated epigenetic profiling (DNA methylation array); immunohistochemistry (IHC) for nuclear p65-RELA, H3K27me3, and Tenascin-C; copy number analysis via fluorescent in situ hybridization (FISH) and MLPA (1q, CDKN2A), and MIP and DNA methylation array (genome-wide copy number evaluation); analysis of ZFTA- and YAP1-fusions by RT-PCR and sequencing, Nanostring and break-apart FISH. RESULTS DNA Methylation profiling classified 65.3% (n = 96/147) of cases as EPN-PFA and 15% (n = 22/147) as ST-ZFTA fusion-positive. Immunohistochemical loss of H3K27me3 was a reproducible and accurate surrogate marker for EPN-PFA (sensitivity 99%-100% across 3 centers). IHC for p65-RELA, FISH, and RNA-based analyses effectively identified ZFTA- and YAP-fused supratentorial ependymomas. Detection of 1q gain using FISH exhibited only 57% inter-center concordance and low sensitivity and specificity while MIP, MLPA, and DNA methylation-based approaches demonstrated greater accuracy. CONCLUSIONS We confirm, in a prospective trial cohort, that H3K27me3 immunohistochemistry is a robust EPN-PFA biomarker. Tenascin-C should be abandoned as a PFA marker. DNA methylation and MIP arrays are effective tools for copy number analysis of 1q gain, 6q, and CDKN2A loss while FISH is inadequate. Fusion detection was successful, but rare novel fusions need more extensive technologies. Finally, we propose test sets to guide future diagnostic approaches.
Collapse
Affiliation(s)
- Rebecca J Chapman
- Children’s Brain Tumour Research Centre, University of Nottingham, Nottingham, UK
| | - David R Ghasemi
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro-oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
| | - Felipe Andreiuolo
- Department of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn, Bonn, Germany
- Instituto Estadual do Cerebro Paulo Niemeyer, Rio de Janerio, Brazil
- IDOR Institute, Rio de Janeiro, Brazil
| | - Valentina Zschernack
- Department of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn, Bonn, Germany
| | - Arnault Tauziede Espariat
- Departement de Neuropathologie, Hopital Sainte-Anne, Paris, France
- INSERM Unit 981 and Department of Pediatric and Adolescent Oncology, Gustave Roussy, Villejuif, France
| | - Francesca R Buttarelli
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Felice Giangaspero
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Jacques Grill
- INSERM Unit 981 and Department of Pediatric and Adolescent Oncology, Gustave Roussy, Villejuif, France
| | - Christine Haberler
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Simon M L Paine
- Department of Neuropathology, Nottingham University Hospital, Nottingham, UK
| | - Ian Scott
- Department of Neuropathology, Nottingham University Hospital, Nottingham, UK
| | - Thomas S Jacques
- Developmental Biology and Cancer Programme, UCL GOS Institute of Child Health, London, UK
- Department of Histopathology, Great Ormond Street Hospital for Children, London, UK
| | - Martin Sill
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
| | - Stefan Pfister
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro-oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
| | - John-Paul Kilday
- Children’s Brain Tumour Research Network (CBTRN), Royal Manchester Children’s Hospital, Manchester, UK
- The Centre for Paediatric, Teenage and Young Adult Cancer, Institute of Cancer Sciences, University of Manchester, Manchester, UK
| | - Pierre Leblond
- Institute of Hematology and Pediatric Oncology (IHOPe), Leon Berard Comprehensive Cancer Center, Lyon, France
| | - Maura Massimino
- Paediatric Unit, Fondazione Istituto Di Ricovero e Cura a Carattere Scientifico, Istituto Nazionale dei Tumori, Milano, Italy
| | - Hendrik Witt
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro-oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Pascale Varlet
- Departement de Neuropathologie, Hopital Sainte-Anne, Paris, France
- INSERM Unit 981 and Department of Pediatric and Adolescent Oncology, Gustave Roussy, Villejuif, France
| | - Torsten Pietsch
- Department of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn, Bonn, Germany
| | - Richard G Grundy
- Children’s Brain Tumour Research Centre, University of Nottingham, Nottingham, UK
| | - Kristian W Pajtler
- Children’s Brain Tumour Research Centre, University of Nottingham, Nottingham, UK
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro-oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
| | - Timothy A Ritzmann
- Children’s Brain Tumour Research Centre, University of Nottingham, Nottingham, UK
| |
Collapse
|
34
|
White CL, Kinross KM, Moore MK, Rasouli E, Strong R, Jones JM, Cain JE, Sturm D, Sahm F, Jones DTW, Pfister SM, Robertson T, D'Arcy C, Rodriguez ML, Dyke JM, Junckerstorff R, Bhuva DD, Davis MJ, Wood P, Hassall T, Ziegler DS, Kellie S, McCowage G, Alvaro F, Kirby M, Heath JA, Tsui K, Dodgshun A, Eisenstat DD, Khuong-Quang DA, Wall M, Algar EM, Gottardo NG, Hansford JR. Implementation of DNA Methylation Array Profiling in Pediatric Central Nervous System Tumors: The AIM BRAIN Project: An Australian and New Zealand Children's Haematology/Oncology Group Study. J Mol Diagn 2023; 25:709-728. [PMID: 37517472 DOI: 10.1016/j.jmoldx.2023.06.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 08/01/2023] Open
Abstract
DNA methylation array profiling for classifying pediatric central nervous system (CNS) tumors is a valuable adjunct to histopathology. However, unbiased prospective and interlaboratory validation studies have been lacking. The AIM BRAIN diagnostic trial involving 11 pediatric cancer centers in Australia and New Zealand was designed to test the feasibility of routine clinical testing and ran in parallel with the Molecular Neuropathology 2.0 (MNP2.0) study at Deutsches Krebsforschungszentrum (German Cancer Research Center). CNS tumors from 269 pediatric patients were prospectively tested on Illumina EPIC arrays, including 104 cases co-enrolled on MNP2.0. Using MNP classifier versions 11b4 and 12.5, we report classifications with a probability score ≥0.90 in 176 of 265 (66.4%) and 213 of 269 (79.2%) cases, respectively. Significant diagnostic information was obtained in 130 of 176 (74%) for 11b4, and 12 of 174 (7%) classifications were discordant with histopathology. Cases prospectively co-enrolled on MNP2.0 gave concordant classifications (99%) and score thresholds (93%), demonstrating excellent test reproducibility and sensitivity. Overall, DNA methylation profiling is a robust single workflow technique with an acceptable diagnostic yield that is considerably enhanced by the extensive subgroup and copy number profile information generated by the platform. The platform has excellent test reproducibility and sensitivity and contributes significantly to CNS tumor diagnosis.
Collapse
Affiliation(s)
- Christine L White
- Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia; Victorian Clinical Genetics Services, Parkville, Victoria, Australia
| | - Kathryn M Kinross
- Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia; Australian and New Zealand Children's Haematology/Oncology Group, Clayton, Victoria, Australia
| | - Molly K Moore
- Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Elnaz Rasouli
- Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Robyn Strong
- Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia; Australian and New Zealand Children's Haematology/Oncology Group, Clayton, Victoria, Australia
| | - Janelle M Jones
- Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia; Australian and New Zealand Children's Haematology/Oncology Group, Clayton, Victoria, Australia
| | - Jason E Cain
- Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Dominik Sturm
- Hopp Children's Cancer Centre Heidelberg, Heidelberg, Germany; Division of Pediatric Glioma Research, German Cancer Research Center and German Cancer Consortium, Heidelberg, Germany; Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Felix Sahm
- Hopp Children's Cancer Centre Heidelberg, Heidelberg, Germany; Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany; Clinical Cooperation Unit Neuropathology, German Cancer Research Center and German Cancer Consortium, Heidelberg, Germany
| | - David T W Jones
- Hopp Children's Cancer Centre Heidelberg, Heidelberg, Germany; Division of Pediatric Glioma Research, German Cancer Research Center and German Cancer Consortium, Heidelberg, Germany
| | - Stefan M Pfister
- Hopp Children's Cancer Centre Heidelberg, Heidelberg, Germany; Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany; Division of Pediatric Neurooncology, German Cancer Research Center and German Cancer Consortium, Heidelberg, Germany
| | - Thomas Robertson
- Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Colleen D'Arcy
- Department of Pathology, Royal Children's Hospital, Parkville, Victoria, Australia
| | | | - Jason M Dyke
- PathWest Neuropathology, Royal Perth Hospital, Perth, Western Australia, Australia; Pathology and Laboratory Medicine, University of Western Australia, Nedlands, Western Australia, Australia
| | - Reimar Junckerstorff
- PathWest Neuropathology, Royal Perth Hospital, Perth, Western Australia, Australia; Pathology and Laboratory Medicine, University of Western Australia, Nedlands, Western Australia, Australia
| | - Dharmesh D Bhuva
- Walter and Eliza Hall Institute, Melbourne, Victoria, Australia; South Australia ImmunoGENomics Cancer Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Melissa J Davis
- Walter and Eliza Hall Institute, Melbourne, Victoria, Australia; South Australia ImmunoGENomics Cancer Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Paul Wood
- Monash Children's Hospital, Clayton, Victoria, Australia
| | - Tim Hassall
- Queensland Children's Hospital, South Brisbane, Queensland, Australia
| | - David S Ziegler
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, New South Wales, Australia; Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW), Kensington, New South Wales, Australia; School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Stewart Kellie
- The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Geoffrey McCowage
- The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Frank Alvaro
- John Hunter Children's Hospital, New Lambton Heights, New South Wales, Australia
| | - Maria Kirby
- Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | - John A Heath
- Royal Hobart Hospital, Hobart, Tasmania, Australia
| | - Karen Tsui
- Starship Children's Hospital, Grafton, Auckland, New Zealand
| | - Andrew Dodgshun
- Christchurch Hospital, Christchurch Central City, Christchurch, New Zealand
| | - David D Eisenstat
- Children's Cancer Centre, Royal Children's Hospital, Parkville, Victoria, Australia; Murdoch Children's Research Institute, Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | | | - Meaghan Wall
- Victorian Clinical Genetics Services, Parkville, Victoria, Australia
| | - Elizabeth M Algar
- Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia.
| | - Nicholas G Gottardo
- Perth Children's Hospital, Nedlands, Western Australia, Australia; Telethon Kids Institute, Nedlands, Western Australia, Australia
| | - Jordan R Hansford
- South Australia ImmunoGENomics Cancer Institute, University of Adelaide, Adelaide, South Australia, Australia; Women's and Children's Hospital, North Adelaide, South Australia, Australia; Children's Cancer Centre, Royal Children's Hospital, Parkville, Victoria, Australia; Murdoch Children's Research Institute, Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia; South Australia Health and Medical Research Institute, Adelaide, South Australia, Australia
| |
Collapse
|
35
|
Vermeulen C, Pagès-Gallego M, Kester L, Kranendonk MEG, Wesseling P, Verburg N, de Witt Hamer P, Kooi EJ, Dankmeijer L, van der Lugt J, van Baarsen K, Hoving EW, Tops BBJ, de Ridder J. Ultra-fast deep-learned CNS tumour classification during surgery. Nature 2023; 622:842-849. [PMID: 37821699 PMCID: PMC10600004 DOI: 10.1038/s41586-023-06615-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 09/06/2023] [Indexed: 10/13/2023]
Abstract
Central nervous system tumours represent one of the most lethal cancer types, particularly among children1. Primary treatment includes neurosurgical resection of the tumour, in which a delicate balance must be struck between maximizing the extent of resection and minimizing risk of neurological damage and comorbidity2,3. However, surgeons have limited knowledge of the precise tumour type prior to surgery. Current standard practice relies on preoperative imaging and intraoperative histological analysis, but these are not always conclusive and occasionally wrong. Using rapid nanopore sequencing, a sparse methylation profile can be obtained during surgery4. Here we developed Sturgeon, a patient-agnostic transfer-learned neural network, to enable molecular subclassification of central nervous system tumours based on such sparse profiles. Sturgeon delivered an accurate diagnosis within 40 minutes after starting sequencing in 45 out of 50 retrospectively sequenced samples (abstaining from diagnosis of the other 5 samples). Furthermore, we demonstrated its applicability in real time during 25 surgeries, achieving a diagnostic turnaround time of less than 90 min. Of these, 18 (72%) diagnoses were correct and 7 did not reach the required confidence threshold. We conclude that machine-learned diagnosis based on low-cost intraoperative sequencing can assist neurosurgical decision-making, potentially preventing neurological comorbidity and avoiding additional surgeries.
Collapse
Affiliation(s)
- C Vermeulen
- Oncode Institute, Utrecht, The Netherlands
- Center for Molecular Medicine, UMC Utrecht, Utrecht, The Netherlands
| | - M Pagès-Gallego
- Oncode Institute, Utrecht, The Netherlands
- Center for Molecular Medicine, UMC Utrecht, Utrecht, The Netherlands
| | - L Kester
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - M E G Kranendonk
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - P Wesseling
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pathology, Amsterdam University Medical Centers/VUmc, Amsterdam, The Netherlands
| | - N Verburg
- Department of Neurosurgery, Amsterdam University Medical Centers/VUmc, Amsterdam, The Netherlands
| | - P de Witt Hamer
- Department of Neurosurgery, Amsterdam University Medical Centers/VUmc, Amsterdam, The Netherlands
| | - E J Kooi
- Department of Pathology, Amsterdam University Medical Centers/VUmc, Amsterdam, The Netherlands
| | - L Dankmeijer
- Department of Pathology, Amsterdam University Medical Centers/VUmc, Amsterdam, The Netherlands
- Department of Neurosurgery, Amsterdam University Medical Centers/VUmc, Amsterdam, The Netherlands
| | - J van der Lugt
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - K van Baarsen
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - E W Hoving
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - B B J Tops
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
| | - J de Ridder
- Oncode Institute, Utrecht, The Netherlands.
- Center for Molecular Medicine, UMC Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
36
|
Morgacheva D, Ryzhova M, Zheludkova O, Belogurova M, Dinikina Y. DNA methylation-based diagnosis confirmation in a pediatric patient with low-grade glioma: a case report. Front Pediatr 2023; 11:1256876. [PMID: 37818165 PMCID: PMC10561295 DOI: 10.3389/fped.2023.1256876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/04/2023] [Indexed: 10/12/2023] Open
Abstract
Central nervous system (CNS) tumors in children comprise a highly heterogenous and complex group of diseases. Historically, diagnosis and confirmation of these tumors were routinely based on histological examination. However, recently obtained data demonstrate that such a diagnostic approach is not completely accurate and could lead to misdiagnosis. Also, in recent times, the quantity and quality of molecular diagnostic methods have greatly improved, which influences the current classification methods and treatment approach for pediatric CNS tumors. Nowadays, molecular methods, such as DNA methylation profiling, are an integral part of diagnosing brain and spinal tumors in children. In this paper, we present the case of an infant with a posterior fossa tumor who demonstrated a non-specific morphology and whose diagnosis was verified only after DNA methylation.
Collapse
Affiliation(s)
- Daria Morgacheva
- Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | | | - Olga Zheludkova
- V.F. Voino-Yasenetskiy Scientific and Practical Center of Specialized Healthcare for Children, Moscow, Russia
| | | | - Yulia Dinikina
- Almazov National Medical Research Centre, Saint-Petersburg, Russia
| |
Collapse
|
37
|
Hill CS, Pandit AS. Moving towards a unified classification of glioblastomas utilizing artificial intelligence and deep machine learning integration. Front Oncol 2023; 13:1063937. [PMID: 37427111 PMCID: PMC10327552 DOI: 10.3389/fonc.2023.1063937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 04/24/2023] [Indexed: 07/11/2023] Open
Abstract
Glioblastoma a deadly brain cancer that is nearly universally fatal. Accurate prognostication and the successful application of emerging precision medicine in glioblastoma relies upon the resolution and exactitude of classification. We discuss limitations of our current classification systems and their inability to capture the full heterogeneity of the disease. We review the various layers of data that are available to substratify glioblastoma and we discuss how artificial intelligence and machine learning tools provide the opportunity to organize and integrate this data in a nuanced way. In doing so there is the potential to generate clinically relevant disease sub-stratifications, which could help predict neuro-oncological patient outcomes with greater certainty. We discuss limitations of this approach and how these might be overcome. The development of a comprehensive unified classification of glioblastoma would be a major advance in the field. This will require the fusion of advances in understanding glioblastoma biology with technological innovation in data processing and organization.
Collapse
Affiliation(s)
- Ciaran Scott Hill
- Institute of Neurology, University College London, London, United Kingdom
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery (NHNN), London, United Kingdom
| | - Anand S. Pandit
- Institute of Neurology, University College London, London, United Kingdom
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery (NHNN), London, United Kingdom
| |
Collapse
|
38
|
Wenger A, Karlsson I, Kling T, Carén H. CRISPR-Cas9 knockout screen identifies novel treatment targets in childhood high-grade glioma. Clin Epigenetics 2023; 15:80. [PMID: 37161535 PMCID: PMC10170782 DOI: 10.1186/s13148-023-01498-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/03/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Brain tumours are the leading cause of cancer-related death in children, and there is no effective treatment. A growing body of evidence points to deregulated epigenetics as a tumour driver, particularly in paediatric cancers as they have relatively few genomic alterations, and key driver mutations have been identified in histone 3 (H3). Cancer stem cells (CSC) are implicated in tumour development, relapse and therapy resistance and thus particularly important to target. We therefore aimed to identify novel epigenetic treatment targets in CSC derived from H3-mutated high-grade glioma (HGG) through a CRISPR-Cas9 knockout screen. RESULTS The knockout screen identified more than 100 novel genes essential for the growth of CSC derived from paediatric HGG with H3K27M mutation. We successfully validated 12 of the 13 selected hits by individual knockout in the same two CSC lines, and for the top six hits we included two additional CSC lines derived from H3 wild-type paediatric HGG. Knockout of these genes led to a significant decrease in CSC growth, and altered stem cell and differentiation markers. CONCLUSIONS The screen robustly identified essential genes known in the literature, but also many novel genes essential for CSC growth in paediatric HGG. Six of the novel genes (UBE2N, CHD4, LSM11, KANSL1, KANSL3 and EED) were validated individually thus demonstrating their importance for CSC growth in H3-mutated and wild-type HGG. These genes should be further studied and evaluated as novel treatment targets in paediatric HGG.
Collapse
Affiliation(s)
- Anna Wenger
- Sahlgrenska Center for Cancer Research, Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 1F, 405 30, Gothenburg, Sweden
| | - Ida Karlsson
- Sahlgrenska Center for Cancer Research, Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 1F, 405 30, Gothenburg, Sweden
| | - Teresia Kling
- Sahlgrenska Center for Cancer Research, Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 1F, 405 30, Gothenburg, Sweden
| | - Helena Carén
- Sahlgrenska Center for Cancer Research, Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 1F, 405 30, Gothenburg, Sweden.
| |
Collapse
|
39
|
Stone TJ, Mankad K, Tan AP, Jan W, Pickles JC, Gogou M, Chalker J, Slodkowska I, Pang E, Kristiansen M, Madhan GK, Forrest L, Hughes D, Koutroumanidou E, Mistry T, Ogunbiyi O, Ahmed SW, Cross JH, Hubank M, Hargrave D, Jacques TS. DNA methylation-based classification of glioneuronal tumours synergises with histology and radiology to refine accurate molecular stratification. Neuropathol Appl Neurobiol 2023; 49:e12894. [PMID: 36843390 PMCID: PMC10946721 DOI: 10.1111/nan.12894] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 01/25/2023] [Accepted: 02/21/2023] [Indexed: 02/28/2023]
Abstract
AIMS Glioneuronal tumours (GNTs) are poorly distinguished by their histology and lack robust diagnostic indicators. Previously, we showed that common GNTs comprise two molecularly distinct groups, correlating poorly with histology. To refine diagnosis, we constructed a methylation-based model for GNT classification, subsequently evaluating standards for molecular stratification by methylation, histology and radiology. METHODS We comprehensively analysed methylation, radiology and histology for 83 GNT samples: a training cohort of 49, previously classified into molecularly defined groups by genomic profiles, plus a validation cohort of 34. We identified histological and radiological correlates to molecular classification and constructed a methylation-based support vector machine (SVM) model for prediction. Subsequently, we contrasted methylation, radiological and histological classifications in validation GNTs. RESULTS By methylation clustering, all training and 23/34 validation GNTs segregated into two groups, the remaining 11 clustering alongside control cortex. Histological review identified prominent astrocytic/oligodendrocyte-like components, dysplastic neurons and a specific glioneuronal element as discriminators between groups. However, these were present in only a subset of tumours. Radiological review identified location, margin definition, enhancement and T2 FLAIR-rim sign as discriminators. When validation GNTs were classified by SVM, 22/23 classified correctly, comparing favourably against histology and radiology that resolved 17/22 and 15/21, respectively, where data were available for comparison. CONCLUSIONS Diagnostic criteria inadequately reflect glioneuronal tumour biology, leaving a proportion unresolvable. In the largest cohort of molecularly defined glioneuronal tumours, we develop molecular, histological and radiological approaches for biologically meaningful classification and demonstrate almost all cases are resolvable, emphasising the importance of an integrated diagnostic approach.
Collapse
Affiliation(s)
- Thomas J. Stone
- Developmental Biology and Cancer Research and Teaching DepartmentUCL Great Ormond Street Institute of Child Health30 Guilford StreetLondonWC1N 1EHUK
- Department of HistopathologyGreat Ormond Street Hospital for Children NHS Foundation TrustGreat Ormond StreetLondonWC1N 3JHUK
| | - Kshitij Mankad
- Department of RadiologyGreat Ormond Street Hospital for Children NHS Foundation TrustGreat Ormond StreetLondonWC1N 3JHUK
| | - Ai Peng Tan
- Department of Diagnostic RadiologyNational University of Singapore21 Lower Kent Ridge Road119077Singapore
- A*STAR Research Entities (ARES)Singapore Institute for Clinical Sciences (SICS)Singapore
| | - Wajanat Jan
- Department of ImagingImperial College Healthcare NHS TrustLondonUK
| | - Jessica C. Pickles
- Developmental Biology and Cancer Research and Teaching DepartmentUCL Great Ormond Street Institute of Child Health30 Guilford StreetLondonWC1N 1EHUK
- Department of HistopathologyGreat Ormond Street Hospital for Children NHS Foundation TrustGreat Ormond StreetLondonWC1N 3JHUK
| | - Maria Gogou
- Developmental Neurosciences Research and Teaching DepartmentUCL Great Ormond Street Institute of Child Health30 Guilford StreetLondonWC1N 1EHUK
| | - Jane Chalker
- Specialist Integrated Haematology and Malignancy Diagnostic ServiceGreat Ormond Street Hospital for Children NHS Foundation TrustGreat Ormond StreetLondonWC1N 3JHUK
| | - Iwona Slodkowska
- Specialist Integrated Haematology and Malignancy Diagnostic ServiceGreat Ormond Street Hospital for Children NHS Foundation TrustGreat Ormond StreetLondonWC1N 3JHUK
| | - Emily Pang
- Specialist Integrated Haematology and Malignancy Diagnostic ServiceGreat Ormond Street Hospital for Children NHS Foundation TrustGreat Ormond StreetLondonWC1N 3JHUK
| | - Mark Kristiansen
- UCL GenomicsZayed Centre for Research into Rare Disease in Children20 Guilford StreetLondonWC1N 1DZUK
| | - Gaganjit K. Madhan
- UCL GenomicsZayed Centre for Research into Rare Disease in Children20 Guilford StreetLondonWC1N 1DZUK
| | - Leysa Forrest
- UCL GenomicsZayed Centre for Research into Rare Disease in Children20 Guilford StreetLondonWC1N 1DZUK
| | - Deborah Hughes
- Centre for Molecular PathologyRoyal Marsden HospitalLondonSM2 5NGUK
| | | | - Talisa Mistry
- Department of HistopathologyGreat Ormond Street Hospital for Children NHS Foundation TrustGreat Ormond StreetLondonWC1N 3JHUK
| | - Olumide Ogunbiyi
- Department of HistopathologyGreat Ormond Street Hospital for Children NHS Foundation TrustGreat Ormond StreetLondonWC1N 3JHUK
| | - Saira W. Ahmed
- Department of HistopathologyGreat Ormond Street Hospital for Children NHS Foundation TrustGreat Ormond StreetLondonWC1N 3JHUK
| | - J. Helen Cross
- Developmental Neurosciences Research and Teaching DepartmentUCL Great Ormond Street Institute of Child Health30 Guilford StreetLondonWC1N 1EHUK
| | - Mike Hubank
- Centre for Molecular PathologyRoyal Marsden HospitalLondonSM2 5NGUK
| | - Darren Hargrave
- Developmental Biology and Cancer Research and Teaching DepartmentUCL Great Ormond Street Institute of Child Health30 Guilford StreetLondonWC1N 1EHUK
- Department of Haematology and OncologyGreat Ormond Street Hospital for Children NHS Foundation TrustGreat Ormond StreetLondonWC1N 3JHUK
| | - Thomas S. Jacques
- Developmental Biology and Cancer Research and Teaching DepartmentUCL Great Ormond Street Institute of Child Health30 Guilford StreetLondonWC1N 1EHUK
- Department of HistopathologyGreat Ormond Street Hospital for Children NHS Foundation TrustGreat Ormond StreetLondonWC1N 3JHUK
| |
Collapse
|
40
|
Otani Y, Satomi K, Suruga Y, Ishida J, Fujii K, Ichimura K, Date I. Utility of genome-wide DNA methylation profiling for pediatric-type diffuse gliomas. Brain Tumor Pathol 2023; 40:56-65. [PMID: 37004583 DOI: 10.1007/s10014-023-00457-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/14/2023] [Indexed: 04/04/2023]
Abstract
Despite the current progress of treatment, pediatric-type diffuse glioma is one of the most lethal primary malignant tumors in the central nervous system (CNS). Since pediatric-type CNS tumors are rare disease entities and highly heterogeneous, the diagnosis is challenging. An accurate diagnosis is essential for the choice of optimal treatment, which leads to precision oncology and improvement of the patient's outcome. Genome-wide DNA methylation profiling recently emerged as one of the most important tools for the diagnosis of CNS tumors, and the utility of this novel assay has been reported in both pediatric and adult patients. In the current World Health Organization classification published in 2021, several new entities are recognized in pediatric-type diffuse gliomas, some of which require methylation profiling. In this review, we investigated the utility of genome-wide DNA methylation profiling in pediatric-type diffuse glioma, as well as issues in the clinical application of this assay. Furthermore, the combination of genome-wide DNA methylation profiling and other comprehensive genomic assays, which may improve diagnostic accuracy and detection of the actionable target, will be discussed.
Collapse
Affiliation(s)
- Yoshihiro Otani
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan.
| | - Kaishi Satomi
- Department of Pathology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-Shi, Tokyo, 181-8611, Japan
| | - Yasuki Suruga
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Joji Ishida
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Kentaro Fujii
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Koichi Ichimura
- Department of Brain Disease Translational Research, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Isao Date
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| |
Collapse
|
41
|
Ahmad Z, Rahim S, Abdul-Ghafar J, Chundriger Q, Ud Din N. Events in CNS Tumor Pathology Post-2016 WHO CNS: cIMPACT-NOW Updates and Other Advancements: A Comprehensive Review Plus a Summary of the Salient Features of 2021 WHO CNS 5. Int J Gen Med 2023; 16:107-127. [PMID: 36644568 PMCID: PMC9833325 DOI: 10.2147/ijgm.s394872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/29/2022] [Indexed: 01/09/2023] Open
Abstract
Introduction The 2016 World Health Organization Classification (WHO) of Tumors of the Central Nervous System (CNS) represented a major change. It recommended an "integrated diagnosis" comprising histologic and molecular information facilitating a more precise diagnosis of specific CNS tumors. Its goal was to provide greater diagnostic precision and reproducibility resulting in more clinical relevance and predictive value, ultimately leading to better patient care. Advances in molecular classification, mostly resulting from DNA methylation array profiling of CNS tumors, were occurring at a very rapid pace and required more rapid integration into clinical practice. Methods cIMPACT-NOW updates and other recent papers plus salient features of 2021 WHO CNS5 in this comprehensive write-up were reviewed. Results CNS tumor classification needs to be updated at a rapid pace and mechanisms put into place to guide diagnosticians and clinicians in the interim period if major changes in the classification of tumor types came to light. Recognizing the need to integrate these into clinical practice more rapidly and without inordinate delay, the International Society of Neuropathology (ISN) 2016 sponsored an initiative called cIMPACT-NOW. Discussion and/or Conclusion Goal of cIMPACT-NOW was to provide clarification regarding contentious issues arising in the wake of the 2016 WHO CNS update as well as report new advancements in molecular classification of CNS tumors and new tumor entities emerging as a result of these advancements. cIMPACT-NOW updates: It thus laid the foundation for the 5th edition of the WHO Classification of CNS tumors (2021 WHO CNS 5). We have discussed cIMPACT updates in detail in this review. In addition, molecular diagnostics including DNA methylation-based classification of CNS tumors and the practical use of molecular classification in the prognostication and treatment of CNS tumors is discussed. Finally, the salient features of the new CNS tumor classification are summarized.
Collapse
Affiliation(s)
- Zubair Ahmad
- Department of Pathology and Laboratory Medicine, Aga Khan University Hospital, Karachi, Pakistan
| | - Shabina Rahim
- Department of Pathology and Laboratory Medicine, Aga Khan University Hospital, Karachi, Pakistan
| | - Jamshid Abdul-Ghafar
- Department of Pathology and Clinical Laboratory, French Medical Institute for Mothers and Children (FMIC), Kabul, Afghanistan,Correspondence: Jamshid Abdul-Ghafar, Department of Pathology and Clinical Laboratory, French Medical Institute for Mothers and Children (FMIC), Kabul, Afghanistan, Tel +93 792 827 287, Email
| | - Qurratulain Chundriger
- Department of Pathology and Laboratory Medicine, Aga Khan University Hospital, Karachi, Pakistan
| | - Nasir Ud Din
- Department of Pathology and Laboratory Medicine, Aga Khan University Hospital, Karachi, Pakistan
| |
Collapse
|
42
|
Trinder SM, McKay C, Power P, Topp M, Chan B, Valvi S, McCowage G, Govender D, Kirby M, Ziegler DS, Manoharan N, Hassall T, Kellie S, Heath J, Alvaro F, Wood P, Laughton S, Tsui K, Dodgshun A, Eisenstat DD, Endersby R, Luen SJ, Koh ES, Sim HW, Kong B, Gottardo NG, Whittle JR, Khuong-Quang DA, Hansford JR. BRAF-mediated brain tumors in adults and children: A review and the Australian and New Zealand experience. Front Oncol 2023; 13:1154246. [PMID: 37124503 PMCID: PMC10140567 DOI: 10.3389/fonc.2023.1154246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/13/2023] [Indexed: 05/02/2023] Open
Abstract
The mitogen-activated protein kinase (MAPK) pathway signaling pathway is one of the most commonly mutated pathways in human cancers. In particular, BRAF alterations result in constitutive activation of the rapidly accelerating fibrosarcoma-extracellular signal-regulated kinase-MAPK significant pathway, leading to cellular proliferation, survival, and dedifferentiation. The role of BRAF mutations in oncogenesis and tumorigenesis has spurred the development of targeted agents, which have been successful in treating many adult cancers. Despite advances in other cancer types, the morbidity and survival outcomes of patients with glioma have remained relatively stagnant. Recently, there has been recognition that MAPK dysregulation is almost universally present in paediatric and adult gliomas. These findings, accompanying broad molecular characterization of gliomas, has aided prognostication and offered opportunities for clinical trials testing targeted agents. The use of targeted therapies in this disease represents a paradigm shift, although the biochemical complexities has resulted in unexpected challenges in the development of effective BRAF inhibitors. Despite these challenges, there are promising data to support the use of BRAF inhibitors alone and in combination with MEK inhibitors for patients with both low-grade and high-grade glioma across age groups. Safety and efficacy data demonstrate that many of the toxicities of these targeted agents are tolerable while offering objective responses. Newer clinical trials will examine the use of these therapies in the upfront setting. Appropriate duration of therapy and durability of response remains unclear in the glioma patient cohort. Longitudinal efficacy and toxicity data are needed. Furthermore, access to these medications remains challenging outside of clinical trials in Australia and New Zealand. Compassionate access is limited, and advocacy for mechanism of action-based drug approval is ongoing.
Collapse
Affiliation(s)
- Sarah M. Trinder
- Department of Paediatric and Adolescent Oncology/Haematology, Perth Children’s Hospital, Nedlands, WA, Australia
| | - Campbell McKay
- Children’s Cancer Centre, Royal Children’s Hospital, Melbourne, VIC, Australia
| | - Phoebe Power
- Sydney Children’s Hospital, Children’s Cancer Institute, University of New South Wales, Randwick, NSW, Australia
- School of Women’s and Children’s Health, University of New South Wales, Randwick, NSW, Australia
| | - Monique Topp
- Department of Medical Oncology, Peter MacCallum Cancer Center, Melbourne, VIC, Australia
| | - Bosco Chan
- Michael Rice Cancer Centre, Women’s and Children’s Hospital, North Adelaide, SA, Australia
| | - Santosh Valvi
- Department of Paediatric and Adolescent Oncology/Haematology, Perth Children’s Hospital, Nedlands, WA, Australia
| | - Geoffrey McCowage
- Department of Oncology, Children’s Hospital at Westmead, Sydney, NSW, Australia
- Australasian Children’s Cancer Trials, Clayton, VIC, Australia
| | - Dinisha Govender
- Department of Oncology, Children’s Hospital at Westmead, Sydney, NSW, Australia
| | - Maria Kirby
- Michael Rice Cancer Centre, Women’s and Children’s Hospital, North Adelaide, SA, Australia
| | - David S. Ziegler
- Sydney Children’s Hospital, Children’s Cancer Institute, University of New South Wales, Randwick, NSW, Australia
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, University of New South Wales (UNSW) Medicine and Health, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
| | - Neevika Manoharan
- Sydney Children’s Hospital, Children’s Cancer Institute, University of New South Wales, Randwick, NSW, Australia
- School of Clinical Medicine, University of New South Wales (UNSW) Medicine and Health, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
| | - Tim Hassall
- Queensland Children’s Hospital, University of Queensland, Brisbane, QLD, Australia
| | - Stewart Kellie
- Westmead Children’s Hospital, University of Sydney, Westmead, NSW, Australia
| | - John Heath
- Department of Pediatric Oncology, Royal Hobart Hospital, Hobart, TAS, Australia
| | - Frank Alvaro
- Department of Pediatric Oncology, John Hunter Children's Hospital, Newcastle, NSW, Australia
| | - Paul Wood
- Monash Medical Centre, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Stephen Laughton
- Starship Blood and Cancer Centre, Starship Children’s Hospital, Auckland, New Zealand
| | - Karen Tsui
- Starship Blood and Cancer Centre, Starship Children’s Hospital, Auckland, New Zealand
| | - Andrew Dodgshun
- Children’s Haematology/Oncology Centre, Christchurch Hospital, Christchurch, New Zealand
| | - David D. Eisenstat
- Children’s Cancer Centre, Royal Children’s Hospital, Melbourne, VIC, Australia
- Murdoch Children’s Research Institute, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Raelene Endersby
- Brain Tumour Research Program, Telethon Kids Cancer Centre, Telethon Kids Institute, Nedlands, WA, Australia
- Centre for Child Health Research, University of Western Australia, Perth, WA, Australia
| | - Stephen J. Luen
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Eng-Siew Koh
- Department of Radiation Oncology, Liverpool and Macarther Cancer Therapy Centres, Liverpool, NSW, Australia
- Department of Medicine, University of New South Wales, Sydney, NSW, Australia
- Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - Hao-Wen Sim
- National Health and Medical Research Council (NHMRC) Clinical Trials Centre, University of Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Department of Medical Oncology, The Kinghorn Cancer Centre, Sydney, NSW, Australia
- Department of Medical Oncology, Chris O’Brien Lifehouse, Sydney, NSW, Australia
| | - Benjamin Kong
- National Health and Medical Research Council (NHMRC) Clinical Trials Centre, University of Sydney, Sydney, NSW, Australia
- Department of Medical Oncology, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Nicholas G. Gottardo
- Department of Paediatric and Adolescent Oncology/Haematology, Perth Children’s Hospital, Nedlands, WA, Australia
- Brain Tumour Research Program, Telethon Kids Cancer Centre, Telethon Kids Institute, Nedlands, WA, Australia
| | - James R. Whittle
- Personalised Oncology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | | | - Jordan R. Hansford
- Michael Rice Cancer Centre, Women’s and Children’s Hospital, North Adelaide, SA, Australia
- South Australian Health and Medical Research Institute South Australia, Adelaide, SA, Australia
- South Australia ImmunoGENomics Cancer Institute, University of Adelaide, Adelaide, SA, Australia
- *Correspondence: Jordan R. Hansford,
| |
Collapse
|
43
|
DNA methylation profiling of meningiomas highlights clinically distinct molecular subgroups. J Neurooncol 2023; 161:339-356. [PMID: 36564673 DOI: 10.1007/s11060-022-04220-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/15/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND Introduction of the classification of brain tumours based on DNA methylation profile has significantly changed the diagnostic approach. Due to the paucity of data on the molecular profiling of meningiomas and their clinical implications, no effective therapies and new treatments have been implemented. METHODS DNA methylation profiling, copy number analysis, targeted sequencing and H3K27me3 expression was performed on 35 meningiomas and 5 controls. RESULTS Unsupervised hierarchical clustering (UHC) analysis revealed four distinct molecular subgroups: Malignant; Intermediate; Benign A, and Benign B. Molecular heterogeneity was observed within the same grade as the Intermediate, Benign A, and Benign B subgroups were composed of WHO grade 1 as well as grade 2 cases. There was association of mutations with distinct methylation subgroups (NF2, AKT1, SMO, TRAF7 and pTERT). Loss of chromosome 22q was observed across all subgroups. 1p/14q co-deletion was seen in 50% of malignant and intermediate while CDKN2A loss was predominantly observed in malignant subgroup (50%). Majority of malignant (75%) and a small proportion of other subgroups (Intermediate: 25%, Benign A: 38.5%, and Benign B: 20%) harboured H3K27me3 loss. 38,734 genes were dysregulated amongst the four subgroups. DKFZ classified 71% cases with acceptable score. On survival analysis, methylation profiling had significant impact on progression-free-survival in WHO grade1 and 2 meningiomas (p = 0.0051). CONCLUSION Genome-wide DNA methylation profiling highlights clinically distinct molecular subgroups and heterogeneity within the same grade of meningiomas. Molecular profiling can usher in a paradigm shift in meningioma classification, prognostic prediction, and treatment strategy.
Collapse
|
44
|
Jamshidi P, Brat DJ. The 2021 WHO classification of central nervous system tumors: what neurologists need to know. Curr Opin Neurol 2022; 35:764-771. [PMID: 36226717 PMCID: PMC9669114 DOI: 10.1097/wco.0000000000001109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW The recently published WHO Classification of Tumours, Central Nervous System Tumours, Fifth Edition (WHO CNS-5) introduces substantial clinically relevant changes based on improved understanding of the molecular underpinnings of brain tumor types as biological entities. This review highlights pertinent changes for practicing neurologists. RECENT FINDINGS Diffuse gliomas are now divided into adult and pediatric types. Adult types are greatly simplified, being classified into three groups based on IDH and 1p/19q status, with molecular grading criteria now included. Pediatric types are divided into low-grade or high-grade and further classified based on molecular features corresponding to clinical behavior. While still recognizing previous morphological subtypes, meningioma is now a single tumor type, with greatly advanced correlations between molecular alterations, locations, morphologic subtypes, and grades. For the first time, ependymomas are classified based on integration of anatomical location, histopathology, and molecular alterations. Importantly, WHO CNS-5 includes a number of new tumor types that have similar clinicopathologic features and are grouped together by their distinctive molecular characteristics. SUMMARY The classification of CNS tumors according to objective, reproducible molecular genetic alterations, provides greater opportunity for neurologists to offer individualized treatment options, enroll homogenous patient populations into clinical trials, and ultimately discover novel therapeutics.
Collapse
Affiliation(s)
- Pouya Jamshidi
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Daniel J Brat
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
45
|
Mortensen D, Ulhøi BP, Lukacova S, Alsner J, Stougaard M, Nyengaard JR. Impact of new molecular criteria on diagnosis and survival of adult glioma patients. IBRO Neurosci Rep 2022; 13:299-305. [PMID: 36204252 PMCID: PMC9529576 DOI: 10.1016/j.ibneur.2022.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/17/2022] [Indexed: 11/17/2022] Open
Abstract
The fifth edition WHO classification of Tumors of the Central nervous system (WHO-CNS5) integrated new molecular parameters to refine CNS tumor classification. This study aimed to reclassify a retrospective cohort of adult glioma patients according to WHO-CNS5, and assess if overall survival (OS) correlated with the revised diagnosis. Further, the diagnostic impact of methylation profiling (MP) was evaluated. Adult gliomas diagnosed according to 2016 WHO-CNS (n = 226) were evaluated according to WHO-CNS5 criteria. All patients had diagnostic NGS performed. 29 patients had 850k MP performed due to challenging tumor cases. OS was analyzed using Kaplan-Meier plots and log-rank test. 19 patients were reclassified. Specifically, diffuse astrocytic glioma, IDH-wildtype, with molecular features of glioblastoma (DAG-G) were reclassified as glioblastoma (n = 15). Shifts to glioblastoma were because of TERT promoter (TERTp) mutation (n = 9), EGFR amplification (n = 2), EGFR amplification and TERTp mutation (n = 1), and TERTp mutation with gain of chromosome 7, but uncertain chromosome 10 status due to lack of NGS coverage (n = 3). Lower grade IDH-mutant astrocytomas were reclassified as astrocytoma IDH-mutant, WHO grade 4 due to CDKN2A/B homozygous deletion (n = 4). No significant difference in OS was found for reclassified DAG-G in whole group (p = 0.59) and for TERTp mutation only (p = 0.44), compared to glioblastoma. MP resulted in revised diagnosis (n = 2), confirmed diagnosis (n = 15) and no match (n = 12). Our study showed similar overall survival for glioblastoma and DAG patients, supporting that isolated TERTp mutation may have a prognostic role in IDH-wildtype gliomas. Further, our study suggests MP is useful for confirming the diagnoses in challenging tumors. Retrospective cohort of adult glioma reclassified using WHO-CNS5 molecular criteria. 8.4% of the cohort received a new diagnosis and often a higher WHO grade. TERT promoter mutation suggested as a prognostic factor in IDH wildtype gliomas. DNA methylation profiling useful for diagnostically difficult cases.
Collapse
Affiliation(s)
- Danny Mortensen
- Core Center for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Aarhus University, Denmark
- Department of Pathology, Aarhus University Hospital, Denmark
- Correspondence to: Department of Clinical Medicine, Core Center for Molecular Morphology, Section for Stereology and Microscopy, Aarhus University, Palle Juul Jensens Boulevard 99, C112, Level 1, DK-8200 Aarhus N, Denmark.
| | | | | | - Jan Alsner
- Department of Oncology, Aarhus University Hospital, Denmark
| | | | - Jens Randel Nyengaard
- Core Center for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Aarhus University, Denmark
- Department of Pathology, Aarhus University Hospital, Denmark
| |
Collapse
|
46
|
Muacevic A, Adler JR, Madelar RT, Dinh Anh Hoang H, Yukihiro M. Giant-Cell Ependymoma of the Cervical Spinal Cord With Syringomyelia and Pathological Presentation: A Case Report and Review of the Literature. Cureus 2022; 14:e33174. [PMID: 36726917 PMCID: PMC9885895 DOI: 10.7759/cureus.33174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2022] [Indexed: 01/01/2023] Open
Abstract
Ependymomas are unusual neuroepithelial tumors of the central nervous system that arise from clusters of ependymal cells. In adults, ependymomas are the most common primary spinal cord tumors. Nevertheless, only a few cases of large-cell ependymoma have been documented; these cases often involve the brain. Here, we report the case of a 43-year-old man who had a cervical spinal cord ependymoma with syringomyelia. The giant-cell ependymoma (GCE) in the spinal cord discussed in this case emphasizes the characteristics of GCE and the discrepancy between the pathological appearance, the surgical results, and the clinically good prognosis.
Collapse
|
47
|
Wenger A, Carén H. Methylation Profiling in Diffuse Gliomas: Diagnostic Value and Considerations. Cancers (Basel) 2022; 14:cancers14225679. [PMID: 36428772 PMCID: PMC9688075 DOI: 10.3390/cancers14225679] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Diffuse gliomas cause significant morbidity across all age groups, despite decades of intensive research efforts. Here, we review the differences in diffuse gliomas in adults and children, as well as the World Health Organisation (WHO) 2021 classification of these tumours. We explain how DNA methylation-based classification works and list the methylation-based tumour types and subclasses for adult and paediatric diffuse gliomas. The benefits and utility of methylation-based classification in diffuse gliomas demonstrated to date are described. This entails the identification of novel tumour types/subclasses, patient stratification and targeted treatment/clinical management, and alterations in the clinical diagnosis in favour of the methylation-based over the histopathological diagnosis. Finally, we address several considerations regarding the use of DNA methylation profiling as a diagnostic tool, e.g., the threshold of the classifier, the calibrated score, tumour cell content and intratumour heterogeneity.
Collapse
Affiliation(s)
- Anna Wenger
- Sahlgrenska Center for Cancer Research, Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 90 Gothenburg, Sweden
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Helena Carén
- Sahlgrenska Center for Cancer Research, Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 90 Gothenburg, Sweden
- Correspondence:
| |
Collapse
|
48
|
Roohani S, Ehret F, Perez E, Capper D, Jarosch A, Flörcken A, Märdian S, Zips D, Kaul D. Sarcoma classification by DNA methylation profiling in clinical everyday life: the Charité experience. Clin Epigenetics 2022; 14:149. [PMID: 36380356 PMCID: PMC9667620 DOI: 10.1186/s13148-022-01365-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Sarcomas are a heterogeneous group of rare malignant tumors with more than 100 subtypes. Accurate diagnosis remains challenging due to a lack of characteristic molecular or histomorphological hallmarks. A DNA methylation-based tumor profiling classifier for sarcomas (known as sarcoma classifier) from the German Cancer Research Center (Deutsches Krebsforschungszentrum) is now employed in selected cases to guide tumor classification and treatment decisions at our institution. Data on the usage of the classifier in daily clinical routine are lacking. METHODS In this single-center experience, we describe the clinical course of five sarcoma cases undergoing thorough pathological and reference pathological examination as well as DNA methylation-based profiling and their impact on subsequent treatment decisions. We collected data on the clinical course, DNA methylation analysis, histopathology, radiological imaging, and next-generation sequencing. RESULTS Five clinical cases involving DNA methylation-based profiling in 2021 at our institution were included. All patients' DNA methylation profiles were successfully matched to a methylation profile cluster of the sarcoma classifier's dataset. In three patients, the classifier reassured diagnosis or aided in finding the correct diagnosis in light of contradictory data and differential diagnoses. In two patients with intracranial tumors, the classifier changed the diagnosis to a novel diagnostic tumor group. CONCLUSIONS The sarcoma classifier is a valuable diagnostic tool that should be used after comprehensive clinical and histopathological evaluation. It may help to reassure the histopathological diagnosis or indicate the need for thorough reassessment in cases where it contradicts previous findings. However, certain limitations (non-classifiable cases, misclassifications, unclear degree of sample purity for analysis and others) currently preclude wide clinical application. The current sarcoma classifier is therefore not yet ready for a broad clinical routine. With further refinements, this promising tool may be implemented in daily clinical practice in selected cases.
Collapse
Affiliation(s)
- Siyer Roohani
- grid.6363.00000 0001 2218 4662Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Felix Ehret
- grid.6363.00000 0001 2218 4662Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, Augustenburger Platz 1, 13353 Berlin, Germany ,grid.484013.a0000 0004 6879 971XBerlin Institute of Health at Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany ,grid.7497.d0000 0004 0492 0584Charité - Universitätsmedizin Berlin, Berlin, German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Eilís Perez
- grid.6363.00000 0001 2218 4662Department of Neuropathology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‑Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - David Capper
- grid.7497.d0000 0004 0492 0584Charité - Universitätsmedizin Berlin, Berlin, German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany ,grid.6363.00000 0001 2218 4662Department of Neuropathology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‑Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Armin Jarosch
- grid.6363.00000 0001 2218 4662Institute of Pathology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Anne Flörcken
- grid.7497.d0000 0004 0492 0584Charité - Universitätsmedizin Berlin, Berlin, German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany ,grid.6363.00000 0001 2218 4662Department of Hematology, Oncology and Tumor Immunology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Sven Märdian
- grid.6363.00000 0001 2218 4662Centre for Musculoskeletal Surgery, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Daniel Zips
- grid.6363.00000 0001 2218 4662Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, Augustenburger Platz 1, 13353 Berlin, Germany ,grid.7497.d0000 0004 0492 0584Charité - Universitätsmedizin Berlin, Berlin, German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - David Kaul
- grid.6363.00000 0001 2218 4662Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, Augustenburger Platz 1, 13353 Berlin, Germany ,grid.7497.d0000 0004 0492 0584Charité - Universitätsmedizin Berlin, Berlin, German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
49
|
Schenkel LC, Mathew J, Hirte H, Provias J, Paré G, Chong M, Grafodatskaya D, McCready E. Evaluation of DNA Methylation Array for Glioma Tumor Profiling and Description of a Novel Epi-Signature to Distinguish IDH1/IDH2 Mutant and Wild-Type Tumors. Genes (Basel) 2022; 13:2075. [PMID: 36360312 PMCID: PMC9690723 DOI: 10.3390/genes13112075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/17/2022] [Accepted: 10/27/2022] [Indexed: 09/15/2023] Open
Abstract
UNLABELLED Molecular biomarkers, such as IDH1/IDH2 mutations and 1p19q co-deletion, are included in the histopathological and clinical criteria currently used to diagnose and classify gliomas. IDH1/IDH2 mutation is a common feature of gliomas and is associated with a glioma-CpG island methylator phenotype (CIMP). Aberrant genomic methylation patterns can also be used to extrapolate information about copy number variation in a tumor. This project's goal was to assess the feasibility of DNA methylation array for the simultaneous detection of glioma biomarkers as a more effective testing strategy compared to existing single analyte tests. METHODS Whole-genome methylation array (WGMA) testing was performed using 48 glioma DNA samples to detect methylation aberrations and chromosomal gains and losses. The analyzed samples include 39 tumors in the discovery cohort and 9 tumors in the replication cohort. Methylation profiles for each sample were correlated with IDH1 p.R132G mutation, immunohistochemistry (IHC), and previous 1p19q clinical testing to assess the sensitivity and specificity of the WGMA assay for the detection of these variants. RESULTS We developed a DNA methylation signature to specifically distinguish a IDH1/IDH2 mutant tumor from normal samples. This signature is composed of 11 CpG sites that were significantly hypermethylated in the IDH1/IDH2 mutant group. Copy number analysis using WGMA data was able to identify five of five positive samples for 1p19q co-deletion and was concordant for all negative samples. CONCLUSIONS The DNA methylation signature presented here has the potential to refine the utility of WGMA to predict IDH1/IDH2 mutation status of gliomas, thus improving diagnostic yield and efficiency of laboratory testing compared to single analyte IDH1/IDH2 or 1p19q tests.
Collapse
Affiliation(s)
- Laila C. Schenkel
- Faculty of Health Sciences, Department of Pathology and Molecular Medicine, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Joseph Mathew
- Faculty of Health Sciences, Department of Pathology and Molecular Medicine, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Hal Hirte
- Faculty of Health Sciences, Department of Oncology, McMaster University, 699 Concession Street, Hamilton, ON L8V 5C2, Canada
| | - John Provias
- Faculty of Health Sciences, Department of Pathology and Molecular Medicine, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
- Hamilton Regional Laboratory Medicine Program, Hamilton Health Sciences and St. Joseph’s Healthcare Hamilton, 50 Charlton Avenue East, Hamilton, ON L8N 4A6, Canada
| | - Guillaume Paré
- Faculty of Health Sciences, Department of Pathology and Molecular Medicine, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
- Hamilton Regional Laboratory Medicine Program, Hamilton Health Sciences and St. Joseph’s Healthcare Hamilton, 50 Charlton Avenue East, Hamilton, ON L8N 4A6, Canada
- Population Health Research Institute, 237 Barton Street East, Hamilton, ON L8L 2X2, Canada
- Faculty of Health Sciences, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Michael Chong
- Faculty of Health Sciences, Department of Pathology and Molecular Medicine, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
- Population Health Research Institute, 237 Barton Street East, Hamilton, ON L8L 2X2, Canada
- Faculty of Health Sciences, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Daria Grafodatskaya
- Faculty of Health Sciences, Department of Pathology and Molecular Medicine, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
- Hamilton Regional Laboratory Medicine Program, Hamilton Health Sciences and St. Joseph’s Healthcare Hamilton, 50 Charlton Avenue East, Hamilton, ON L8N 4A6, Canada
| | - Elizabeth McCready
- Faculty of Health Sciences, Department of Pathology and Molecular Medicine, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
- Hamilton Regional Laboratory Medicine Program, Hamilton Health Sciences and St. Joseph’s Healthcare Hamilton, 50 Charlton Avenue East, Hamilton, ON L8N 4A6, Canada
| |
Collapse
|
50
|
Noorani I, Mischel PS, Swanton C. Leveraging extrachromosomal DNA to fine-tune trials of targeted therapy for glioblastoma: opportunities and challenges. Nat Rev Clin Oncol 2022; 19:733-743. [PMID: 36131011 DOI: 10.1038/s41571-022-00679-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2022] [Indexed: 11/09/2022]
Abstract
Glioblastoma evolution is facilitated by intratumour heterogeneity, which poses a major hurdle to effective treatment. Evidence indicates a key role for oncogene amplification on extrachromosomal DNA (ecDNA) in accelerating tumour evolution and thus resistance to treatment, particularly in glioblastomas. Oncogenes contained within ecDNA can reach high copy numbers and expression levels, and their unequal segregation can result in more rapid copy number changes in response to therapy than is possible through natural selection of intrachromosomal genomic loci. Notably, targeted therapies inhibiting oncogenic pathways have failed to improve glioblastoma outcomes. In this Perspective, we outline reasons for this disappointing lack of clinical translation and present the emerging evidence implicating ecDNA as an important driver of tumour evolution. Furthermore, we suggest that through detection of ecDNA, patient selection for clinical trials of novel agents can be optimized to include those most likely to benefit based on current understanding of resistance mechanisms. We discuss the challenges to successful translation of this approach, including accurate detection of ecDNA in tumour tissue with novel technologies, development of faithful preclinical models for predicting the efficacy of novel agents in the presence of ecDNA oncogenes, and understanding the mechanisms of ecDNA formation during cancer evolution and how they could be attenuated therapeutically. Finally, we evaluate the feasibility of routine ecDNA characterization in the clinic and how this process could be integrated with other methods of molecular stratification to maximize the potential for clinical translation of precision medicines.
Collapse
Affiliation(s)
- Imran Noorani
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK.
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK.
| | - Paul S Mischel
- Department of Pathology, Stanford University School of Medicine and Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|