1
|
Benarroch E. What Is the Role of Inner Membrane Metalloproteases in Mitochondrial Quality Control and Disease? Neurology 2025; 104:e213532. [PMID: 40184575 DOI: 10.1212/wnl.0000000000213532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 04/06/2025] Open
|
2
|
Oeztuerk M, Herebian D, Dipali K, Hentschel A, Rademacher N, Kraft F, Horvath R, Distelmaier F, Meuth SG, Ruck T, Schara-Schmidt U, Roos A. Multi-omics-based phenotyping of AFG3L2-mutant lymphoblasts determines key factors of a pathophysiological interplay between mitochondrial vulnerability and neurodegeneration in spastic ataxia type 5. Front Mol Neurosci 2025; 18:1548255. [PMID: 40051915 PMCID: PMC11882581 DOI: 10.3389/fnmol.2025.1548255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 01/29/2025] [Indexed: 03/09/2025] Open
Abstract
Mitochondrial integrity is fundamental to cellular function, upheld by a network of proteases that regulate proteostasis and mitochondrial dynamics. Among these proteases, AFG3L2 is critical due to its roles in maintaining mitochondrial homeostasis, regulating mitochondrial protein quality, and facilitating mitochondrial biogenesis. Mutations in AFG3L2 are implicated in a spectrum of diseases, including spinocerebellar ataxia type 28 (SCA28) and spastic ataxia 5 (SPAX5), as well as other systemic conditions. This study employs a multi-omics approach to investigate the biochemical impact of AFG3L2 mutations in immortalized lymphoblastoid cell lines derived from a patient with biallelic variants leading to spastic ataxia (SPAX5). Our proteomic analysis revealed AFG3L2 impairment, with significant dysregulation of proteins critical for mitochondrial function, cytoskeletal integrity, and cellular metabolism. Specifically, disruptions were observed in mitochondrial dynamics and calcium homeostasis, alongside downregulation of key proteins like COX11, a copper chaperone for complex IV assembly, and NFU1, an iron-sulfur cluster protein linked to spastic paraparesis and infection-related worsening. Lipidomic analysis highlighted substantial alterations in lipid composition, with significant decreases in sphingomyelins, phosphatidylethanolamine, and phosphatidylcholine, reflecting disruptions in lipid metabolism and membrane integrity. Metabolomic profiling did not reveal any significant findings. Our comprehensive investigation into loss of functional AFG3L2 elucidates a pathophysiology extending beyond mitochondrial proteostasis, implicating a wide array of cellular processes. The findings reveal substantial cellular disturbances at multiple levels, contributing to neurodegeneration through disrupted mitochondrial respiratory chain, calcium homeostasis, cytoskeletal integrity, and altered lipid homeostasis. This study underscores the complexity of SPAX5 pathophysiology and the importance of multi-omics approaches in developing effective strategies to address the impact of loss of functional AFG3L2. Our data also highlight the value of immortalized lymphoblastoid cells as a tool for pre-clinical testing and research, offering a detailed biochemical fingerprint that enhances our understanding of SPAX5 and identifies potential areas for further investigation.
Collapse
Affiliation(s)
- Menekse Oeztuerk
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Bochum, Germany
| | - Diran Herebian
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Kale Dipali
- Leibniz-Institut für Analytische Wissenschaften -ISAS- e.V., Dortmund, Germany
| | - Andreas Hentschel
- Leibniz-Institut für Analytische Wissenschaften -ISAS- e.V., Dortmund, Germany
| | - Nina Rademacher
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Essen, Germany
| | - Florian Kraft
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, Rheinisch-Westfälische Technische Hochschule Aachen University Hospital, Aachen, Germany
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Felix Distelmaier
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Sven G. Meuth
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Tobias Ruck
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Bochum, Germany
| | - Ulrike Schara-Schmidt
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Essen, Germany
| | - Andreas Roos
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Essen, Germany
- Brain and Mind Research Institute, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| |
Collapse
|
3
|
Li H, Ma Q, Xue Y, Cai L, Bao L, Hong L, Zeng Y, Huang SZ, Finnell RH, Zeng F. Compound heterozygous mutation of AFG3L2 causes autosomal recessive spinocerebellar ataxia through mitochondrial impairment and MICU1 mediated Ca 2+ overload. SCIENCE CHINA. LIFE SCIENCES 2025; 68:484-501. [PMID: 39428429 DOI: 10.1007/s11427-023-2549-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/07/2024] [Indexed: 10/22/2024]
Abstract
Autosomal recessive spinocerebellar ataxias (SCARs) are one of the most common neurodegenerative diseases characterized by progressive ataxia. Although SCARs are known to be caused by mutations in multiple genes, there are still many cases that go undiagnosed or are misdiagnosed. In this study, we presented a SCAR patient, and identified a probable novel pathogenic mutation (c.1A>G, p.M1V) in the AFG3L2 start codon. The proband's genotype included heterozygous mutations of the compound AFG3L2 (p.[M1V]; [R632X] (c.[1A>G]; [1894.C>T])), which were inherited from the father (c.1A>G, p.M1V) and mother (c.1894C>T, p.R632X). Functional studies performed on hiPSCs (human induced pluripotent stem cells) generated from the patients and HEK293T cells showed that the mutations impair mitochondrial function and the unbalanced expression of AFG3L2 mRNA and protein levels. Furthermore, this novel mutation resulted in the degradation of the protein and the reduction of the stability of the AFG3L2 protein, and MCU (mitochondrial calcium uniporter) complex mediated Ca2+ overload.
Collapse
Affiliation(s)
- Hongyu Li
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200040, China
- Department of Histo-Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology, Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, 200040, China
| | - Qingwen Ma
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200040, China
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology, Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, 200040, China
| | - Yan Xue
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200040, China
- Department of Histo-Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology, Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, 200040, China
| | - Linlin Cai
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200040, China
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology, Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, 200040, China
| | - Liwen Bao
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200040, China
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology, Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, 200040, China
| | - Lei Hong
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200040, China
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology, Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, 200040, China
| | - Yitao Zeng
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200040, China
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology, Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, 200040, China
| | - Shu-Zhen Huang
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200040, China
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology, Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, 200040, China
| | - Richard H Finnell
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200040, China
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology, Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, 200040, China
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, 77030, USA
| | - Fanyi Zeng
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200040, China.
- Department of Histo-Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology, Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, 200040, China.
- School of Pharmacy, Macau University of Science and Technology, Macao, 999078, China.
| |
Collapse
|
4
|
Yang TH, Kang EYC, Lin PH, Yu BBC, Wang JHH, Chen V, Wang NK. Mitochondria in Retinal Ganglion Cells: Unraveling the Metabolic Nexus and Oxidative Stress. Int J Mol Sci 2024; 25:8626. [PMID: 39201313 PMCID: PMC11354650 DOI: 10.3390/ijms25168626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 09/02/2024] Open
Abstract
This review explored the role of mitochondria in retinal ganglion cells (RGCs), which are essential for visual processing. Mitochondrial dysfunction is a key factor in the pathogenesis of various vision-related disorders, including glaucoma, hereditary optic neuropathy, and age-related macular degeneration. This review highlighted the critical role of mitochondria in RGCs, which provide metabolic support, regulate cellular health, and respond to cellular stress while also producing reactive oxygen species (ROS) that can damage cellular components. Maintaining mitochondrial function is essential for meeting RGCs' high metabolic demands and ensuring redox homeostasis, which is crucial for their proper function and visual health. Oxidative stress, exacerbated by factors like elevated intraocular pressure and environmental factors, contributes to diseases such as glaucoma and age-related vision loss by triggering cellular damage pathways. Strategies targeting mitochondrial function or bolstering antioxidant defenses include mitochondrial-based therapies, gene therapies, and mitochondrial transplantation. These advances can offer potential strategies for addressing mitochondrial dysfunction in the retina, with implications that extend beyond ocular diseases.
Collapse
Affiliation(s)
- Tsai-Hsuan Yang
- Department of Education, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan 33305, Taiwan;
- College of Medicine, National Yang Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Eugene Yu-Chuan Kang
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan 33305, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; (P.-H.L.); (J.H.-H.W.); (V.C.)
| | - Pei-Hsuan Lin
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; (P.-H.L.); (J.H.-H.W.); (V.C.)
- National Taiwan University Hospital, Yunlin 640203, Taiwan
| | - Benjamin Ben-Chi Yu
- Fu Foundation School of Engineering & Applied Science, Columbia University, New York, NY 10027, USA;
| | - Jason Hung-Hsuan Wang
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; (P.-H.L.); (J.H.-H.W.); (V.C.)
- Columbian College of Arts and Sciences, George Washington University, Washington, DC 20052, USA
| | - Vincent Chen
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; (P.-H.L.); (J.H.-H.W.); (V.C.)
- Faculty of Health Sciences, Queen’s University, Kingston, ON K7L 3N9, Canada
| | - Nan-Kai Wang
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan 33305, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| |
Collapse
|
5
|
Ghosh Dastidar R, Banerjee S, Lal PB, Ghosh Dastidar S. Multifaceted Roles of AFG3L2, a Mitochondrial ATPase in Relation to Neurological Disorders. Mol Neurobiol 2024; 61:3788-3808. [PMID: 38012514 PMCID: PMC11236935 DOI: 10.1007/s12035-023-03768-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/01/2023] [Indexed: 11/29/2023]
Abstract
AFG3L2 is a zinc metalloprotease and an ATPase localized in an inner mitochondrial membrane involved in mitochondrial quality control of several nuclear- and mitochondrial-encoded proteins. Mutations in AFG3L2 lead to diseases like slow progressive ataxia, which is a neurological disorder. This review delineates the cellular functions of AFG3L2 and its dysfunction that leads to major clinical outcomes, which include spinocerebellar ataxia type 28, spastic ataxia type 5, and optic atrophy type 12. It summarizes all relevant AFG3L2 mutations associated with the clinical outcomes to understand the detailed mechanisms attributable to its structure-related multifaceted roles in proteostasis and quality control. We face early diagnostic challenges of ataxia and optic neuropathy due to asymptomatic parents and variable clinical manifestations due to heterozygosity/homozygosity of AFG3L2 mutations. This review intends to promote AFG3L2 as a putative prognostic or diagnostic marker.
Collapse
Affiliation(s)
- Ranita Ghosh Dastidar
- Department of Biochemistry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Madhava Nagar, Manipal, 576104, Karnataka, India.
| | - Saradindu Banerjee
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Madhava Nagar, Manipal, 576104, Karnataka, India
| | - Piyush Behari Lal
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Madhava Nagar, Manipal, 576104, Karnataka, India.
| | - Somasish Ghosh Dastidar
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Madhava Nagar, Manipal, 576104, Karnataka, India.
| |
Collapse
|
6
|
Amore G, Romagnoli M, Carbonelli M, Cascavilla ML, De Negri AM, Carta A, Parisi V, Di Renzo A, Schiavi C, Lenzetti C, Zenesini C, Ormanbekova D, Palombo F, Fiorini C, Caporali L, Carelli V, Barboni P, La Morgia C. AFG3L2 and ACO2-Linked Dominant Optic Atrophy: Genotype-Phenotype Characterization Compared to OPA1 Patients. Am J Ophthalmol 2024; 262:114-124. [PMID: 38278202 DOI: 10.1016/j.ajo.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 12/28/2023] [Accepted: 01/10/2024] [Indexed: 01/28/2024]
Abstract
PURPOSE Heterozygous mutations in the AFG3L2 gene (encoding a mitochondrial protease indirectly reflecting on OPA1 cleavage) and ACO2 gene (encoding the mitochondrial enzyme aconitase) are associated with isolated forms of Dominant Optic Atrophy (DOA). We aimed at describing their neuro-ophthalmological phenotype as compared with classic OPA1-related DOA. DESIGN Cross-sectional study. METHODS The following neuro-ophthalmological parameters were collected: logMAR visual acuity (VA), color vision, mean deviation and foveal threshold at visual fields, average and sectorial retinal nerve fiber layer (RNFL), and ganglion cell layer (GCL) thickness on optical coherence tomography. ACO2 and AFG3L2 patients were compared with an age- and sex-matched group of OPA1 patients with a 1:2 ratio. All eyes were analyzed using a clustered Wilcoxon rank sum test with the Rosner-Glynn-Lee method. RESULTS A total of 44 eyes from 23 ACO2 patients and 26 eyes from 13 AFG3L2 patients were compared with 143 eyes from 72 OPA1 patients. All cases presented with bilateral temporal-predominant optic atrophy with various degree of visual impairment. Comparison between AFG3L2 and OPA1 failed to reveal any significant difference. ACO2 patients compared to both AFG3L2 and OPA1 presented overall higher values of nasal RNFL thickness (P = .029, P = .023), average thickness (P = .012, P = .0007), and sectorial GCL thickness. These results were confirmed also comparing separately affected and subclinical patients. CONCLUSIONS Clinically, DOA remains a fairly homogeneous entity despite the growing genetic heterogeneity. ACO2 seems to be associated with an overall better preservation of retinal ganglion cells, probably depending on the different pathogenic mechanism involving mtDNA maintenance, as opposed to AFG3L2, which is involved in OPA1 processing and is virtually indistinguishable from classic OPA1-DOA.
Collapse
Affiliation(s)
- Giulia Amore
- From the Department of Biomedical and Neuromotor Sciences (G.A., M.C., V.C., C.L.M.), University of Bologna, Bologna, Italy; Ophthalmology Unit (G.A., C.S.), IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| | - Martina Romagnoli
- IRCCS Istituto delle Scienze Neurologiche di Bologna (M.R., D.O., F.P., C.F.L.C.V.C.), Programma di Neurogenetica, Bologna, Italy
| | - Michele Carbonelli
- From the Department of Biomedical and Neuromotor Sciences (G.A., M.C., V.C., C.L.M.), University of Bologna, Bologna, Italy
| | - Maria Lucia Cascavilla
- Department of Ophthalmology (M.L.C., P.B.), University Vita-Salute, IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Arturo Carta
- Ophthalmology Unit (A.C.), University Hospital of Parma, University of Parma, Parma, Italy
| | | | | | - Costantino Schiavi
- Ophthalmology Unit (G.A., C.S.), IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Chiara Lenzetti
- Department of Surgery and Translational Medicine (C.L.), Eye Clinic, Careggi University Hospital, University of Florence, Florence, Italy
| | - Corrado Zenesini
- IRCCS Istituto delle Scienze Neurologiche di Bologna (C.Z.), Unità di Epidemiologia e Statistica, Bologna, Italy
| | - Danara Ormanbekova
- IRCCS Istituto delle Scienze Neurologiche di Bologna (M.R., D.O., F.P., C.F.L.C.V.C.), Programma di Neurogenetica, Bologna, Italy
| | - Flavia Palombo
- IRCCS Istituto delle Scienze Neurologiche di Bologna (M.R., D.O., F.P., C.F.L.C.V.C.), Programma di Neurogenetica, Bologna, Italy
| | - Claudio Fiorini
- IRCCS Istituto delle Scienze Neurologiche di Bologna (M.R., D.O., F.P., C.F.L.C.V.C.), Programma di Neurogenetica, Bologna, Italy
| | - Leonardo Caporali
- IRCCS Istituto delle Scienze Neurologiche di Bologna (M.R., D.O., F.P., C.F.L.C.V.C.), Programma di Neurogenetica, Bologna, Italy
| | - Valerio Carelli
- From the Department of Biomedical and Neuromotor Sciences (G.A., M.C., V.C., C.L.M.), University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna (M.R., D.O., F.P., C.F.L.C.V.C.), Programma di Neurogenetica, Bologna, Italy
| | - Piero Barboni
- Department of Ophthalmology (M.L.C., P.B.), University Vita-Salute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Chiara La Morgia
- From the Department of Biomedical and Neuromotor Sciences (G.A., M.C., V.C., C.L.M.), University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna (C.L.M.), UOC Clinica Neurologica, Bologna, Italy
| |
Collapse
|
7
|
Franchino CA, Brughera M, Baderna V, De Ritis D, Rocco A, Seneca S, Regal L, Podini P, D’Antonio M, Toro C, Quattrini A, Scalais E, Maltecca F. Sustained OMA1-mediated integrated stress response is beneficial for spastic ataxia type 5. Brain 2024; 147:1043-1056. [PMID: 37804316 PMCID: PMC10907083 DOI: 10.1093/brain/awad340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/28/2023] [Accepted: 09/12/2023] [Indexed: 10/09/2023] Open
Abstract
AFG3L2 is a mitochondrial protease exerting protein quality control in the inner mitochondrial membrane. Heterozygous AFG3L2 mutations cause spinocerebellar ataxia type 28 (SCA28) or dominant optic atrophy type 12 (DOA12), while biallelic AFG3L2 mutations result in the rare and severe spastic ataxia type 5 (SPAX5). The clinical spectrum of SPAX5 includes childhood-onset cerebellar ataxia, spasticity, dystonia and myoclonic epilepsy. We previously reported that the absence or mutation of AFG3L2 leads to the accumulation of mitochondria-encoded proteins, causing the overactivation of the stress-sensitive protease OMA1, which over-processes OPA1, leading to mitochondrial fragmentation. Recently, OMA1 has been identified as the pivotal player communicating mitochondrial stress to the cytosol via a pathway involving the inner mitochondrial membrane protein DELE1 and the cytosolic kinase HRI, thus eliciting the integrated stress response. In general, the integrated stress response reduces global protein synthesis and drives the expression of cytoprotective genes that allow cells to endure proteotoxic stress. However, the relevance of the OMA1-DELE1-HRI axis in vivo, and especially in a human CNS disease context, has been poorly documented thus far. In this work, we demonstrated that mitochondrial proteotoxicity in the absence/mutation of AFG3L2 activates the OMA1-DELE1-HRI pathway eliciting the integrated stress response. We found enhanced OMA1-dependent processing of DELE1 upon depletion of AFG3L2. Also, in both skin fibroblasts from SPAX5 patients (including a novel case) and in the cerebellum of Afg3l2-/- mice we detected increased phosphorylation of the α-subunit of the eukaryotic translation initiation factor 2 (eIF2α), increased levels of ATF4 and strong upregulation of its downstream targets (Chop, Chac1, Ppp1r15a and Ffg21). Silencing of DELE1 or HRI in SPAX5 fibroblasts (where OMA1 is overactivated at basal state) reduces eIF2α phosphorylation and affects cell growth. In agreement, pharmacological potentiation of integrated stress response via Sephin-1, a drug that selectively inhibits the stress-induced eIF2alpha phosphatase GADD34 (encoded by Ppp1r15a), improved cell growth of SPAX5 fibroblasts and cell survival and dendritic arborization ex vivo in primary Afg3l2-/- Purkinje neurons. Notably, Sephin-1 treatment in vivo extended the lifespan of Afg3l2-/- mice, improved Purkinje neuron morphology, mitochondrial ultrastructure and respiratory capacity. These data indicate that activation of the OMA1-DELE1-HRI pathway is protective in the context of SPAX5. Pharmacological tuning of the integrated stress response may represent a future therapeutic strategy for SPAX5 and other cerebellar ataxias caused by impaired mitochondrial proteostasis.
Collapse
Affiliation(s)
- Camilla Aurora Franchino
- Mitochondrial Dysfunctions in Neurodegeneration Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Martina Brughera
- Mitochondrial Dysfunctions in Neurodegeneration Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Valentina Baderna
- Mitochondrial Dysfunctions in Neurodegeneration Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Daniele De Ritis
- Mitochondrial Dysfunctions in Neurodegeneration Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Alessandra Rocco
- Mitochondrial Dysfunctions in Neurodegeneration Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Sara Seneca
- Medical Center of Genetic, UZ-VUB, Vrije Universiteit Brussels, 1090 Brussels Jette, Belgium
| | - Luc Regal
- Pediatric Neurology and Metabolism, UZ-VUB, Vrije Universiteit Brussels, 1090 Brussels Jette, Belgium
| | - Paola Podini
- Experimental Neuropathology Unit, Division of Neuroscience and Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Maurizio D’Antonio
- Biology of Myelin Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Camilo Toro
- NIH Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Angelo Quattrini
- Experimental Neuropathology Unit, Division of Neuroscience and Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Emmanuel Scalais
- Department of Pediatric, Division of Pediatric Neurology, Centre Hospitalier de Luxembourg, L1210 Luxembourg, Luxembourg
| | - Francesca Maltecca
- Mitochondrial Dysfunctions in Neurodegeneration Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
- Università Vita-Salute San Raffaele, 20132 Milan, Italy
| |
Collapse
|
8
|
Colucci F, Neri M, Fortunato F, Ferlini A, Carrozzo R, Torraco A, Lamantea E, Legati A, Tecilla G, Pugliatti M, Sensi M. AFG3L2 Biallelic Mutation: Clinical Heterogeneity in Two Italian Patients. CEREBELLUM (LONDON, ENGLAND) 2023; 22:1313-1319. [PMID: 36447112 DOI: 10.1007/s12311-022-01497-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/21/2022] [Indexed: 12/02/2022]
Abstract
AFG3-like matrix AAA peptidase subunit 2 gene (AFG3L2, OMIM * 604,581) biallelic mutations lead to autosomal recessive spastic ataxia-5 SPAX5, OMIM # 614,487), a rare hereditary form of ataxia. The clinical spectrum includes early-onset cerebellar ataxia, spasticity, and progressive myoclonic epilepsy (PME). In Italy, the epidemiology of the disease is probably underestimated. The advent of next generation sequencing (NGS) technologies has speeded up the diagnosis of hereditary diseases and increased the percentage of diagnosis of rare disorders, such as the rare hereditary ataxia groups. Here, we describe two patients from two different villages in the province of Ferrara, who manifested a different clinical ataxia-plus history, although carrying the same biallelic mutation in AFG3L2 (p.Met625Ile) identified through NGS analysis.
Collapse
Affiliation(s)
- Fabiana Colucci
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy.
- Department of Neuroscience and Rehabilitation, Azienda Ospedaliero-Universitaria S. Anna, Ferrara, Italy.
| | - Marcella Neri
- Department of Medical Sciences, Unit of Medical Genetics, Universita Degli Studi Di Ferrara, Ferrara, Italy
| | - Fernanda Fortunato
- Department of Medical Sciences, Unit of Medical Genetics, Universita Degli Studi Di Ferrara, Ferrara, Italy
| | - Alessandra Ferlini
- Department of Medical Sciences, Unit of Medical Genetics, Universita Degli Studi Di Ferrara, Ferrara, Italy
| | - Rosalba Carrozzo
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Alessandra Torraco
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Eleonora Lamantea
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Andrea Legati
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Ginevra Tecilla
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Maura Pugliatti
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Mariachiara Sensi
- Department of Neuroscience and Rehabilitation, Azienda Ospedaliero-Universitaria S. Anna, Ferrara, Italy
| |
Collapse
|
9
|
Jin T, Kuang Y, Luo S, Wang R, Chen K, Jiang M, Ren L, Sun Z, Duan L, Huang S. Novel compound heterozygous mutations in the AFG3L2 gene in a Chinese child with microcephaly, early-onset seizures, and cerebral atrophy. Heliyon 2023; 9:e14766. [PMID: 37025825 PMCID: PMC10070717 DOI: 10.1016/j.heliyon.2023.e14766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/04/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
Background The most common disease caused by biallelic AFG3L2 mutations is spastic ataxia type 5 (SPAX5). Identification of complex phenotypes resulting from biallelic AFG3L2 mutations has been increasing in recent years. Methods A retrospective analysis was performed on a child with microcephaly and recurrent seizures. The child underwent physical and neurological examinations, laboratory tests, electroencephalography (EEG), and brain magnetic resonance imaging (MRI). Trio-whole-exome sequencing (trio-WES) was performed to identify possible causative mutations. Results We described a child who exhibited early-onset and intractable epilepsy, developmental regression, microcephaly, and premature death. Neuroimaging revealed global cerebral atrophy (GCA) involving the cerebrum, cerebellum, corpus callosum, brainstem, cerebellar vermis, and basal ganglia. On trio-WES, two novel compound heterozygous mutations, c.1834G > T (p.E612*) and c.2176-6T > A in the AFG3L2 gene, were identified in this patient. Conclusions Our findings have expanded the mutation spectrum of the AFG3L2 gene and identified a severe neurodegenerative phenotype of global cerebral atrophy caused by biallelic AFG3L2 mutations.
Collapse
Affiliation(s)
- Tingting Jin
- School of Medicine, Guizhou University, Guiyang, Guizhou 550025, China
- Prenatal Diagnosis Center, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China
| | - Ying Kuang
- Prenatal Diagnosis Center, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China
| | - Shulin Luo
- Prenatal Diagnosis Center, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China
| | - Rongpin Wang
- Department of Radiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China
| | - Kun Chen
- Prenatal Diagnosis Center, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China
| | - Minmin Jiang
- Prenatal Diagnosis Center, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China
| | - Lingyan Ren
- Prenatal Diagnosis Center, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China
| | - Zhaolin Sun
- School of Medicine, Guizhou University, Guiyang, Guizhou 550025, China
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China
- Corresponding author. School of Medicine, Guizhou University, Guiyang, Guizhou 550025, China.
| | - Lifen Duan
- Epilepsy Center, Children's Hospital Affiliated of Kunming Medical University, Kunming, Yunnan 650000, China
- Corresponding author.
| | - Shengwen Huang
- Prenatal Diagnosis Center, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China
- Corresponding author. Prenatal Diagnosis Center, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China.
| |
Collapse
|
10
|
Wong WK, Troedson C, Dale RC, Roscioli T, Field M, Palmer E, Martin EM, Kumar KR, Mohammad SS. Levodopa Responsive Dystonia Parkinsonism, Intellectual Disability, and Optic Atrophy Due to a Heterozygous Missense Variant in AFG3L2. Mov Disord Clin Pract 2022; 9:S32-S35. [PMID: 36110148 PMCID: PMC9464989 DOI: 10.1002/mdc3.13538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/17/2022] [Accepted: 03/08/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Wui-Kwan Wong
- TY Nelson Department of Neurology and Neurosurgery The Children's Hospital at Westmead Sydney New South Wales Australia.,Children's Hospital at Westmead Clinical School, Sydney Medical School, Faculty of Medicine and Health University of Sydney Westmead New South Wales Australia
| | - Christopher Troedson
- TY Nelson Department of Neurology and Neurosurgery The Children's Hospital at Westmead Sydney New South Wales Australia
| | - Russell C Dale
- Children's Hospital at Westmead Clinical School, Sydney Medical School, Faculty of Medicine and Health University of Sydney Westmead New South Wales Australia
| | - Tony Roscioli
- Randwick Genomics Laboratory NSW Health Pathology, Prince of Wales Hospital Sydney New South Wales Australia.,Centre for Clinical Genetics Sydney Children's Hospital Randwick New South Wales Australia.,Neuroscience Research Australia (NeuRA) and Prince of Wales Clinical School University of New South Wales Sydney New South Wales Australia
| | - Michael Field
- Genetics of Learning Disability (GoLD) service Hunter Genetics Newcastle New South Wales Australia
| | - Elizabeth Palmer
- Centre for Clinical Genetics Sydney Children's Hospital Randwick New South Wales Australia.,School of Women's and Children's Health University of New South Wales Randwick New South Wales Australia
| | - Ellenore M Martin
- Brain and Mitochondrial Research Group Murdoch Children's Research Institute Melbourne Victoria Australia
| | - Kishore R Kumar
- Molecular Medicine Laboratory and Neurology Department Concord Repatriation General Hospital, Concord Clinical School, The University of Sydney Sydney New South Wales Australia.,Kinghorn Centre for Clinical Genomics Garvan Institute of Medical Research Darlinghurst New South Wales Australia
| | - Shekeeb S Mohammad
- TY Nelson Department of Neurology and Neurosurgery The Children's Hospital at Westmead Sydney New South Wales Australia.,Children's Hospital at Westmead Clinical School, Sydney Medical School, Faculty of Medicine and Health University of Sydney Westmead New South Wales Australia
| |
Collapse
|
11
|
A novel mutation located in the intermembrane space domain of AFG3L2 causes dominant optic atrophy through decreasing the stability of the encoded protein. Cell Death Dis 2022; 8:361. [PMID: 35970831 PMCID: PMC9378676 DOI: 10.1038/s41420-022-01160-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/18/2022]
Abstract
Dominant optic atrophy (DOA) is the most common hereditary optic neuropathy. Although DOA is caused by mutations in several genes, there are still many cases that have not been diagnosed or misdiagnosed. Herein, we present a large family of 11 patients with DOA. To identify potential pathogenic mutations, whole exome sequencing (WES) was performed on the proband, a 35-year-old woman. WES revealed a novel pathogenic mutation (c.524T>C, p.F175S) in the AFG3L2 intermembrane space domain, rather than in the ATPase domain, which is the hot mutation region associated with most of the previously reported DOA cases. Functional studies on skin fibroblasts generated from patients and HEK293T cells showed that the mutation may impair mitochondrial function and decrease the ability of AFG3L2 protein to enter the mitochondrial inner membrane. In addition, this novel mutation led to protein degradation and reduced the stability of the AFG3L2 protein, which appeared to be associated with the proteasome-ubiquitin pathway.
Collapse
|
12
|
Strachan EL, Mac White-Begg D, Crean J, Reynolds AL, Kennedy BN, O’Sullivan NC. The Role of Mitochondria in Optic Atrophy With Autosomal Inheritance. Front Neurosci 2021; 15:784987. [PMID: 34867178 PMCID: PMC8634724 DOI: 10.3389/fnins.2021.784987] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/22/2021] [Indexed: 11/13/2022] Open
Abstract
Optic atrophy (OA) with autosomal inheritance is a form of optic neuropathy characterized by the progressive and irreversible loss of vision. In some cases, this is accompanied by additional, typically neurological, extra-ocular symptoms. Underlying the loss of vision is the specific degeneration of the retinal ganglion cells (RGCs) which form the optic nerve. Whilst autosomal OA is genetically heterogenous, all currently identified causative genes appear to be associated with mitochondrial organization and function. However, it is unclear why RGCs are particularly vulnerable to mitochondrial aberration. Despite the relatively high prevalence of this disorder, there are currently no approved treatments. Combined with the lack of knowledge concerning the mechanisms through which aberrant mitochondrial function leads to RGC death, there remains a clear need for further research to identify the underlying mechanisms and develop treatments for this condition. This review summarizes the genes known to be causative of autosomal OA and the mitochondrial dysfunction caused by pathogenic mutations. Furthermore, we discuss the suitability of available in vivo models for autosomal OA with regards to both treatment development and furthering the understanding of autosomal OA pathology.
Collapse
Affiliation(s)
- Elin L. Strachan
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Delphi Mac White-Begg
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - John Crean
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- UCD Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Alison L. Reynolds
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Breandán N. Kennedy
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Niamh C. O’Sullivan
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
13
|
Ramón J, Vila-Julià F, Molina-Granada D, Molina-Berenguer M, Melià MJ, García-Arumí E, Torres-Torronteras J, Cámara Y, Martí R. Therapy Prospects for Mitochondrial DNA Maintenance Disorders. Int J Mol Sci 2021; 22:6447. [PMID: 34208592 PMCID: PMC8234938 DOI: 10.3390/ijms22126447] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial DNA depletion and multiple deletions syndromes (MDDS) constitute a group of mitochondrial diseases defined by dysfunctional mitochondrial DNA (mtDNA) replication and maintenance. As is the case for many other mitochondrial diseases, the options for the treatment of these disorders are rather limited today. Some aggressive treatments such as liver transplantation or allogeneic stem cell transplantation are among the few available options for patients with some forms of MDDS. However, in recent years, significant advances in our knowledge of the biochemical pathomechanisms accounting for dysfunctional mtDNA replication have been achieved, which has opened new prospects for the treatment of these often fatal diseases. Current strategies under investigation to treat MDDS range from small molecule substrate enhancement approaches to more complex treatments, such as lentiviral or adenoassociated vector-mediated gene therapy. Some of these experimental therapies have already reached the clinical phase with very promising results, however, they are hampered by the fact that these are all rare disorders and so the patient recruitment potential for clinical trials is very limited.
Collapse
Affiliation(s)
- Javier Ramón
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (J.R.); (F.V.-J.); (D.M.-G.); (M.M.-B.); (M.J.M.); (E.G.-A.); (J.T.-T.); (Y.C.)
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ferran Vila-Julià
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (J.R.); (F.V.-J.); (D.M.-G.); (M.M.-B.); (M.J.M.); (E.G.-A.); (J.T.-T.); (Y.C.)
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - David Molina-Granada
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (J.R.); (F.V.-J.); (D.M.-G.); (M.M.-B.); (M.J.M.); (E.G.-A.); (J.T.-T.); (Y.C.)
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Miguel Molina-Berenguer
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (J.R.); (F.V.-J.); (D.M.-G.); (M.M.-B.); (M.J.M.); (E.G.-A.); (J.T.-T.); (Y.C.)
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Maria Jesús Melià
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (J.R.); (F.V.-J.); (D.M.-G.); (M.M.-B.); (M.J.M.); (E.G.-A.); (J.T.-T.); (Y.C.)
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Elena García-Arumí
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (J.R.); (F.V.-J.); (D.M.-G.); (M.M.-B.); (M.J.M.); (E.G.-A.); (J.T.-T.); (Y.C.)
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Javier Torres-Torronteras
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (J.R.); (F.V.-J.); (D.M.-G.); (M.M.-B.); (M.J.M.); (E.G.-A.); (J.T.-T.); (Y.C.)
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Yolanda Cámara
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (J.R.); (F.V.-J.); (D.M.-G.); (M.M.-B.); (M.J.M.); (E.G.-A.); (J.T.-T.); (Y.C.)
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ramon Martí
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (J.R.); (F.V.-J.); (D.M.-G.); (M.M.-B.); (M.J.M.); (E.G.-A.); (J.T.-T.); (Y.C.)
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
14
|
Maresca A, Carelli V. Molecular Mechanisms behind Inherited Neurodegeneration of the Optic Nerve. Biomolecules 2021; 11:496. [PMID: 33806088 PMCID: PMC8064499 DOI: 10.3390/biom11040496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 01/01/2023] Open
Abstract
Inherited neurodegeneration of the optic nerve is a paradigm in neurology, as many forms of isolated or syndromic optic atrophy are encountered in clinical practice. The retinal ganglion cells originate the axons that form the optic nerve. They are particularly vulnerable to mitochondrial dysfunction, as they present a peculiar cellular architecture, with axons that are not myelinated for a long intra-retinal segment, thus, very energy dependent. The genetic landscape of causative mutations and genes greatly enlarged in the last decade, pointing to common pathways. These mostly imply mitochondrial dysfunction, which leads to a similar outcome in terms of neurodegeneration. We here critically review these pathways, which include (1) complex I-related oxidative phosphorylation (OXPHOS) dysfunction, (2) mitochondrial dynamics, and (3) endoplasmic reticulum-mitochondrial inter-organellar crosstalk. These major pathogenic mechanisms are in turn interconnected and represent the target for therapeutic strategies. Thus, their deep understanding is the basis to set and test new effective therapies, an urgent unmet need for these patients. New tools are now available to capture all interlinked mechanistic intricacies for the pathogenesis of optic nerve neurodegeneration, casting hope for innovative therapies to be rapidly transferred into the clinic and effectively cure inherited optic neuropathies.
Collapse
Affiliation(s)
- Alessandra Maresca
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, 40139 Bologna, Italy;
| | - Valerio Carelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, 40139 Bologna, Italy;
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40139 Bologna, Italy
| |
Collapse
|