1
|
Gambarotto L, Russo L, Bresolin S, Persano L, D'Amore R, Ronchi G, Zen F, Muratori L, Cani A, Negro S, Megighian A, Calabrò S, Braghetta P, Bizzotto D, Cescon M. Schwann Cell-Specific Ablation of Beclin 1 Impairs Myelination and Leads to Motor and Sensory Neuropathy in Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2308965. [PMID: 39680476 PMCID: PMC11792035 DOI: 10.1002/advs.202308965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 07/24/2024] [Indexed: 12/18/2024]
Abstract
The core component of the class III phosphatidylinositol 3-kinase complex, Beclin 1, takes part in different protein networks, thus switching its role from inducing autophagy to regulating autophagosomal maturation and endosomal trafficking. While assessed in neurons, astrocytes, and microglia, its role is far less investigated in myelinating glia, including Schwann cells (SCs), responsible for peripheral nerve myelination. Remarkably, the dysregulation in endosomal trafficking is emerging as a pathophysiological mechanism underlying peripheral neuropathies, such as demyelinating Charcot-Marie-Tooth (CMT) diseases. By knocking out Beclin 1 in SCs here a novel mouse model (Becn1 cKO) is generated, developing a severe and progressive neuropathy, accompanied by involuntary tremors, body weight loss, and premature death. Ultrastructural analysis revealed abated myelination and SCs displaying enlarged cytoplasm with progressive accumulation of intracellular vesicles. Transcriptomic and histological analysis from sciatic nerves of 10-day and 2-month-old mice revealed pro-mitotic gene deregulation and increased SCs proliferation at both stages with axonal loss and increased immune infiltration in adults, well reflecting the progressive motor and sensory functional impairment that characterizes Becn1 cKO mice, compared to controls. The study establishes a further step in understanding key mechanisms in SC development and points to Beclin 1 and its regulated pathways as targets for demyelinating CMT forms.
Collapse
Affiliation(s)
- Lisa Gambarotto
- Department of Molecular MedicineUniversity of PadovaVia U. Bassi 58/BPadova35131Italy
- Department of BiologyUniversity of PadovaVia U. Bassi 58/BPadova35131Italy
| | - Loris Russo
- Department of Molecular MedicineUniversity of PadovaVia U. Bassi 58/BPadova35131Italy
| | - Silvia Bresolin
- Department of Women and Children's HealthUniversity of Padovavia Giustiniani 3Padova35127Italy
- Istituto di Ricerca Pediatrica – Città della SperanzaCorso Stati Uniti 4Padova35128Italy
| | - Luca Persano
- Department of Women and Children's HealthUniversity of Padovavia Giustiniani 3Padova35127Italy
- Istituto di Ricerca Pediatrica – Città della SperanzaCorso Stati Uniti 4Padova35128Italy
| | - Rachele D'Amore
- Department of Molecular MedicineUniversity of PadovaVia U. Bassi 58/BPadova35131Italy
| | - Giulia Ronchi
- Department of Clinical and Biological Sciences & Neuroscience Institute Cavalieri Ottolenghi (NICO)University of TorinoRegione Gonzole 10, OrbassanoTorino10043Italy
| | - Federica Zen
- Department of Clinical and Biological Sciences & Neuroscience Institute Cavalieri Ottolenghi (NICO)University of TorinoRegione Gonzole 10, OrbassanoTorino10043Italy
| | - Luisa Muratori
- Department of Clinical and Biological Sciences & Neuroscience Institute Cavalieri Ottolenghi (NICO)University of TorinoRegione Gonzole 10, OrbassanoTorino10043Italy
| | - Alice Cani
- Department of Women and Children's HealthUniversity of Padovavia Giustiniani 3Padova35127Italy
| | - Samuele Negro
- U.O.C. Clinica NeurologicaAzienda Ospedale‐Università PadovaVia Giustiniani 5Padova35128Italy
| | - Aram Megighian
- Department of Biomedical SciencesUniversity of PadovaVia U. Bassi 58/BPadova35131Italy
- Padova Neuroscience CenterUniversity of PadovaVia G. Orus, 2Padova35131Italy
| | - Sonia Calabrò
- Department of Molecular MedicineUniversity of PadovaVia U. Bassi 58/BPadova35131Italy
- Department of BiologyUniversity of PadovaVia U. Bassi 58/BPadova35131Italy
| | - Paola Braghetta
- Department of Molecular MedicineUniversity of PadovaVia U. Bassi 58/BPadova35131Italy
| | - Dario Bizzotto
- Department of Molecular MedicineUniversity of PadovaVia U. Bassi 58/BPadova35131Italy
| | - Matilde Cescon
- Department of Molecular MedicineUniversity of PadovaVia U. Bassi 58/BPadova35131Italy
| |
Collapse
|
2
|
Kamińska J, Kochański A. A Role of Inflammation in Charcot-Marie-Tooth Disorders-In a Perspective of Treatment? Int J Mol Sci 2024; 26:15. [PMID: 39795872 PMCID: PMC11720021 DOI: 10.3390/ijms26010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/18/2024] [Accepted: 12/22/2024] [Indexed: 01/13/2025] Open
Abstract
Despite the fact that there are published case reports and model work providing evidence of inflammation in Charcot-Marie-Tooth disorders (CMTs), in clinical practice, CMT and inflammatory neuropathies are always classified as two separate groups of disorders. This sharp separation of chronic neuropathies into two groups has serious clinical implications. As a consequence, the patients harboring CMT mutations are practically excluded from pharmacological anti-inflammatory treatments. In this review, we present that neuropathological studies of peripheral nerves taken from some patients representing familial aggregation of CMTs revealed the presence of inflammation within the nerves. This shows that neurodegeneration resulting from germline mutations and the inflammatory process are not mutually exclusive. We also point to reports demonstrating that, at the clinical level, a positive response to anti-inflammatory therapy was observed in some patients diagnosed with CMTs, confirming the role of the inflammatory component in CMT. We narrowed a group of more than 100 genes whose mutations were found in CMT-affected patients to the seven most common (MPZ, PMP22, GJB1, SEPT9, LITAF, FIG4, and GDAP1) as being linked to the coexistence of hereditary and inflammatory neuropathy. We listed studies of mouse models supporting the idea of the presence of an inflammatory process in some CMTs and studies demonstrating at the cellular level the presence of an inflammatory response. In the following, we discuss the possible molecular basis of some neuropathies involving neurodegenerative and inflammatory processes at both the clinical and morphological levels. Finally, we discuss the prospect of a therapeutic approach using immunomodulation in some patients affected by CMTs.
Collapse
Affiliation(s)
- Joanna Kamińska
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Andrzej Kochański
- Neuromuscular Unit, Mossakowski Medical Research Institute Polish Academy of Sciences, 02-106 Warsaw, Poland
| |
Collapse
|
3
|
Scherer SS, Svaren J. Peripheral Nervous System (PNS) Myelin Diseases. Cold Spring Harb Perspect Biol 2024; 16:a041376. [PMID: 38253417 PMCID: PMC11065170 DOI: 10.1101/cshperspect.a041376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
This is a review of inherited and acquired causes of human demyelinating neuropathies and a subset of disorders that affect axon-Schwann cell interactions. Nearly all inherited demyelinating neuropathies are caused by mutations in genes that are expressed by myelinating Schwann cells, affecting diverse functions in a cell-autonomous manner. The most common acquired demyelinating neuropathies are Guillain-Barré syndrome and chronic, inflammatory demyelinating polyneuropathy, both of which are immune-mediated. An additional group of inherited and acquired disorders affect axon-Schwann cell interactions in the nodal region. Overall, these disorders affect the formation of myelin and its maintenance, with superimposed axonal loss that is clinically important.
Collapse
Affiliation(s)
- Steven S Scherer
- Department of Neurology, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - John Svaren
- Department of Comparative Biosciences, Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| |
Collapse
|
4
|
McKee CA, Polino AJ, King MW, Musiek ES. Circadian clock protein BMAL1 broadly influences autophagy and endolysosomal function in astrocytes. Proc Natl Acad Sci U S A 2023; 120:e2220551120. [PMID: 37155839 PMCID: PMC10194014 DOI: 10.1073/pnas.2220551120] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/12/2023] [Indexed: 05/10/2023] Open
Abstract
An emerging role for the circadian clock in autophagy and lysosome function has opened new avenues for exploration in the field of neurodegeneration. The daily rhythms of circadian clock proteins may coordinate gene expression programs involved not only in daily rhythms but in many cellular processes. In the brain, astrocytes are critical for sensing and responding to extracellular cues to support neurons. The core clock protein BMAL1 serves as the primary positive circadian transcriptional regulator and its depletion in astrocytes not only disrupts circadian function but also leads to a unique cell-autonomous activation phenotype. We report here that astrocyte-specific deletion of Bmal1 influences endolysosome function, autophagy, and protein degradation dynamics. In vitro, Bmal1-deficient astrocytes exhibit increased endocytosis, lysosome-dependent protein cleavage, and accumulation of LAMP1- and RAB7-positive organelles. In vivo, astrocyte-specific Bmal1 knockout (aKO) brains show accumulation of autophagosome-like structures within astrocytes by electron microscopy. Transcriptional analysis of isolated astrocytes from young and aged Bmal1 aKO mice indicates broad dysregulation of pathways involved in lysosome function which occur independently of TFEB activation. Since a clear link has been established between neurodegeneration and endolysosome dysfunction over the course of aging, this work implicates BMAL1 as a key regulator of these crucial astrocyte functions in health and disease.
Collapse
Affiliation(s)
- Celia A. McKee
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO63110
- Center on Biological Rhythms and Sleep, Washington University School of Medicine in St. Louis, St. Louis, MO63110
| | - Alexander J. Polino
- Department of Cell Biology and Physiology, Washington University School of Medicine in St. Louis, St. Louis, MO63110
| | - Melvin W. King
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO63110
- Center on Biological Rhythms and Sleep, Washington University School of Medicine in St. Louis, St. Louis, MO63110
| | - Erik S. Musiek
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO63110
- Center on Biological Rhythms and Sleep, Washington University School of Medicine in St. Louis, St. Louis, MO63110
| |
Collapse
|
5
|
Somogyi A, Kirkham ED, Lloyd-Evans E, Winston J, Allen ND, Mackrill JJ, Anderson KE, Hawkins PT, Gardiner SE, Waller-Evans H, Sims R, Boland B, O'Neill C. The synthetic TRPML1 agonist ML-SA1 rescues Alzheimer-related alterations of the endosomal-autophagic-lysosomal system. J Cell Sci 2023; 136:jcs259875. [PMID: 36825945 PMCID: PMC10112969 DOI: 10.1242/jcs.259875] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Abnormalities in the endosomal-autophagic-lysosomal (EAL) system are an early event in Alzheimer's disease (AD) pathogenesis. However, the mechanisms underlying these abnormalities are unclear. The transient receptor potential channel mucolipin 1(TRPML1, also known as MCOLN1), a vital endosomal-lysosomal Ca2+ channel whose loss of function leads to neurodegeneration, has not been investigated with respect to EAL pathogenesis in late-onset AD (LOAD). Here, we identify pathological hallmarks of TRPML1 dysregulation in LOAD neurons, including increased perinuclear clustering and vacuolation of endolysosomes. We reveal that induced pluripotent stem cell (iPSC)-derived human cortical neurons expressing APOE ε4, the strongest genetic risk factor for LOAD, have significantly diminished TRPML1-induced endolysosomal Ca2+ release. Furthermore, we found that blocking TRPML1 function in primary neurons by depleting the TRPML1 agonist PI(3,5)P2 via PIKfyve inhibition, recreated multiple features of EAL neuropathology evident in LOAD. This included increased endolysosomal Ca2+ content, enlargement and perinuclear clustering of endolysosomes, autophagic vesicle accumulation and early endosomal enlargement. Strikingly, these AD-like neuronal EAL defects were rescued by TRPML1 reactivation using its synthetic agonist ML-SA1. These findings implicate defects in TRPML1 in LOAD EAL pathogenesis and present TRPML1 as a potential therapeutic target.
Collapse
Affiliation(s)
- Aleksandra Somogyi
- School of Biochemistry and Cell Biology, BioSciences Institute, University College Cork, T12 YT20 Cork, Ireland
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, T12 XF62 Cork, Ireland
- Cork Neuroscience Centre (CNSC), University College Cork, T12 YT20 Cork, Ireland
| | - Emily D Kirkham
- School of Biosciences, Sir Martin Evans building, Cardiff University, CF10 3AX Cardiff, UK
| | - Emyr Lloyd-Evans
- School of Biosciences, Sir Martin Evans building, Cardiff University, CF10 3AX Cardiff, UK
| | - Jincy Winston
- UK Dementia Research Institute, Hadyn Ellis Building, Cardiff University, CF24 4HQ Cardiff, UK
| | - Nicholas D Allen
- School of Biosciences, Sir Martin Evans building, Cardiff University, CF10 3AX Cardiff, UK
| | - John J Mackrill
- Department of Physiology, School of Medicine, University College Cork, T12 YT20 Cork, Ireland
| | - Karen E Anderson
- The Babraham Institute, Babraham Research Campus, CB22 3AT Cambridge, UK
| | - Phillip T Hawkins
- The Babraham Institute, Babraham Research Campus, CB22 3AT Cambridge, UK
| | - Sian E Gardiner
- Medicines Discovery Institute, Main Building, Cardiff University, CF10 3AT Cardiff, UK
| | - Helen Waller-Evans
- Medicines Discovery Institute, Main Building, Cardiff University, CF10 3AT Cardiff, UK
| | - Rebecca Sims
- Division of Psychological Medicine and Clinical Neuroscience, Cardiff University, C14 4XN Cardiff, UK
| | - Barry Boland
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, T12 XF62 Cork, Ireland
- Cork Neuroscience Centre (CNSC), University College Cork, T12 YT20 Cork, Ireland
| | - Cora O'Neill
- School of Biochemistry and Cell Biology, BioSciences Institute, University College Cork, T12 YT20 Cork, Ireland
- Cork Neuroscience Centre (CNSC), University College Cork, T12 YT20 Cork, Ireland
| |
Collapse
|
6
|
Słomian D, Szyda J, Dobosz P, Stojak J, Michalska-Foryszewska A, Sypniewski M, Liu J, Kotlarz K, Suchocki T, Mroczek M, Stępień M, Sztromwasser P, Król ZJ. Better safe than sorry-Whole-genome sequencing indicates that missense variants are significant in susceptibility to COVID-19. PLoS One 2023; 18:e0279356. [PMID: 36662838 PMCID: PMC9858061 DOI: 10.1371/journal.pone.0279356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 12/06/2022] [Indexed: 01/22/2023] Open
Abstract
Undoubtedly, genetic factors play an important role in susceptibility and resistance to COVID-19. In this study, we conducted the GWAS analysis. Out of 15,489,173 SNPs, we identified 18,191 significant SNPs for severe and 11,799 SNPs for resistant phenotype, showing that a great number of loci were significant in different COVID-19 representations. The majority of variants were synonymous (60.56% for severe, 58.46% for resistant phenotype) or located in introns (55.77% for severe, 59.83% for resistant phenotype). We identified the most significant SNPs for a severe outcome (in AJAP1 intron) and for COVID resistance (in FIG4 intron). We found no missense variants with a potential causal function on resistance to COVID-19; however, two missense variants were determined as significant a severe phenotype (in PM20D1 and LRP4 exons). None of the aforementioned SNPs and missense variants found in this study have been previously associated with COVID-19.
Collapse
Affiliation(s)
- Dawid Słomian
- National Research Institute of Animal Production, Balice, Poland
| | - Joanna Szyda
- National Research Institute of Animal Production, Balice, Poland
- Department of Genetics, Biostatistics Group, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Paula Dobosz
- Central Clinical Hospital of Ministry of the Interior and Administration in Warsaw, Warsaw, Poland
- Department of Haematology, Transplantation and Internal Medicine, University Clinical Centre of the Medical University of Warsaw, Warsaw, Poland
| | - Joanna Stojak
- Central Clinical Hospital of Ministry of the Interior and Administration in Warsaw, Warsaw, Poland
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Magdalenka, Poland
| | | | - Mateusz Sypniewski
- Central Clinical Hospital of Ministry of the Interior and Administration in Warsaw, Warsaw, Poland
- Department of Genetics and Animal Breedings, Poznan University of Life Sciences, Poznan, Poland
| | - Jakub Liu
- Department of Genetics, Biostatistics Group, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Krzysztof Kotlarz
- Department of Genetics, Biostatistics Group, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Tomasz Suchocki
- National Research Institute of Animal Production, Balice, Poland
- Department of Genetics, Biostatistics Group, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Magdalena Mroczek
- Center for Cardiovascular Genetics & Gene Diagnostics, Foundation for People with Rare Diseases, Schlieren-Zurich, Switzerland
| | - Maria Stępień
- Department of Infectious Diseases, Doctoral School, Medical University of Lublin, Lublin, Poland
| | | | - Zbigniew J. Król
- Central Clinical Hospital of Ministry of the Interior and Administration in Warsaw, Warsaw, Poland
| |
Collapse
|
7
|
Gentile L, Russo M, Taioli F, Ferrarini M, Aguennouz M, Rodolico C, Toscano A, Fabrizi GM, Mazzeo A. Rare among Rare: Phenotypes of Uncommon CMT Genotypes. Brain Sci 2021; 11:brainsci11121616. [PMID: 34942918 PMCID: PMC8699517 DOI: 10.3390/brainsci11121616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 11/30/2022] Open
Abstract
(1) Background: Charcot–Marie–Tooth disease (CMT) is the most frequent form of inherited chronic motor and sensory polyneuropathy. Over 100 CMT causative genes have been identified. Previous reports found PMP22, GJB1, MPZ, and MFN2 as the most frequently involved genes. Other genes, such as BSCL2, MORC2, HINT1, LITAF, GARS, and autosomal dominant GDAP1 are responsible for only a minority of CMT cases. (2) Methods: we present here our records of CMT patients harboring a mutation in one of these rare genes (BSCL2, MORC2, HINT1, LITAF, GARS, autosomal dominant GDAP1). We studied 17 patients from 8 unrelated families. All subjects underwent neurologic evaluation and genetic testing by next-generation sequencing on an Ion Torrent PGM (Thermo Fischer) with a 44-gene custom panel. (3) Results: the following variants were found: BSCL2 c.263A > G p.Asn88Ser (eight subjects), MORC2 c.1503A > T p.Gln501His (one subject), HINT1 c.110G > C p.Arg37Pro (one subject), LITAF c.404C > G p.Pro135Arg (two subjects), GARS c.1660G > A p.Asp554Asn (three subjects), GDAP1 c.374G > A p.Arg125Gln (two subjects). (4) Expanding the spectrum of CMT phenotypes is of high relevance, especially for less common variants that have a higher risk of remaining undiagnosed. The necessity of reaching a genetic definition for most patients is great, potentially making them eligible for future experimentations.
Collapse
Affiliation(s)
- Luca Gentile
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (M.R.); (M.A.); (C.R.); (A.T.); (A.M.)
- Correspondence:
| | - Massimo Russo
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (M.R.); (M.A.); (C.R.); (A.T.); (A.M.)
| | - Federica Taioli
- Department of Neurological Sciences, Biomedicine and Movement Sciences, University of Verona, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (F.T.); (M.F.); (G.M.F.)
| | - Moreno Ferrarini
- Department of Neurological Sciences, Biomedicine and Movement Sciences, University of Verona, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (F.T.); (M.F.); (G.M.F.)
| | - M’Hammed Aguennouz
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (M.R.); (M.A.); (C.R.); (A.T.); (A.M.)
| | - Carmelo Rodolico
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (M.R.); (M.A.); (C.R.); (A.T.); (A.M.)
| | - Antonio Toscano
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (M.R.); (M.A.); (C.R.); (A.T.); (A.M.)
| | - Gian Maria Fabrizi
- Department of Neurological Sciences, Biomedicine and Movement Sciences, University of Verona, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (F.T.); (M.F.); (G.M.F.)
- Azienda Ospedaliera Universitaria Integrata Verona—Borgo Roma, Piazzale L.A. Scuro 10, 37134 Verona, Italy
| | - Anna Mazzeo
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (M.R.); (M.A.); (C.R.); (A.T.); (A.M.)
| |
Collapse
|
8
|
Markworth R, Bähr M, Burk K. Held Up in Traffic-Defects in the Trafficking Machinery in Charcot-Marie-Tooth Disease. Front Mol Neurosci 2021; 14:695294. [PMID: 34483837 PMCID: PMC8415527 DOI: 10.3389/fnmol.2021.695294] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/23/2021] [Indexed: 12/13/2022] Open
Abstract
Charcot-Marie-Tooth disease (CMT), also known as motor and sensory neuropathy, describes a clinically and genetically heterogenous group of disorders affecting the peripheral nervous system. CMT typically arises in early adulthood and is manifested by progressive loss of motor and sensory functions; however, the mechanisms leading to the pathogenesis are not fully understood. In this review, we discuss disrupted intracellular transport as a common denominator in the pathogenesis of different CMT subtypes. Intracellular transport via the endosomal system is essential for the delivery of lipids, proteins, and organelles bidirectionally to synapses and the soma. As neurons of the peripheral nervous system are amongst the longest neurons in the human body, they are particularly susceptible to damage of the intracellular transport system, leading to a loss in axonal integrity and neuronal death. Interestingly, defects in intracellular transport, both in neurons and Schwann cells, have been found to provoke disease. This review explains the mechanisms of trafficking and subsequently summarizes and discusses the latest findings on how defects in trafficking lead to CMT. A deeper understanding of intracellular trafficking defects in CMT will expand our understanding of CMT pathogenesis and will provide novel approaches for therapeutic treatments.
Collapse
Affiliation(s)
- Ronja Markworth
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| | - Mathias Bähr
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Katja Burk
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| |
Collapse
|
9
|
Wunderley L, Zhang L, Yarwood R, Qin W, Lowe M, Woodman P. Endosomal recycling tubule scission and integrin recycling involve the membrane curvature-supporting protein LITAF. J Cell Sci 2021; 134:jcs258549. [PMID: 34342350 PMCID: PMC8353527 DOI: 10.1242/jcs.258549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/16/2021] [Indexed: 11/20/2022] Open
Abstract
Recycling to the cell surface requires the scission of tubular membrane intermediates emanating from endosomes. Here, we identify the monotopic membrane protein LPS-induced TNF-activating factor (LITAF) and the related protein cell death involved p53 target 1 (CDIP1) as novel membrane curvature proteins that contribute to recycling tubule scission. Recombinant LITAF supports high membrane curvature, shown by its ability to reduce proteoliposome size. The membrane domains of LITAF and CDIP1 partition strongly into ∼50 nm diameter tubules labelled with the recycling markers Pacsin2, ARF6 and SNX1, and the recycling cargoes MHC class I and CD59. Partitioning of LITAF into tubules is impaired by mutations linked to Charcot Marie Tooth disease type 1C. Meanwhile, co-depletion of LITAF and CDIP1 results in the expansion of tubular recycling compartments and stabilised Rab11 tubules, pointing to a function for LITAF and CDIP1 in membrane scission. Consistent with this, co-depletion of LITAF and CDIP1 impairs integrin recycling and cell migration.
Collapse
Affiliation(s)
| | | | | | | | | | - Philip Woodman
- Faculty of Biology Medicine and Health, Manchester Academic and Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|