1
|
Georgescu MM, Olar A, Zollinger WD. Calcifying pseudoneoplasm of the neuraxis progressing to G5/PDGFRA subgroup glioblastoma in a United States Army veteran with a history of head trauma and germline POT1 and EPHB2 mutations: illustrative case. JOURNAL OF NEUROSURGERY. CASE LESSONS 2025; 9:CASE25152. [PMID: 40388884 PMCID: PMC12087366 DOI: 10.3171/case25152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Accepted: 04/02/2025] [Indexed: 05/21/2025]
Abstract
BACKGROUND Trauma-associated glioblastoma has been previously described, albeit without molecular characterization. OBSERVATIONS The authors show the integrated clinical/pathologic/molecular analysis of a glioblastoma developing 43 years after head trauma sustained by a United States veteran. An epileptogenic benign lesion developed at the trauma site, followed 34 years later by a calcified lesion diagnosed as calcifying pseudoneoplasm of the neuraxis (CAPNON) that recurred 9 years later as glioblastoma with heterotopic/metaplastic ossification. Genomic analysis showed novel germline mutations in the telomere maintenance factor POT1 p.W184* and receptor tyrosine kinase (RTK) EPHB2 p.W792*. The somatic alterations included second-hit POT1 p.D163Y mutation, CDKN2A/2B homozygous loss, DNMT3A mutation and PDGFRA amplification, classifying this glioblastoma in the G5/PDGFRA molecular subgroup. Proliferation markers, PDGFRA, MAPK feedback inhibitors, and EPHB1 showed high expression, whereas EPHB3 and EPHA7 showed the highest expression of all glioblastomas. Following gross-total resection, the patient received adjuvant radiotherapy and temozolomide and died 16.3 months later. LESSONS This is the first report of CAPNON progression to glioblastoma and of molecularly characterized glioma occurring decades after head trauma. A multifactorial etiology including genetic predisposition and posttraumatic repair is hypothesized. The discussion presents possible roles of EPH RTKs in posttraumatic repair and CAPNON, and of POT1 and PDGFRα in subsequent progression to glioblastoma. https://thejns.org/doi/10.3171/CASE25152.
Collapse
|
2
|
Mahdi A, Aittaleb M, Tissir F. Targeting Glioma Stem Cells: Therapeutic Opportunities and Challenges. Cells 2025; 14:675. [PMID: 40358199 PMCID: PMC12072158 DOI: 10.3390/cells14090675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 04/25/2025] [Accepted: 05/03/2025] [Indexed: 05/15/2025] Open
Abstract
Glioblastoma (GBM), or grade 4 glioma, is the most common and aggressive primary brain tumor in adults with a median survival of 15 months. Increasing evidence suggests that GBM's aggressiveness, invasiveness, and therapy resistance are driven by glioma stem cells (GSCs), a subpopulation of tumor cells that share molecular and functional characteristics with neural stem cells (NSCs). GSCs are heterogeneous and highly plastic. They evade conventional treatments by shifting their state and entering in quiescence, where they become metabolically inactive and resistant to radiotherapy and chemotherapy. GSCs can exit quiescence and be reactivated to divide into highly proliferative tumor cells which contributes to recurrence. Understanding the molecular mechanisms regulating the biology of GSCs, their plasticity, and the switch between quiescence and mitotic activity is essential to shape new therapeutic strategies. This review examines the latest evidence on GSC biology, their role in glioblastoma progression and recurrence, emerging therapeutic approaches aimed at disrupting their proliferation and survival, and the mechanisms underlying their resistance to therapy.
Collapse
Affiliation(s)
| | | | - Fadel Tissir
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Education City, Doha P.O. Box 5825, Qatar; (A.M.); (M.A.)
| |
Collapse
|
3
|
Liu J, Wang Z. The landscape of FGFR-TACC fusion in adult glioblastoma: From bench to bedside. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2025; 795:108536. [PMID: 40246063 DOI: 10.1016/j.mrrev.2025.108536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/14/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
Glioblastoma (GBM) is a lethal central nervous system tumor, characterized by extensive genomic alterations and high intra-tumoral heterogeneity. Gene fusions, derived from chromosomal translocations, deletions, and inversions, were increasingly recognized as key carcinogenic events, with the highest frequency of FGFR-TACC fusion in glioblastoma. As reported, FGFR3-TACC3 fusion mostly coexists with wild-type IDH status, and associates with better prognosis. Mechanistically, FGFR3-TACC3 fusions can constitutively activate non-canonical FGFR downstream pathways, induce aneuploidy, and participate in mitochondrial metabolism, thereby promoting cell proliferation and tumorigenesis. These functions, whether based on FGFR3 phosphorylation or not, are predominantly attributed to the specific domain of TACC3 that involved in regulating the localization and activation of fusion products. Several preclinical studies and clinical trials are being performed to evaluate the efficacy and safety of the FGFR-TACC fusion as a personalised therapeutic target, including the treatments with tyrosine kinase inhibitors, metabolic inhibitors, HSP90 inhibitors, coiled-coil peptide-mimetics, and targeted protein degraders. A subset of populations with FGFR-TACC-positive glioblastoma, after refined molecular screening strategies, may benefit from targeted therapies. Despite major progress in biotechnology, our understanding on the role of fusion events in glioblastoma represented by the FGFR-TACC is still in its infancy. Here, we highlight recent progress on FGFR-TACC fusion in human glioblastoma, emphasizing their molecular mechanisms and potential clinical value.
Collapse
Affiliation(s)
- Jing Liu
- Department of Radiotherapy, Tianjin First Central Hospital, Nankai University, Tianjin 300384, China
| | - Zheng Wang
- Department of Radiotherapy, Tianjin First Central Hospital, Nankai University, Tianjin 300384, China.
| |
Collapse
|
4
|
Diaz MA, Vázquez-Gómez F, Garrido I, Arias F, Suarez J, Buño I, Lassaletta Á. Novel Fibroblast Growth Factor Receptor 3-Fatty Acid Synthase Gene Fusion in Recurrent Epithelioid Glioblastoma Linked to Aggressive Clinical Progression. Curr Oncol 2024; 31:7308-7318. [PMID: 39590169 PMCID: PMC11592913 DOI: 10.3390/curroncol31110539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/31/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumor in adults, with a median overall survival (OS) of 15-18 months despite standard treatments. Approximately 8% of GBM cases exhibit genomic alterations in fibroblast growth factor receptors (FGFRs), particularly FGFR1 and FGFR3. Next-generation sequencing techniques have identified various FGFR3 fusions in GBM. This report presents a novel FGFR3 fusion with fatty acid synthase (FASN) in a 41-year-old male diagnosed with GBM. The patient presented with a persistent headache, and imaging revealed a right frontal lobe lesion. Surgical resection and subsequent histopathology confirmed GBM. Initial NGS analysis showed no mutations in the IDH1, IDH2 or H3F3 genes, but revealed a TERT promoter mutation and CDKN2A/2B and PTEN deletions. Postoperative treatment included radiotherapy and temozolomide. Despite initial management, recurrence occurred four months post-diagnosis, confirmed by MRI and histology. A second surgery identified a novel FGFR3-FASN fusion, alongside increased Ki67 expression. The recurrence was managed with regorafenib and bevacizumab, though complications like hand-foot syndrome and radiation necrosis arose. Despite initial improvement, the patient died 15 months after diagnosis. This case underscores the importance of understanding GBM's molecular landscape for effective treatment strategies. The novel FGFR3-FASN fusion suggests potential implications for GBM recurrence and lipid metabolism. Further studies are warranted to explore FGFR3-FASN's role in GBM and its therapeutic targeting.
Collapse
Affiliation(s)
- Miguel A. Diaz
- Pediatric Hematology/Oncology, Hospital Infantil Universitario “Niño Jesús”, Universidad Autónoma de Madrid, 28009 Madrid, Spain
| | - Felisa Vázquez-Gómez
- Pediatric Hematology/Oncology, Hospital Infantil Universitario “Niño Jesús”, Universidad Autónoma de Madrid, 28009 Madrid, Spain
| | - Irene Garrido
- Neuro-Radiology, Hospital General Universitario “Gregorio Marañón”, 28007 Madrid, Spain
| | - Francisco Arias
- Pathology Department, Hospital General Universitario “Gregorio Marañón”, 28007 Madrid, Spain;
| | - Julia Suarez
- Genomics Unit, Hospital General Universitario “Gregorio Marañón”, 28007 Madrid, Spain (I.B.)
- Health Research Institute (IiSGM), Hospital General Universitario “Gregorio Marañón”, 28007 Madrid, Spain
| | - Ismael Buño
- Genomics Unit, Hospital General Universitario “Gregorio Marañón”, 28007 Madrid, Spain (I.B.)
- Health Research Institute (IiSGM), Hospital General Universitario “Gregorio Marañón”, 28007 Madrid, Spain
- Department of Hematology, Hospital General Universitario “Gregorio Marañón”, 28007 Madrid, Spain
- Department of Cell Biology, School of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Álvaro Lassaletta
- Pediatric Hematology/Oncology, Hospital Infantil Universitario “Niño Jesús”, Universidad Autónoma de Madrid, 28009 Madrid, Spain
| |
Collapse
|
5
|
Norollahi SE, Yousefi B, Nejatifar F, Yousefzadeh-Chabok S, Rashidy-Pour A, Samadani AA. Practical immunomodulatory landscape of glioblastoma multiforme (GBM) therapy. J Egypt Natl Canc Inst 2024; 36:33. [PMID: 39465481 DOI: 10.1186/s43046-024-00240-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 09/21/2024] [Indexed: 10/29/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most common harmful high-grade brain tumor with high mortality and low survival rate. Importantly, besides routine diagnostic and therapeutic methods, modern and useful practical techniques are urgently needed for this serious malignancy. Correspondingly, the translational medicine focusing on genetic and epigenetic profiles of glioblastoma, as well as the immune framework and brain microenvironment, based on these challenging findings, indicates that key clinical interventions include immunotherapy, such as immunoassay, oncolytic viral therapy, and chimeric antigen receptor T (CAR T) cell therapy, which are of great importance in both diagnosis and therapy. Relatively, vaccine therapy reflects the untapped confidence to enhance GBM outcomes. Ongoing advances in immunotherapy, which utilizes different methods to regenerate or modify the resistant body for cancer therapy, have revealed serious results with many different problems and difficulties for patients. Safe checkpoint inhibitors, adoptive cellular treatment, cellular and peptide antibodies, and other innovations give researchers an endless cluster of instruments to plan profoundly in personalized medicine and the potential for combination techniques. In this way, antibodies that block immune checkpoints, particularly those that target the program death 1 (PD-1)/PD-1 (PD-L1) ligand pathway, have improved prognosis in a wide range of diseases. However, its use in combination with chemotherapy, radiation therapy, or monotherapy is ineffective in treating GBM. The purpose of this review is to provide an up-to-date overview of the translational elements concentrating on the immunotherapeutic field of GBM alongside describing the molecular mechanism involved in GBM and related signaling pathways, presenting both historical perspectives and future directions underlying basic and clinical practice.
Collapse
Affiliation(s)
- Seyedeh Elham Norollahi
- Cancer Research Center and, Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Bahman Yousefi
- Cancer Research Center and, Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Nejatifar
- Department of Hematology and Oncology, School of Medicine, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Shahrokh Yousefzadeh-Chabok
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran
- , Rasht, Iran
| | - Ali Rashidy-Pour
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
6
|
Wang Y, Xing H, Guo X, Chen W, Wang Y, Liang T, Wang H, Li Y, Jin S, Shi Y, Liu D, Yang T, Xia Y, Li J, Wu J, Liu Q, Qu T, Guo S, Li H, Zhang K, Wang Y, Ma W. Clinical features, MRI, molecular alternations, and prognosis of astrocytoma based on WHO 2021 classification of central nervous system tumors: A single-center retrospective study. Cancer Med 2024; 13:e7369. [PMID: 38970209 PMCID: PMC11226410 DOI: 10.1002/cam4.7369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 05/19/2024] [Accepted: 05/27/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND The diagnosis of glioma has advanced since the release of the WHO 2021 classification with more molecular alterations involved in the integrated diagnostic pathways. Our study aimed to present our experience with the clinical features and management of astrocytoma, IDH mutant based on the latest WHO classification. METHODS Patients diagnosed with astrocytoma, IDH-mutant based on the WHO 5th edition classification of CNS tumors at our center from January 2009 to January 2022 were included. Patients were divided into WHO 2-3 grade group and WHO 4 grade group. Integrate diagnoses were retrospectively confirmed according to WHO 2016 and 2021 classification. Clinical and MRI characteristics were reviewed, and survival analysis was performed. RESULTS A total of 60 patients were enrolled. 21.67% (13/60) of all patients changed tumor grade from WHO 4th edition classification to WHO 5th edition. Of these, 21.43% (6/28) of grade II astrocytoma and 58.33% (7/12) of grade III astrocytoma according to WHO 4th edition classification changed to grade 4 according to WHO 5th edition classification. Sex (p = 0.042), recurrent glioma (p = 0.006), and Ki-67 index (p < 0.001) of pathological examination were statistically different in the WHO grade 2-3 group (n = 27) and WHO grade 4 group (n = 33). CDK6 (p = 0.004), FGFR2 (p = 0.003), and MYC (p = 0.004) alterations showed an enrichment in the WHO grade 4 group. Patients with higher grade showed shorter mOS (mOS = 75.9 m, 53.6 m, 26.4 m for grade 2, 3, and 4, respectively, p = 0.01). CONCLUSIONS Patients diagnosed as WHO grade 4 according to the 5th edition WHO classification based on molecular alterations are more likely to have poorer prognosis. Therefore, treatment should be tailored to their individual needs. Further research is needed for the management of IDH-mutant astrocytoma is needed in the future.
Collapse
Affiliation(s)
- Yuekun Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Hao Xing
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xiaopeng Guo
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- China Anti‐Cancer Association Specialty Committee of GliomaBeijingChina
| | - Wenlin Chen
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yaning Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Tingyu Liang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Hai Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yilin Li
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- '4+4' Medical Doctor ProgramChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Shanmu Jin
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- '4+4' Medical Doctor ProgramChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yixin Shi
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Eight‐year Medical Doctor ProgramChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Delin Liu
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Eight‐year Medical Doctor ProgramChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Tianrui Yang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Eight‐year Medical Doctor ProgramChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yu Xia
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Eight‐year Medical Doctor ProgramChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Junlin Li
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Eight‐year Medical Doctor ProgramChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jiaming Wu
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Eight‐year Medical Doctor ProgramChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Qianshu Liu
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Eight‐year Medical Doctor ProgramChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Tian Qu
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Eight‐year Medical Doctor ProgramChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Siying Guo
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Tsinghua University Ringgold standard institution School of Medicine, Tsinghua UniversityBeijingChina
| | - Huanzhang Li
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Eight‐year Medical Doctor ProgramChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Kun Zhang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Eight‐year Medical Doctor ProgramChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yu Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- China Anti‐Cancer Association Specialty Committee of GliomaBeijingChina
| | - Wenbin Ma
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- China Anti‐Cancer Association Specialty Committee of GliomaBeijingChina
| |
Collapse
|
7
|
Katoh M, Loriot Y, Brandi G, Tavolari S, Wainberg ZA, Katoh M. FGFR-targeted therapeutics: clinical activity, mechanisms of resistance and new directions. Nat Rev Clin Oncol 2024; 21:312-329. [PMID: 38424198 DOI: 10.1038/s41571-024-00869-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2024] [Indexed: 03/02/2024]
Abstract
Fibroblast growth factor (FGF) signalling via FGF receptors (FGFR1-4) orchestrates fetal development and contributes to tissue and whole-body homeostasis, but can also promote tumorigenesis. Various agents, including pan-FGFR inhibitors (erdafitinib and futibatinib), FGFR1/2/3 inhibitors (infigratinib and pemigatinib), as well as a range of more-specific agents, have been developed and several have entered clinical use. Erdafitinib is approved for patients with urothelial carcinoma harbouring FGFR2/3 alterations, and futibatinib and pemigatinib are approved for patients with cholangiocarcinoma harbouring FGFR2 fusions and/or rearrangements. Clinical benefit from these agents is in part limited by hyperphosphataemia owing to off-target inhibition of FGFR1 as well as the emergence of resistance mutations in FGFR genes, activation of bypass signalling pathways, concurrent TP53 alterations and possibly epithelial-mesenchymal transition-related isoform switching. The next generation of small-molecule inhibitors, such as lirafugratinib and LOXO-435, and the FGFR2-specific antibody bemarituzumab are expected to have a reduced risk of hyperphosphataemia and the ability to overcome certain resistance mutations. In this Review, we describe the development and current clinical role of FGFR inhibitors and provide perspective on future research directions including expansion of the therapeutic indications for use of FGFR inhibitors, combination of these agents with immune-checkpoint inhibitors and the application of novel technologies, such as artificial intelligence.
Collapse
Affiliation(s)
| | - Yohann Loriot
- Drug Development Department (DITEP), Institut Gustave Roussy, Université Paris-Saclay, Villejuif, France
- INSERM U981, Institut Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Giovanni Brandi
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Simona Tavolari
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Zev A Wainberg
- Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Masaru Katoh
- M & M Precision Medicine, Tokyo, Japan.
- Department of Omics Network, National Cancer Center, Tokyo, Japan.
| |
Collapse
|
8
|
Georgescu MM. Translation into Clinical Practice of the G1-G7 Molecular Subgroup Classification of Glioblastoma: Comprehensive Demographic and Molecular Pathway Profiling. Cancers (Basel) 2024; 16:361. [PMID: 38254850 PMCID: PMC10814912 DOI: 10.3390/cancers16020361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/01/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Glioblastoma is the most frequent and malignant primary neoplasm of the central nervous system. In a recent breakthrough study on a prospective Discovery cohort, I proposed the first all-inclusive molecular classification of glioblastoma into seven subgroups, G1-G7, based on MAPK pathway activation. New data from a WHO-grade-4 diffuse glioma prospective Validation cohort offers, in this study, an integrated demographic-molecular analysis of a 213-patient Combined cohort. Despite cohort differences in the median age and molecular subgroup distribution, all the prospectively-acquired cases from the Validation cohort mapped into one of the G1-G7 subgroups defined in the Discovery cohort. A younger age of onset, higher tumor mutation burden and expanded G1/EGFR-mutant and G3/NF1 glioblastoma subgroups characterized the glioblastomas from African American/Black relative to Caucasian/White patients. The three largest molecular subgroups were G1/EGFR, G3/NF1 and G7/Other. The fourth largest subgroup, G6/Multi-RTK, was detailed by describing a novel gene fusion ST7-MET, rare PTPRZ1-MET, LMNA-NTRK1 and GOPC-ROS1 fusions and their overexpression mechanisms in glioblastoma. The correlations between the MAPK pathway G1-G7 subgroups and the PI3-kinase/PTEN, TERT, cell cycle G1 phase and p53 pathways defined characteristic subgroup pathway profiles amenable to personalized targeted therapy. This analysis validated the first all-inclusive molecular classification of glioblastoma, showed significant demographic and molecular differences between subgroups, and provided the first ethnic molecular comparison of glioblastoma.
Collapse
|
9
|
Liu YT, Chen YH, Chang CH, Liang HKT. Recurrent fibroblast growth factor receptor3 fusion glioblastoma treated with pemigatinib: A case report and review of the literature. Neurooncol Adv 2024; 6:vdae072. [PMID: 38845691 PMCID: PMC11154143 DOI: 10.1093/noajnl/vdae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024] Open
Affiliation(s)
- Yen-Ting Liu
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital Yunlin Branch, Yunlin County 632, Taiwan
| | - Yi-Hsing Chen
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chen-Han Chang
- Department of Oncology, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan
| | - Hsiang-Kuang Tony Liang
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
- Department of Radiation Oncology, National Taiwan University Cancer Center, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
10
|
Georgescu MM. Adult glioblastoma with Lynch syndrome-associated mismatch repair deficiency forms a distinct high-risk molecular subgroup. FREE NEUROPATHOLOGY 2024; 5:32. [PMID: 39835141 PMCID: PMC11745196 DOI: 10.17879/freeneuropathology-2024-5892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/17/2024] [Indexed: 01/22/2025]
Abstract
Glioblastoma is the most frequent and malignant primary brain tumor. Although the survival is generally dismal for glioblastoma patients, risk stratification and the identification of high-risk subgroups is important for prompt and aggressive management. The G1-G7 molecular subgroup classification based on the MAPK pathway activation has offered for the first time a non-redundant, all-inclusive classification of adult glioblastoma. Five patients from the large, 218-patient, prospective cohort showed germline mutations in mismatch repair (MMR) genes (Lynch syndrome) and a significantly worse median survival of 3.25 months post-surgery than those from the G1/EGFR and G3/NF1 major subgroups, or from the rest of the cohort adjusted for age. These rare tumors were assigned to a new subgroup, G3/MMR, a G3/NF1 subgroup spin-off, as they generally show genomic alterations leading to RAS activation, such as NF1 and PTPN11 mutations. An integrated clinical, histologic and molecular analysis of the G3/MMR tumors showed distinct characteristics as compared to other glioblastomas, including those with iatrogenic high tumor mutation burden (TMB), warranting a separate subgroup. Prior history of cancer, midline location or multifocality, presence of multinucleated giant cells (MGCs), positive p53 and MMR immunohistochemistry, and specific molecular characteristics, including high TMB, MSH2/MSH6 alterations, biallelic TP53 Arg mutations and co-occurring PIK3CA p.R88Q and PTEN alterations, alert to this high-risk G3/MMR subgroup. The MGCs and p53 immunohistochemistry analysis in G1-G7 subgroups showed that one in 7 tumors with these characteristics is a G3/MMR glioblastoma. The FDA-approved first-line therapy for many advanced solid tumors consists of nivolumab-ipilimumab immune checkpoint inhibitors. One G3/MMR patient received this regimen and survived much longer than the rest, setting a proof-of-principle example for the treatment of these very aggressive G3/MMR glioblastomas.
Collapse
|
11
|
Dewdney B, Jenkins MR, Best SA, Freytag S, Prasad K, Holst J, Endersby R, Johns TG. From signalling pathways to targeted therapies: unravelling glioblastoma's secrets and harnessing two decades of progress. Signal Transduct Target Ther 2023; 8:400. [PMID: 37857607 PMCID: PMC10587102 DOI: 10.1038/s41392-023-01637-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/29/2023] [Accepted: 09/07/2023] [Indexed: 10/21/2023] Open
Abstract
Glioblastoma, a rare, and highly lethal form of brain cancer, poses significant challenges in terms of therapeutic resistance, and poor survival rates for both adult and paediatric patients alike. Despite advancements in brain cancer research driven by a technological revolution, translating our understanding of glioblastoma pathogenesis into improved clinical outcomes remains a critical unmet need. This review emphasises the intricate role of receptor tyrosine kinase signalling pathways, epigenetic mechanisms, and metabolic functions in glioblastoma tumourigenesis and therapeutic resistance. We also discuss the extensive efforts over the past two decades that have explored targeted therapies against these pathways. Emerging therapeutic approaches, such as antibody-toxin conjugates or CAR T cell therapies, offer potential by specifically targeting proteins on the glioblastoma cell surface. Combination strategies incorporating protein-targeted therapy and immune-based therapies demonstrate great promise for future clinical research. Moreover, gaining insights into the role of cell-of-origin in glioblastoma treatment response holds the potential to advance precision medicine approaches. Addressing these challenges is crucial to improving outcomes for glioblastoma patients and moving towards more effective precision therapies.
Collapse
Affiliation(s)
- Brittany Dewdney
- Cancer Centre, Telethon Kids Institute, Nedlands, WA, 6009, Australia.
- Centre For Child Health Research, University of Western Australia, Perth, WA, 6009, Australia.
| | - Misty R Jenkins
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, 3010, Australia
| | - Sarah A Best
- Department of Medical Biology, University of Melbourne, Melbourne, 3010, Australia
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia
| | - Saskia Freytag
- Department of Medical Biology, University of Melbourne, Melbourne, 3010, Australia
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia
| | - Krishneel Prasad
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, 3010, Australia
| | - Jeff Holst
- School of Biomedical Sciences, University of New South Wales, Sydney, 2052, Australia
| | - Raelene Endersby
- Cancer Centre, Telethon Kids Institute, Nedlands, WA, 6009, Australia
- Centre For Child Health Research, University of Western Australia, Perth, WA, 6009, Australia
| | - Terrance G Johns
- Cancer Centre, Telethon Kids Institute, Nedlands, WA, 6009, Australia
- Centre For Child Health Research, University of Western Australia, Perth, WA, 6009, Australia
| |
Collapse
|
12
|
Luo Y, Yamada M, N’Tumba-Byn T, Asif H, Gao M, Hu Y, Marangoni P, Liu Y, Evans T, Rafii S, Klein OD, Voss HU, Hadjantonakis AK, Elemento O, Martin LA, Seandel M. SPRY4-dependent ERK negative feedback demarcates functional adult stem cells in the male mouse germline†. Biol Reprod 2023; 109:533-551. [PMID: 37552049 PMCID: PMC10577279 DOI: 10.1093/biolre/ioad089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/28/2023] [Accepted: 08/05/2023] [Indexed: 08/09/2023] Open
Abstract
Niche-derived growth factors support self-renewal of mouse spermatogonial stem and progenitor cells through ERK MAPK signaling and other pathways. At the same time, dysregulated growth factor-dependent signaling has been associated with loss of stem cell activity and aberrant differentiation. We hypothesized that growth factor signaling through the ERK MAPK pathway in spermatogonial stem cells is tightly regulated within a narrow range through distinct intracellular negative feedback regulators. Evaluation of candidate extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK)-responsive genes known to dampen downstream signaling revealed robust induction of specific negative feedback regulators, including Spry4, in cultured mouse spermatogonial stem cells in response to glial cell line-derived neurotrophic factor or fibroblast growth factor 2. Undifferentiated spermatogonia in vivo exhibited high levels of Spry4 mRNA. Quantitative single-cell analysis of ERK MAPK signaling in spermatogonial stem cell cultures revealed both dynamic signaling patterns in response to growth factors and disruption of such effects when Spry4 was ablated, due to dysregulation of ERK MAPK downstream of RAS. Whereas negative feedback regulator expression decreased during differentiation, loss of Spry4 shifted cell fate toward early differentiation with concomitant loss of stem cell activity. Finally, a mouse Spry4 reporter line revealed that the adult spermatogonial stem cell population in vivo is demarcated by strong Spry4 promoter activity. Collectively, our data suggest that negative feedback-dependent regulation of ERK MAPK is critical for preservation of spermatogonial stem cell fate within the mammalian testis.
Collapse
Affiliation(s)
- Yanyun Luo
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Makiko Yamada
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
| | | | - Hana Asif
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Meng Gao
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Yang Hu
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Pauline Marangoni
- Program in Craniofacial Biology, Department of Orofacial Sciences, University of California, San Francisco, CA, USA
- Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - Ying Liu
- Division of Regenerative Medicine, Department of Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Weill Cornell Medicine, New York, NY, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Shahin Rafii
- Division of Regenerative Medicine, Department of Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Weill Cornell Medicine, New York, NY, USA
| | - Ophir D Klein
- Program in Craniofacial Biology, Department of Orofacial Sciences, University of California, San Francisco, CA, USA
- Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - Henning U Voss
- College of Human Ecology, Cornell University, Ithaca, NY, USA
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Olivier Elemento
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Laura A Martin
- The New York Stem Cell Foundation Research Institute, New York, NY, USA
| | - Marco Seandel
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
13
|
Wegener E, Horsley P, Wheeler H, Jayamanne D, Kastelan M, Guo L, Brown C, Back M. Leptomeningeal neuraxis relapse in glioblastoma is an uncommon but not rare event associated with poor outcome. BMC Neurol 2023; 23:328. [PMID: 37715122 PMCID: PMC10503008 DOI: 10.1186/s12883-023-03378-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND Spinal neuraxis leptomeningeal metastasis (LM) relapse in glioblastoma is an uncommon event that is challenging to manage. This study aims to determine the incidence, associated factors, and outcome of LM relapse in patients with glioblastoma managed with radical intent. METHODS Patients managed for glioblastoma using the EORTC-NCIC (Stupp) Protocol from 2007 to 2019 were entered into a prospective ethics-approved database. Follow-up included routine cranial MRI surveillance with further imaging as clinically indicated. LM relapse was determined by MRI findings and/or cerebrospinal fluid analysis. The chi-square test of independence was used to evaluate clinico-pathologic factors associated with increased risk of subsequent LM relapse. Median survival post-LM relapse was calculated using Kaplan-Meier technique. RESULTS Four-hundred-and-seven patients were eligible, with median follow-up of 60 months for surviving patients. Eleven (2.7%) had LM at first relapse and in total 21 (5.1%) experienced LM in the entire follow-up period. Sites of LM relapse were 8 (38%) focal spinal, 2 (10%) focal brainstem medulla and 11 (52%) diffuse spinal. Median overall survival from initial diagnosis for the entire cohort was 17.6 months (95% CI 16.7-19.0). Median survival from LM relapse to death was 39 days (95% CI: 19-107). Factors associated with LM relapse were age less than 50 years (p < 0.01), initial disease located in the temporal lobe (p < 0.01) and tumours lacking MGMT promoter methylation (p < 0.01). CONCLUSIONS LM relapse is an uncommon but not rare event in patients managed radically for glioblastoma. It is associated with poor outcome with the majority of patients deceased within two months of recognition.
Collapse
Affiliation(s)
- Eric Wegener
- Department of Radiation Oncology Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards Sydney, NSW, 2065, Australia
| | - Patrick Horsley
- Department of Radiation Oncology Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards Sydney, NSW, 2065, Australia.
| | - Helen Wheeler
- Department of Radiation Oncology Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards Sydney, NSW, 2065, Australia
- The Brain Cancer group, St Leonards, NSW, Australia
- Sydney Medical School, University of Sydney, Sydney, Australia
| | - Dasantha Jayamanne
- Department of Radiation Oncology Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards Sydney, NSW, 2065, Australia
- Sydney Medical School, University of Sydney, Sydney, Australia
| | | | - Linxin Guo
- Department of Radiation Oncology Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards Sydney, NSW, 2065, Australia
| | - Chris Brown
- NHMRC Clinical Trials Centre, Sydney, Australia
| | - Michael Back
- Department of Radiation Oncology Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards Sydney, NSW, 2065, Australia
- The Brain Cancer group, St Leonards, NSW, Australia
- Sydney Medical School, University of Sydney, Sydney, Australia
- Genesis Cancer Care, Sydney, Australia
- Central Coast Cancer Centre, Gosford Hospital, Gosford, Australia
| |
Collapse
|
14
|
Na B, Wang AC, Watterson CT, Martinez-Agosto J, Saitta S, Dutra-Clarke M, Bhansali F, Pineles SL, Chang VY, Shah VS, de Blank P. An unusual presentation of bilateral optic pathway glioma in Crouzon Syndrome. Pediatr Hematol Oncol 2023; 40:800-806. [PMID: 37334681 DOI: 10.1080/08880018.2023.2201264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/13/2023] [Accepted: 03/02/2023] [Indexed: 06/20/2023]
Abstract
Crouzon Syndrome is a genetic craniosynostosis disorder associated with a high risk of ophthalmologic sequelae secondary to structural causes. However, ophthalmologic disorders due to intrinsic nerve aberrations in Crouzon Syndrome have not been described. Optic pathway gliomas (OPGs) are low grade gliomas that are intrinsic to the visual pathway, frequently associated with Neurofibromatosis type 1 (NF-1). OPGs involving both optic nerves without affecting the optic chiasm are rarely seen outside of NF-1. We report an unusual case of bilateral optic nerve glioma without chiasmatic involvement in a 17-month-old male patient with Crouzon Syndrome without any clinical or genetic findings of NF-1. This case suggests that close ophthalmologic follow up and orbital MRIs may benefit patients with Crouzon Syndrome.
Collapse
Affiliation(s)
- Brian Na
- UCLA Neuro-Oncology Program, Department of Neurology, UCLA David Geffen School of Medicine, Los Angeles, California, USA
- Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, Los Angeles, California, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California, USA
| | - Anthony C Wang
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California, USA
- Division of Pediatric Neurosurgery, Department of Neurosurgery, UCLA David Geffen School of Medicine, Los Angeles, California, USA
| | | | - Julian Martinez-Agosto
- Department of Human Genetics, UCLA David Geffen School of Medicine, Los Angeles, California, USA
- Division of Genetics, Department of Pediatrics, UCLA David Geffen School of Medicine, Los Angeles, California, USA
- Department of Psychiatry, UCLA David Geffen School of Medicine, Los Angeles, California, USA
| | - Sulagna Saitta
- Department of Human Genetics, UCLA David Geffen School of Medicine, Los Angeles, California, USA
- Division of Genetics, Department of Pediatrics, UCLA David Geffen School of Medicine, Los Angeles, California, USA
| | - Marina Dutra-Clarke
- Division of Genetics, Department of Pediatrics, UCLA David Geffen School of Medicine, Los Angeles, California, USA
| | - Franceska Bhansali
- Division of Genetics, Department of Pediatrics, UCLA David Geffen School of Medicine, Los Angeles, California, USA
| | - Stacy L Pineles
- Department of Ophthalmology, UCLA David Geffen School of Medicine, Los Angeles, California, USA
| | - Vivian Y Chang
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California, USA
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, UCLA David Geffen School of Medicine, Los Angeles, California, USA
- Children's Discovery and Innovation Institute, UCLA David Geffen School of Medicine, Los Angeles, California, USA
| | - Veeral S Shah
- Division of Pediatric Neurology and Department of Ophthalmology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Peter de Blank
- Division of Oncology, The Cure Starts Now Brain Tumor Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
15
|
Li Y, Shi Y, Zhang X, Li P, Ma L, Hu P, Xu L, Dai Y, Xia S, Qiu H. FGFR2 upregulates PAI-1 via JAK2/STAT3 signaling to induce M2 polarization of macrophages in colorectal cancer. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166665. [PMID: 36781088 DOI: 10.1016/j.bbadis.2023.166665] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/17/2023] [Accepted: 02/07/2023] [Indexed: 02/13/2023]
Abstract
Fibroblast growth factor receptor 2 (FGFR2) is frequently activated by overexpression or mutation, and an abnormal fibroblast growth factor (FGF)/FGFR signaling pathway is associated with the occurrence, development, and poor prognosis of colorectal cancer (CRC). Our preliminary analysis found that plasminogen activator inhibitor-1 (PAI-1) expression may be related to FGF/FGFR signaling, however, their role in the tumor immune microenvironment remains unclear. In this study, we observed markedly higher PAI-1 expression in CRC patients with poor survival rates. PAI-1 is regulated by FGF/FGFR2 in colon cancer cells and is involved in M2 macrophage polarization. Mechanistically, inhibiting the JAK2/STAT3 signaling pathway could cause PAI-1 downregulation. Furthermore, the activation of phosphorylated STAT3 upregulated PAI-1. In vivo, FGFR2 overexpression in tumor-bearing mouse models suggested that a PAI-1 inhibitor could rescue FGFR2/PAI-1 axis-induced M2 macrophage polarization, which leads to effective immune activity and tumor suppression. Moreover, the combination of a PAI-1 inhibitor and anti-PD-1 therapy exhibited superior antitumor activity in mice. These findings offer novel insights into the molecular mechanisms underlying tumor deterioration and provide potential therapeutic targets for CRC treatment.
Collapse
Affiliation(s)
- Yiming Li
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Yongkang Shi
- Department of Biliary and Pancreatic Surgery/Cancer Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xiuyuan Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Piao Li
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Li Ma
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Pengbo Hu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Liang Xu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Yuhong Dai
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Shu Xia
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Hong Qiu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| |
Collapse
|
16
|
Ghantasala S, Bhat A, Agarwal U, Biswas D, Bhattarai P, Epari S, Moiyadi A, Srivastava S. Deep proteome investigation of high-grade gliomas reveals heterogeneity driving differential metabolism of 5-aminolevulinic acid. Neurooncol Adv 2023; 5:vdad065. [PMID: 37358939 PMCID: PMC10290514 DOI: 10.1093/noajnl/vdad065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023] Open
Abstract
Background Fluorescence-guided surgery (FGS) using 5-aminolevulinic acid (5-ALA) as adjunct for high-grade gliomas (HGGs) has been on the rise in recent years. Despite being largely effective, we observed multiple histologically similar sub-regions of the same tumor from a few individuals with varying protoporphyrin IX (PpIX) levels. The current study aims at understanding the proteomic changes driving differential metabolism of 5-ALA in HGGs. Methods Biopsies were histologically and biochemically assayed. Following this, a deep proteomics investigation was carried out using high resolution liquid chromatography-mass spectrometry (HR LC-MS) to identify protein expression in differentially fluorescing regions of HGGs. Results Our analysis identified 5437 proteins with high confidence. Differential analysis in the subgroup with HGGs carrying IDH mutation (IDH mt.) revealed 93 differentially regulated proteins (raw p-value ≤ 0.05 and absolute FC ≥ 1.5). Similar analysis in the IDH wild type (IDH wt.) subgroup revealed 20 differentially regulated proteins. Gene set enrichment analysis (GSEA) identified key pathways like ion channel transport, trafficking of AMPA receptors, and regulation of heme-oxygenase-1 in the IDH wt. subgroup. Pathways such as scavenging of heme, signaling by NOTCH4, negative regulation of PI3-AKT pathway, and iron uptake and transport were observed to be differentially regulated in the IDH mt. subgroup. Conclusions Tumor regions from the same patient exhibiting differential fluorescence following 5-ALA administration were observed to have different proteome profiles. Future studies aimed at a better molecular understanding of 5-ALA metabolism in HGGs hold the potential to increase the efficacy of FGS and the use of 5-ALA as a theragnostic tool.
Collapse
Affiliation(s)
- Saicharan Ghantasala
- Centre for Research in Nano Technology and Sciences, Indian Institute of Technology Bombay, Mumbai, India
| | - Amruth Bhat
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Unnati Agarwal
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | - Deeptarup Biswas
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Prawesh Bhattarai
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Sridhar Epari
- Department of Pathology, Tata Memorial Centre’s—Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Aliasgar Moiyadi
- Homi Bhabha National Institute, Mumbai, India
- Department of Neurosurgery, Tata Memorial Centre’s—Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, India
| | - Sanjeeva Srivastava
- Corresponding Author: Sanjeeva Srivastava, PhD, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India ()
| |
Collapse
|
17
|
Pandya PH, Jannu AJ, Bijangi-Vishehsaraei K, Dobrota E, Bailey BJ, Barghi F, Shannon HE, Riyahi N, Damayanti NP, Young C, Malko R, Justice R, Albright E, Sandusky GE, Wurtz LD, Collier CD, Marshall MS, Gallagher RI, Wulfkuhle JD, Petricoin EF, Coy K, Trowbridge M, Sinn AL, Renbarger JL, Ferguson MJ, Huang K, Zhang J, Saadatzadeh MR, Pollok KE. Integrative Multi-OMICs Identifies Therapeutic Response Biomarkers and Confirms Fidelity of Clinically Annotated, Serially Passaged Patient-Derived Xenografts Established from Primary and Metastatic Pediatric and AYA Solid Tumors. Cancers (Basel) 2022; 15:259. [PMID: 36612255 PMCID: PMC9818438 DOI: 10.3390/cancers15010259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/04/2023] Open
Abstract
Establishment of clinically annotated, molecularly characterized, patient-derived xenografts (PDXs) from treatment-naïve and pretreated patients provides a platform to test precision genomics-guided therapies. An integrated multi-OMICS pipeline was developed to identify cancer-associated pathways and evaluate stability of molecular signatures in a panel of pediatric and AYA PDXs following serial passaging in mice. Original solid tumor samples and their corresponding PDXs were evaluated by whole-genome sequencing, RNA-seq, immunoblotting, pathway enrichment analyses, and the drug−gene interaction database to identify as well as cross-validate actionable targets in patients with sarcomas or Wilms tumors. While some divergence between original tumor and the respective PDX was evident, majority of alterations were not functionally impactful, and oncogenic pathway activation was maintained following serial passaging. CDK4/6 and BETs were prioritized as biomarkers of therapeutic response in osteosarcoma PDXs with pertinent molecular signatures. Inhibition of CDK4/6 or BETs decreased osteosarcoma PDX growth (two-way ANOVA, p < 0.05) confirming mechanistic involvement in growth. Linking patient treatment history with molecular and efficacy data in PDX will provide a strong rationale for targeted therapy and improve our understanding of which therapy is most beneficial in patients at diagnosis and in those already exposed to therapy.
Collapse
Affiliation(s)
- Pankita H. Pandya
- Department of Pediatrics, Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Asha Jacob Jannu
- Department of Biostatistics & Health Data Science Indiana, University School of Medicine, Indianapolis, IN 46202, USA
| | - Khadijeh Bijangi-Vishehsaraei
- Department of Pediatrics, Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Erika Dobrota
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Barbara J. Bailey
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Farinaz Barghi
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Harlan E. Shannon
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Niknam Riyahi
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Nur P. Damayanti
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Courtney Young
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Rada Malko
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Ryli Justice
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Eric Albright
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - George E. Sandusky
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - L. Daniel Wurtz
- Department of Orthopedics Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Christopher D. Collier
- Department of Orthopedics Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Mark S. Marshall
- Department of Pediatrics, Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Rosa I. Gallagher
- Center for Applied Proteomics and Molecular Medicine, Institute for Biomedical Innovation, George Mason University, Manassas, VA 20110, USA
| | - Julia D. Wulfkuhle
- Center for Applied Proteomics and Molecular Medicine, Institute for Biomedical Innovation, George Mason University, Manassas, VA 20110, USA
| | - Emanuel F. Petricoin
- Center for Applied Proteomics and Molecular Medicine, Institute for Biomedical Innovation, George Mason University, Manassas, VA 20110, USA
| | - Kathy Coy
- Preclinical Modeling and Therapeutics Core, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Melissa Trowbridge
- Preclinical Modeling and Therapeutics Core, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Anthony L. Sinn
- Preclinical Modeling and Therapeutics Core, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jamie L. Renbarger
- Department of Pediatrics, Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Michael J. Ferguson
- Department of Pediatrics, Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kun Huang
- Department of Biostatistics & Health Data Science Indiana, University School of Medicine, Indianapolis, IN 46202, USA
| | - Jie Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - M. Reza Saadatzadeh
- Department of Pediatrics, Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Karen E. Pollok
- Department of Pediatrics, Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
18
|
Dono A, El Achi H, Bundrant BE, Goli PS, Zhu P, Ozkizilkaya HI, Esquenazi Y, Ballester LY. Infiltrating gliomas with FGFR alterations: Histologic features, genetic alterations, and potential clinical implications. Cancer Biomark 2022; 36:117-131. [PMID: 36530080 DOI: 10.3233/cbm-220041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Fibroblast growth factor receptors (FGFRs) are frequently altered in cancers and present a potential therapeutic avenue. However, the type and prevalence of FGFR alterations in infiltrating gliomas (IGs) needs further investigation. OBJECTIVE To understand the prevalence/type of FGFR alterations in IGs. METHODS We reviewed clinicopathologic and genomic alterations of FGFR-mutant gliomas in a cohort of 387 patients. Tumors were examined by DNA next-generation sequencing for somatic mutations with a panel interrogating 205-genes. For comparison, cBioPortal databases were queried to identify FGFR-altered IGs. RESULTS Fourteen patients (3.6%) with FGFR-mutant tumors were identified including 11 glioblastomas, Isocitrate dehydrogenase (IDH) - wildtype (GBM-IDH-WT), 2 oligodendrogliomas, and 1 astrocytoma IDH-mutant. FGFR-altered IGs showed endocrinoid capillaries, microvascular proliferation, necrosis, oligodendroglioma-like cells, fibrin thrombi, microcalcifications, and nodular growth. FGFR3 was the most commonly altered FGFR gene (64.3%). The most common additional mutations in FGFR-altered IGs were TERTp, CDKN2A/B, PTEN, CDK4, MDM2, and TP53. FGFR3 alterations were only observed in GBM-IDH-WT. EGFR alterations were rarely identified in FGFR3-altered gliomas. CONCLUSIONS Histologic features correlate with FGFR alterations in IGs. FGFR3-TACC3 fusion and FGFR3 amplification are the most common FGFR alterations in IGs. FGFR alterations are a rare, but potentially viable, therapeutic target in asubset of IGs.
Collapse
Affiliation(s)
- Antonio Dono
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hanadi El Achi
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Bethany E Bundrant
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - Ping Zhu
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hanim I Ozkizilkaya
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yoshua Esquenazi
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Memorial Hermann Hospital-TMC, Houston, TX, USA.,Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Leomar Y Ballester
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
19
|
Hermawan A, Putri H, Hanif N, Fatimah N, Prasetio HH. Identification of potential target genes of honokiol in overcoming breast cancer resistance to tamoxifen. Front Oncol 2022; 12:1019025. [PMID: 36601474 PMCID: PMC9806337 DOI: 10.3389/fonc.2022.1019025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/28/2022] [Indexed: 12/23/2022] Open
Abstract
Background Honokiol (HON) inhibits epidermal growth factor receptor (EGFR) signaling and increases the activity of erlotinib, an EGFR inhibitor, in human head and neck cancers. In this study, using a bioinformatics approach and in vitro experiments, we assessed the target genes of HON against breast cancer resistance to tamoxifen (TAM). Materials and methods Microarray data were obtained from GSE67916 and GSE85871 datasets to identify differentially expressed genes (DEGs). DEGs common between HON-treated and TAM-resistant cells were analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses and protein-protein interaction (PPI) networks were constructed. Selected genes were analyzed for genetic alterations, expression, prognostic value, and receiver operating characteristics (ROC). TAM-resistant MCF-7 (MCF-7 TAM-R) cells were generated and characterized for their resistance toward TAM. A combination of HON and TAM was used for cytotoxicity and gene expression analyses. Molecular docking was performed using the Molecular Operating Environment software. Results PPI network analysis revealed that FN1, FGFR2, and RET were the top three genes with the highest scores. A genetic alteration study of potential target genes revealed MMP16 and ERBB4 as the genes with the highest alterations among the breast cancer samples. Pathway enrichment analysis of FGFR2, RET, ERBB4, SOX2, FN1, and MMP16 showed that the genetic alterations herein were likely to impact the RTK-Ras pathway. The expression levels of RET, MMP16, and SOX2 were strongly correlated with prognostic power, with areas under the ROC curves (AUC) of 1, 0.8, and 0.8, respectively. The HON and TAM combination increased TAM cytotoxicity in MCF-7 TAM-R cells by regulating the expression of potential target genes ret, ERBB4, SOX2, and FN1, as well as the TAM resistance regulatory genes including HES1, VIM, PCNA, TP53, and CASP7. Molecular docking results indicated that HON tended to bind RET, ErbB4, and the receptor protein Notch1 ankyrin domain more robustly than its native ligand. Conclusion HON could overcome breast cancer resistance to TAM, potentially by targeting FGFR2, RET, ERBB4, MMP16, FN1, and SOX2. However, further studies are required to validate these results.
Collapse
Affiliation(s)
- Adam Hermawan
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, Indonesia
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, Indonesia
- Laboratory of Advanced Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, Indonesia
| | - Herwandhani Putri
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, Indonesia
| | - Naufa Hanif
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, Indonesia
| | - Nurul Fatimah
- Laboratory of Advanced Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, Indonesia
| | - Heri Himawan Prasetio
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, Indonesia
| |
Collapse
|
20
|
Szklener K, Mazurek M, Wieteska M, Wacławska M, Bilski M, Mańdziuk S. New Directions in the Therapy of Glioblastoma. Cancers (Basel) 2022; 14:5377. [PMID: 36358795 PMCID: PMC9655599 DOI: 10.3390/cancers14215377] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Glioblastoma is the most common histologic type of all gliomas and contributes to 57.3% of all cases. Despite the standard management based on surgical resection and radiotherapy, it is related to poor outcome, with a 5-year relative survival rate below 6.9%. In order to improve the overall outcome for patients, the new therapeutic strategies are needed. Herein, we describe the current state of knowledge on novel targeted therapies in glioblastoma. Based on recent studies, we compared treatment efficacy measured by overall survival and progression-free survival in patients treated with selected potential antitumor drugs. The results of the application of the analyzed inhibitors are highly variable despite the encouraging conclusions of previous preclinical studies. This paper focused on drugs that target major glioblastoma kinases. As far, the results of some BRAF inhibitors are favorable. Vemurafenib demonstrated a long-term efficacy in clinical trials while the combination of dabrafenib and trametinib improves PFS compared with both vemurafenib and dabrafenib alone. There is no evidence that any MEK inhibitor is effective in monotherapy. According to the current state of knowledge, BRAF and MEK inhibition are more advantageous than BRAF inhibitor monotherapy. Moreover, mTOR inhibitors (especially paxalisib) may be considered a particularly important group. Everolimus demonstrated a partial response in a significant proportion of patients when combined with bevacizumab, however its actual role in the treatment is unclear. Neither nintedanib nor pemigatinib were efficient in treatment of GBM. Among the anti-VEGF drugs, bevacizumab monotherapy was a well-tolerated option, significantly associated with anti-GBM activity in patients with recurrent GBM. The efficacy of aflibercept and pazopanib in monotherapy has not been demonstrated. Apatinib has been proven to be effective and tolerable by a single clinical trial, but more research is needed. Lenvatinib is under trial. Finally, promising results from a study with regorafenib may be confirmed by the ongoing randomized AGILE trial. The studies conducted so far have provided a relatively wide range of drugs, which are at least well tolerated and demonstrated some efficacy in the randomized clinical trials. The comprehensive understanding of the molecular biology of gliomas promises to further improve the treatment outcomes of patients.
Collapse
Affiliation(s)
- Katarzyna Szklener
- Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, 8 Jaczewski Street, 20-090 Lublin, Poland
| | - Marek Mazurek
- Department of Neurosurgery, Medical University of Lublin, 20-090 Lublin, Poland
| | - Małgorzata Wieteska
- Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, 8 Jaczewski Street, 20-090 Lublin, Poland
| | - Monika Wacławska
- Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, 8 Jaczewski Street, 20-090 Lublin, Poland
| | - Mateusz Bilski
- Department of Radiotherapy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Sławomir Mańdziuk
- Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, 8 Jaczewski Street, 20-090 Lublin, Poland
| |
Collapse
|
21
|
Li J, Ek F, Olsson R, Belting M, Bengzon J. Glioblastoma CD105 + cells define a SOX2 - cancer stem cell-like subpopulation in the pre-invasive niche. Acta Neuropathol Commun 2022; 10:126. [PMID: 36038950 PMCID: PMC9426031 DOI: 10.1186/s40478-022-01422-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/04/2022] [Indexed: 11/10/2022] Open
Abstract
Glioblastoma (GBM) is the most common and most aggressive primary brain tumor in adults. Glioma stem like cells (GSC) represent the highest cellular hierarchy in GBM and have a determining role in tumor growth, recurrence and patient prognosis. However, a better definition of GSC subpopulations, especially at the surgical resection margin, is warranted for improved oncological treatment options. The present study interrogated cells expressing CD105 (CD105+) specifically within the tumor front and the pre-invasive niche as a potential GSC subpopulation. GBM primary cell lines were generated from patients (n = 18) and CD105+ cells were isolated and assessed for stem-like characteristics. In vitro, CD105+ cells proliferated and enriched in serum-containing medium but not in serum-free conditions. CD105+ cells were characterized by Nestin+, Vimentin+ and SOX2-, clearly distinguishing them from SOX2+ GCS. GBM CD105+ cells differentiated into osteocytes and adipocytes but not chondrocytes. Exome sequencing revealed that GBM CD105+ cells matched 83% of somatic mutations in the Cancer cell line encyclopedia, indicating a malignant phenotype and in vivo xenotransplantation assays verified their tumorigenic potential. Cytokine assays showed that immunosuppressive and protumorigenic cytokines such as IL6, IL8, CCL2, CXCL-1 were produced by CD105+ cells. Finally, screening for 88 clinical drugs revealed that GBM CD105+ cells are resistant to most chemotherapeutics except Doxorubicin, Idarubicin, Fludarabine and ABT-751. Our study provides a rationale for targeting tumoral CD105+ cells in order to reshape the tumor microenvironment and block GBM progression.
Collapse
Affiliation(s)
- Jiaxin Li
- Stem Cell Center, Lund University, Lund, Sweden.
- Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden.
| | - Fredrik Ek
- Chemical Biology and Therapeutics, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Roger Olsson
- Chemical Biology and Therapeutics, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Mattias Belting
- Section of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
- Department of Hematology, Oncology and Radiophysics, Skane University Hospital, Lund, Sweden
- Science for Life Laboratory, Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden
| | - Johan Bengzon
- Stem Cell Center, Lund University, Lund, Sweden
- Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
- Department of Neurosurgery, Skane University Hospital, Lund, Sweden
| |
Collapse
|
22
|
Georgescu MM, Whipple SG, Notarianni CM. Novel neoplasms associated with syndromic pediatric medulloblastoma: integrated pathway delineation for personalized therapy. Cell Commun Signal 2022; 20:123. [PMID: 35978432 PMCID: PMC9382778 DOI: 10.1186/s12964-022-00930-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
Medulloblastoma is the most common pediatric embryonal brain tumor, and may occur in cancer predisposition syndromes. We describe novel associations of medulloblastoma with atypical prolactinoma and dural high-grade sarcoma in Li-Fraumeni syndrome (LFS), and epidural desmoid fibromatosis in familial adenomatous polyposis (FAP)/Turcot syndrome. Genomic analysis showing XRCC3 alterations suggested radiotherapy as contributing factor to the progression of LFS-associated medulloblastoma, and demonstrated different mechanisms of APC inactivation in the FAP-associated tumors. The integrated genomic-transcriptomic analysis uncovered the growth pathways driving tumorigenesis, including the prolactin-prolactin receptor (PRLR) autocrine loop and Shh pathway in the LFS-associated prolactinoma and medulloblastoma, respectively, the Wnt pathway in both FAP-associated neoplasms, and the TGFβ and Hippo pathways in the soft tissue tumors, regardless of germline predisposition. In addition, the comparative analysis of paired syndromic neoplasms revealed several growth pathways susceptible to therapeutic intervention by PARP, PRLR, and selective receptor tyrosine kinase (RTK) inhibitors. These could target the defective DNA damage repair in the LFS-associated medulloblastoma, the prolactin autocrine loop in the atypical prolactinoma, the EPHA3/7 and ALK overexpression in the FAP-associated medulloblastoma, and the multi-RTK upregulation in the soft tissue neoplasms. This study presents the spatiotemporal evolution of novel neoplastic associations in syndromic medulloblastoma, and discusses the post-radiotherapy risk for secondary malignancies in syndromic pediatric patients, with important implications for the biology, diagnosis, and therapy of these tumors. Video Abstract.
Collapse
Affiliation(s)
| | - Stephen G Whipple
- Department of Neurosurgery, Louisiana State University Shreveport, Shreveport, LA, 71103, USA
| | - Christina M Notarianni
- Department of Neurosurgery, Louisiana State University Shreveport, Shreveport, LA, 71103, USA
| |
Collapse
|
23
|
FGFR3-TACCs3 Fusions and Their Clinical Relevance in Human Glioblastoma. Int J Mol Sci 2022; 23:ijms23158675. [PMID: 35955806 PMCID: PMC9369421 DOI: 10.3390/ijms23158675] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/27/2022] [Accepted: 08/02/2022] [Indexed: 02/01/2023] Open
Abstract
Oncogenic fusion genes have emerged as successful targets in several malignancies, such as chronic myeloid leukemia and lung cancer. Fusion of the fibroblast growth receptor 3 and the transforming acidic coiled coil containing protein—FGFR3-TACC3 fusion—is prevalent in 3–4% of human glioblastoma. The fusion protein leads to the constitutively activated kinase signaling of FGFR3 and thereby promotes cell proliferation and tumor progression. The subgroup of FGFR3-TACC3 fusion-positive glioblastomas presents with recurrent clinical and histomolecular characteristics, defining a distinctive subtype of IDH-wildtype glioblastoma. This review aims to provide an overview of the available literature on FGFR3-TACC3 fusions in glioblastoma and possible implications for actual clinical practice.
Collapse
|
24
|
PLOD2 Is a Prognostic Marker in Glioblastoma That Modulates the Immune Microenvironment and Tumor Progression. Int J Mol Sci 2022; 23:ijms23116037. [PMID: 35682709 PMCID: PMC9181500 DOI: 10.3390/ijms23116037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 02/01/2023] Open
Abstract
This study aimed to investigate the role of Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase 2 (PLOD2) in glioblastoma (GBM) pathophysiology. To this end, PLOD2 protein expression was assessed by immunohistochemistry in two independent cohorts of patients with primary GBM (n1 = 204 and n2 = 203, respectively). Association with the outcome was tested by Kaplan−Meier, log-rank and multivariate Cox regression analysis in patients with confirmed IDH wild-type status. The biological effects and downstream mechanisms of PLOD2 were assessed in stable PLOD2 knock-down GBM cell lines. High levels of PLOD2 significantly associated with (p1 = 0.020; p2< 0.001; log-rank) and predicted (cohort 1: HR = 1.401, CI [95%] = 1.009−1.946, p1 = 0.044; cohort 2: HR = 1.493; CI [95%] = 1.042−2.140, p2 = 0.029; Cox regression) the poor overall survival of GBM patients. PLOD2 knock-down inhibited tumor proliferation, invasion and anchorage-independent growth. MT1-MMP, CD44, CD99, Catenin D1 and MMP2 were downstream of PLOD2 in GBM cells. GBM cells produced soluble factors via PLOD2, which subsequently induced neutrophils to acquire a pro-tumor phenotype characterized by prolonged survival and the release of MMP9. Importantly, GBM patients with synchronous high levels of PLOD2 and neutrophil infiltration had significantly worse overall survival (p < 0.001; log-rank) compared to the other groups of GBM patients. These findings indicate that PLOD2 promotes GBM progression and might be a useful therapeutic target in this type of cancer.
Collapse
|
25
|
Glioblastoma multiforme targeted delivery of docetaxel using bevacizumab-modified nanostructured lipid carriers impair in vitro cell growth and in vivo tumor progression. Int J Pharm 2022; 618:121682. [PMID: 35307470 DOI: 10.1016/j.ijpharm.2022.121682] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 11/20/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common malignant brain cancer, characterized by high invasiveness and poor prognosis. Docetaxel (DTX) is a chemotherapeutic drug with promising anti-tumor properties. However, conventional intravenous formulations exhibit side effects of systemic biodistribution and low brain bioavailability, limiting their clinical use. The current work aimed to evaluate the effect of DTX-loaded nanostructured lipid carriers (NLC) functionalized with bevacizumab (BVZ-NLC-DTX) against GBM using in vitro and in vivo models. The NLC was obtained by the fusion-emulsification method followed by sonication, with narrow size distribution, negative zeta potential, and low polydispersity index. NLC showed DTX entrapment efficiency above 90%. BVZ coupling efficiency was 62% and BVZ integrity after functionalization was confirmed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Calorimetry studies confirmed thermal stability and molecular dispersion of DTX in the lipid matrix. NLC showed a sustained DTX release over 84 h. In vitro anti-tumor assays shown that BVZ-NLC-DTX selectively increased the cytotoxic of DTX in cells overexpressing VEGF (U87MG and A172), but not in peripheral blood mononuclear cells (PMBCs), promoting cell death by apoptosis. BVZ functionalization did not impair cellular uptake. An in vivo orthotopic rat model demonstrated that free-DTX was not capable of reducing tumor growth whereas BVZ-NLC-DTX reduced up to 70% tumor volume after 15-days of treatment. Therefore, this study contributes to understanding new nanotechnology-based vehicles capable of reaching the brain more efficiently and repurposing the use of anti-cancer drugs in GBM treatment.
Collapse
|
26
|
Guo X, Chen T, Chen S, Song C, Shan D, Xu S, Xu S. Case Report: Identification of Multiple TERT and FGFR2 Gene Fusions in a Pineal Region Glioblastoma Case. Front Oncol 2021; 11:739309. [PMID: 34976798 PMCID: PMC8716851 DOI: 10.3389/fonc.2021.739309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 11/23/2021] [Indexed: 11/13/2022] Open
Abstract
As an oncogenic somatic variant, telomerase reverse transcriptase promoter (TERTp) mutations are frequently observed in adult glioblastoma (GBM). Alternatively, we report the first case of glioblastoma with TERT amplification accompanied by multiple TERT and FGFR2 gene fusions instead of TERTp mutation. A 55-year-old woman presented with dizziness, headache, and diplopia for three weeks. Magnetic resonance imaging (MRI) demonstrated a heterogeneously enhancing lobulated mass centered in the pineal region. Partial tumor resection and ventriculoperitoneal shunt were achieved, and the residual tumor was then treated with standard radiation. The tumor was diagnosed as GBM, IDH-wild type, WHO grade IV, and the Ki67 proliferation index was high (30–40%). Intriguingly, TERT amplification without TERTp mutation was identified via next generation sequencing (NGS). Further analysis revealed multiple TERT (TERT–NUBPL, MARCH6–TERT, and CJD4–TERT) and FGFR2 (CXCL17–FGFR2, SIPA1L3–FGFR2, FGFR2–SIPA1L3, and FGFR2–CEACAM1) gene fusions. After the surgery, the patient’s condition deteriorated rapidly due to the malignant nature of the tumor and she died with an overall survival of 3 months. Our report provides the molecular clue for a novel telomerase activation and maintenance mechanism in GBM.
Collapse
Affiliation(s)
- Xing Guo
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Teng Chen
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Shiming Chen
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, China
| | - Chao Song
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, China
| | - Dezhi Shan
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Shujun Xu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Shuo Xu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
- *Correspondence: Shuo Xu,
| |
Collapse
|
27
|
Aldaz P, Arozarena I. Tyrosine Kinase Inhibitors in Adult Glioblastoma: An (Un)Closed Chapter? Cancers (Basel) 2021; 13:5799. [PMID: 34830952 PMCID: PMC8616487 DOI: 10.3390/cancers13225799] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) is the most common and lethal form of malignant brain tumor. GBM patients normally undergo surgery plus adjuvant radiotherapy followed by chemotherapy. Numerous studies into the molecular events driving GBM highlight the central role played by the Epidermal Growth Factor Receptor (EGFR), as well as the Platelet-derived Growth Factor Receptors PDGFRA and PDGFRB in tumor initiation and progression. Despite strong preclinical evidence for the therapeutic potential of tyrosine kinase inhibitors (TKIs) that target EGFR, PDGFRs, and other tyrosine kinases, clinical trials performed during the last 20 years have not led to the desired therapeutic breakthrough for GBM patients. While clinical trials are still ongoing, in the medical community there is the perception of TKIs as a lost opportunity in the fight against GBM. In this article, we review the scientific rationale for the use of TKIs targeting glioma drivers. We critically analyze the potential causes for the failure of TKIs in the treatment of GBM, and we propose alternative approaches to the clinical evaluation of TKIs in GBM patients.
Collapse
Affiliation(s)
- Paula Aldaz
- Cancer Signaling Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), 31008 Pamplona, Spain
- Health Research Institute of Navarre (IdiSNA), 31008 Pamplona, Spain
| | - Imanol Arozarena
- Cancer Signaling Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), 31008 Pamplona, Spain
- Health Research Institute of Navarre (IdiSNA), 31008 Pamplona, Spain
| |
Collapse
|
28
|
Jin Q, Cheng M, Xia X, Han Y, Zhang J, Cao P, Zhou G. Down-regulation of MYH10 driven by chromosome 17p13.1 deletion promotes hepatocellular carcinoma metastasis through activation of the EGFR pathway. J Cell Mol Med 2021; 25:11142-11156. [PMID: 34738311 PMCID: PMC8650048 DOI: 10.1111/jcmm.17036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/28/2021] [Accepted: 10/21/2021] [Indexed: 11/30/2022] Open
Abstract
Somatic copy number alterations (CNAs) are a genomic hallmark of cancers. Among them, the chromosome 17p13.1 deletions are recurrent in hepatocellular carcinoma (HCC). Here, utilizing an integrative omics analysis, we screened out a novel tumour suppressor gene within 17p13.1, myosin heavy chain 10 (MYH10). We observed frequent deletions (~38%) and significant down‐regulation of MYH10 in primary HCC tissues. Deletion or decreased expression of MYH10 was a potential indicator of poor outcomes in HCC patients. Knockdown of MYH10 significantly promotes HCC cell migration and invasion in vitro, and overexpression of MYH10 exhibits opposite effects. Further, inhibition of MYH10 markedly potentiates HCC metastasis in vivo. We preliminarily elucidated the mechanism by which loss of MYH10 promotes HCC metastasis by facilitating EGFR pathway activation. In conclusion, our study suggests that MYH10, a candidate target gene for 17p13 deletion, acts as a tumour suppressor and may serve as a potential prognostic indicator for HCC patients.
Collapse
Affiliation(s)
- Qian Jin
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Institute of Radiation Medicine, Beijing, China
| | - Min Cheng
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Institute of Radiation Medicine, Beijing, China.,Collaborative Innovation Center for Personalized Cancer Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing City, China
| | - Xia Xia
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Institute of Lifeomics, Beijing, China
| | - Yuqing Han
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Institute of Radiation Medicine, Beijing, China
| | - Jing Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Institute of Radiation Medicine, Beijing, China.,College of Life Sciences, Hebei University, Baoding City, China
| | - Pengbo Cao
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Institute of Radiation Medicine, Beijing, China
| | - Gangqiao Zhou
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Institute of Radiation Medicine, Beijing, China.,Collaborative Innovation Center for Personalized Cancer Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing City, China.,College of Life Sciences, Hebei University, Baoding City, China
| |
Collapse
|
29
|
Tao Z, Liu J, Li T, Xu H, Chen K, Zhang J, Zhou H, Sun J, Han J, Guo Z, Yang H, Cao WM, Hu X. Profiling Receptor Tyrosine Kinase Fusions in Chinese Breast Cancers. Front Oncol 2021; 11:741142. [PMID: 34650924 PMCID: PMC8506003 DOI: 10.3389/fonc.2021.741142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/10/2021] [Indexed: 12/31/2022] Open
Abstract
Background Receptor tyrosine kinases (RTKs) are a class of tyrosine kinases that regulate cell-to-cell communication and control a variety of complex biological functions. Dysregulation of RTK signaling partly due to chromosomal rearrangements leads to novel tyrosine kinase fusion oncoproteins that are possibly driver alterations to cancers. Targeting some RTK fusions with specific tyrosine kinases inhibitors (TKIs) is an effective therapeutic strategy across a spectrum of RTK fusion-related cancers. However, there is still a paucity of extensive RTK fusion investigations in breast cancer. This study aims to characterize RTK fusions in Chinese breast cancer patients. Methods An in-house DNA sequencing database of 1440 Chinese breast cancer patients with a capture-based panel (520 gene or 108 gene-panel) was thoroughly reviewed. A total of 2,229 samples including 1,045 tissues and 1,184 plasmas were analyzed. RTK fusion was defined as an in-frame fusion with the tyrosine kinase domain of the RTK completely retained. Concomitant mutations were also analyzed and tumor mutational burden (TMB) was calculated. Patients' clinical characteristics were retrieved from case records. Results A total of 30 RTK fusion events were identified from 27 breast cancer patients with a prevalence of 1.875%%. FGFR2 fusions were seen the most commonly (n=7), followed by RET (n=5), ROS1 (n=3), NTRK3 (n=3), BRAF (n=2), and NTRK1 (n=2). Other RTK fusions including ALK, EGFR, FGFR1, FGFR3, MET, and NTRK2 were identified in one patient each. A total of 27 unique resultant fusion proteins (22 with a novel partner) were discovered including 19 intrachromosomal rearrangements and 8 interchromosomal ones. Twenty-one fusions had the tyrosine kinase domain in-frame fused with a partner gene and six were juxtaposed with an intergenic space. Among the 27 fusions, FGFR2-WDR11 (E17: intergenic) (n=3) and ETV6-NTRK3 (E5:E15) (n=2) occurred recurrently. Of note, the normalized abundance of RTK fusion (fusion AF/max AF) correlated negatively with TMB (r=-0.48, P=0.017). Patients with TMB < 8 (Mutations/Mb) displayed a higher fusion abundance than those with TMB ≥ 8 (Mutations/Mb) (P=0.025). Moreover, CREBBP mutation only co-occurred with FGFR2 fusion (P=0.012), while NTRK3 fusion and TP53 mutation were mutually exclusive (P=0.019). Conclusion This is the first study comprehensively delineating the prevalence and spectrum of RTK fusions in Chinese breast cancers. Further study is ongoing to identify the enriched subpopulation who may benefit from RTK fusion inhibitors.
Collapse
Affiliation(s)
- Zhonghua Tao
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianxia Liu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ting Li
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hong Xu
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Kai Chen
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jian Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hao Zhou
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jie Sun
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jinming Han
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhaoji Guo
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hua Yang
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, China
| | - Wen-Ming Cao
- Department of Breast Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| | - Xichun Hu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
30
|
Georgescu MM. Multi-Platform Classification of IDH-Wild-Type Glioblastoma Based on ERK/MAPK Pathway: Diagnostic, Prognostic and Therapeutic Implications. Cancers (Basel) 2021; 13:4532. [PMID: 34572759 PMCID: PMC8470497 DOI: 10.3390/cancers13184532] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/27/2021] [Accepted: 09/07/2021] [Indexed: 12/30/2022] Open
Abstract
Glioblastoma is the most aggressive and frequent glioma in the adult population. Because current therapy regimens confer only minimal survival benefit, molecular subgrouping to stratify patient prognosis and therapy design is warranted. This study presents a multi-platform classification of glioblastoma by analyzing a large, ethnicity-inclusive 101-adult-patient cohort. It defines seven non-redundant IDH-wild-type glioblastoma molecular subgroups, G1-G7, corresponding to the upstream receptor tyrosine kinase (RTK) and RAS-RAF segment of the ERK/MAPK signal transduction pathway. These glioblastoma molecular subgroups are classified as G1/EGFR, G2/FGFR3, G3/NF1, G4/RAF, G5/PDGFRA, G6/Multi-RTK, and G7/Other. The comprehensive genomic analysis was refined by expression landscaping of all RTK genes, as well as of the major associated growth pathway mediators, and used to hierarchically cluster the subgroups. Parallel demographic, clinical, and histologic pattern analyses were merged with the molecular subgrouping to yield the first inclusive multi-platform classification for IDH-wild-type glioblastoma. This straightforward classification with diagnostic and prognostic significance may be readily used in neuro-oncological practice and lays the foundation for personalized targeted therapy approaches.
Collapse
|