1
|
Borza R, Matas-Rico E, Perrakis A, Moolenaar WH. Unlocking the signaling potential of GPI-anchored proteins through lipolytic cleavage. Trends Cell Biol 2025:S0962-8924(24)00278-2. [PMID: 39848861 DOI: 10.1016/j.tcb.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/25/2025]
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins (APs) regulate numerous biological processes through interaction with signaling effectors at the cell surface. As a unique feature, GPI-APs can be released from their anchors by multi-pass GPI-specific phospholipases (types A2, C, and D) to impact signaling networks, phenotype, and cell fate; however, many questions remain outstanding. Here, we discuss and expand our current understanding of the distinct GPI-specific phospholipases, their substrates, effector pathways, and emerging physiological roles, with a focus on the six-transmembrane ecto-phospholipases GDE2 (GDPD5) and GDE3 (GDPD2). We provide structural insight into their AlphaFold-predicted inner workings, revealing how transmembrane (TM) domain plasticity may enable GPI-anchor binding and hydrolysis. Understanding lipolytic cleavage of GPI-APs adds a new dimension to their signaling capabilities and biological functions.
Collapse
Affiliation(s)
- Razvan Borza
- Division of Biochemistry, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Elisa Matas-Rico
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, Málaga, Spain; IBIMA Plataforma BIONAND, Málaga, Spain
| | - Anastassis Perrakis
- Division of Biochemistry, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Wouter H Moolenaar
- Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
2
|
Shuler KT, Llamas-Rodriguez J, Levy-Myers R, Sockanathan S. The Six-Transmembrane Enzyme GDE2 Is Required for the Release of Molecularly Distinct Small Extracellular Vesicles from Neurons. Cells 2024; 13:1414. [PMID: 39272985 PMCID: PMC11394063 DOI: 10.3390/cells13171414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/17/2024] [Accepted: 08/18/2024] [Indexed: 09/15/2024] Open
Abstract
Extracellular vesicles (EVs) are implicated in a multitude of physiological and pathophysiological processes in the nervous system; however, their biogenesis and cargoes are not well defined. Glycerophosphodiester Phosphodiesterase 2 (GDE2 or GDPD5) is a six-transmembrane protein that cleaves the Glycosylphosphatidylinositol (GPI)-anchor that tethers some proteins to the membrane and has important roles in neurodevelopment and disease-relevant pathways of neuronal survival. We show here that GDE2 regulates the number of small EVs (sEVs) released from the cell surface of neurons via its GPI-anchor cleavage activity and contributes to the loading of protein cargo through enzymatic and non-enzymatic mechanisms. Proteomic profiling reveals that GDE2 releases at least two distinct EV populations, one containing GDE2 itself and the other harboring the putative ectosomal markers CD9 and BSG. sEVs released by GDE2 are enriched in cytoskeletal and actin-remodeling proteins, suggesting a potential mechanism for GDE2-dependent EV release. Further, sEV populations released by GDE2 are enriched in proteins responsible for modulating synaptic activity and proteins that are critical for cellular redox homeostasis. These studies identify GDE2 as a novel regulator of molecularly distinct sEV populations from neurons with potential roles in the synaptic and redox pathways required for neuronal function and survival.
Collapse
Affiliation(s)
- Kyle T. Shuler
- The Solomon Snyder Department of Neuroscience, The Johns Hopkins School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205, USA; (K.T.S.); (J.L.-R.); (R.L.-M.)
| | - Josue Llamas-Rodriguez
- The Solomon Snyder Department of Neuroscience, The Johns Hopkins School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205, USA; (K.T.S.); (J.L.-R.); (R.L.-M.)
| | - Reuben Levy-Myers
- The Solomon Snyder Department of Neuroscience, The Johns Hopkins School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205, USA; (K.T.S.); (J.L.-R.); (R.L.-M.)
- Department of Neurosciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 90293, USA
| | - Shanthini Sockanathan
- The Solomon Snyder Department of Neuroscience, The Johns Hopkins School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205, USA; (K.T.S.); (J.L.-R.); (R.L.-M.)
| |
Collapse
|
3
|
Briand-Mésange F, Gennero I, Salles J, Trudel S, Dahan L, Ausseil J, Payrastre B, Salles JP, Chap H. From Classical to Alternative Pathways of 2-Arachidonoylglycerol Synthesis: AlterAGs at the Crossroad of Endocannabinoid and Lysophospholipid Signaling. Molecules 2024; 29:3694. [PMID: 39125098 PMCID: PMC11314389 DOI: 10.3390/molecules29153694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/27/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
2-arachidonoylglycerol (2-AG) is the most abundant endocannabinoid (EC), acting as a full agonist at both CB1 and CB2 cannabinoid receptors. It is synthesized on demand in postsynaptic membranes through the sequential action of phosphoinositide-specific phospholipase Cβ1 (PLCβ1) and diacylglycerol lipase α (DAGLα), contributing to retrograde signaling upon interaction with presynaptic CB1. However, 2-AG production might also involve various combinations of PLC and DAGL isoforms, as well as additional intracellular pathways implying other enzymes and substrates. Three other alternative pathways of 2-AG synthesis rest on the extracellular cleavage of 2-arachidonoyl-lysophospholipids by three different hydrolases: glycerophosphodiesterase 3 (GDE3), lipid phosphate phosphatases (LPPs), and two members of ecto-nucleotide pyrophosphatase/phosphodiesterases (ENPP6-7). We propose the names of AlterAG-1, -2, and -3 for three pathways sharing an ectocellular localization, allowing them to convert extracellular lysophospholipid mediators into 2-AG, thus inducing typical signaling switches between various G-protein-coupled receptors (GPCRs). This implies the critical importance of the regioisomerism of both lysophospholipid (LPLs) and 2-AG, which is the object of deep analysis within this review. The precise functional roles of AlterAGs are still poorly understood and will require gene invalidation approaches, knowing that both 2-AG and its related lysophospholipids are involved in numerous aspects of physiology and pathology, including cancer, inflammation, immune defenses, obesity, bone development, neurodegeneration, or psychiatric disorders.
Collapse
Affiliation(s)
- Fabienne Briand-Mésange
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
| | - Isabelle Gennero
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Centre Hospitalier Universitaire de Toulouse, Service de Biochimie, Institut Fédératif de Biologie, 31059 Toulouse, France
| | - Juliette Salles
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Centre Hospitalier Universitaire de Toulouse, Service de Psychiatrie D’urgences, de Crise et de Liaison, Institut des Handicaps Neurologiques, Psychiatriques et Sensoriels, 31059 Toulouse, France
| | - Stéphanie Trudel
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Centre Hospitalier Universitaire de Toulouse, Service de Biochimie, Institut Fédératif de Biologie, 31059 Toulouse, France
| | - Lionel Dahan
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France;
| | - Jérôme Ausseil
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Centre Hospitalier Universitaire de Toulouse, Service de Biochimie, Institut Fédératif de Biologie, 31059 Toulouse, France
| | - Bernard Payrastre
- I2MC-Institute of Metabolic and Cardiovascular Diseases, INSERM UMR1297 and University of Toulouse III, 31400 Toulouse, France;
- Centre Hospitalier Universitaire de Toulouse, Laboratoire d’Hématologie, 31400 Toulouse, France
| | - Jean-Pierre Salles
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Centre Hospitalier Universitaire de Toulouse, Unité d’Endocrinologie et Maladies Osseuses, Hôpital des Enfants, 31059 Toulouse, France
| | - Hugues Chap
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Académie des Sciences, Inscriptions et Belles Lettres de Toulouse, Hôtel d’Assézat, 31000 Toulouse, France
| |
Collapse
|
4
|
Zhang N, Westerhaus A, Wilson M, Wang E, Goff L, Sockanathan S. Physiological regulation of neuronal Wnt activity is essential for TDP-43 localization and function. EMBO J 2024; 43:3388-3413. [PMID: 38918634 PMCID: PMC11329687 DOI: 10.1038/s44318-024-00156-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/31/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
Nuclear exclusion of the RNA- and DNA-binding protein TDP-43 can induce neurodegeneration in different diseases. Diverse processes have been implicated to influence TDP-43 mislocalization, including disrupted nucleocytoplasmic transport (NCT); however, the physiological pathways that normally ensure TDP-43 nuclear localization are unclear. The six-transmembrane enzyme glycerophosphodiester phosphodiesterase 2 (GDE2 or GDPD5) cleaves the glycosylphosphatidylinositol (GPI) anchor that tethers some proteins to the membrane. Here we show that GDE2 maintains TDP-43 nuclear localization by regulating the dynamics of canonical Wnt signaling. Ablation of GDE2 causes aberrantly sustained Wnt activation in adult neurons, which is sufficient to cause NCT deficits, nuclear pore abnormalities, and TDP-43 nuclear exclusion. Disruption of GDE2 coincides with TDP-43 abnormalities in postmortem tissue from patients with amyotrophic lateral sclerosis (ALS). Further, GDE2 deficits are evident in human neural cell models of ALS, which display erroneous Wnt activation that, when inhibited, increases mRNA levels of genes regulated by TDP-43. Our study identifies GDE2 as a critical physiological regulator of Wnt signaling in adult neurons and highlights Wnt pathway activation as an unappreciated mechanism contributing to nucleocytoplasmic transport and TDP-43 abnormalities in disease.
Collapse
Affiliation(s)
- Nan Zhang
- The Solomon Snyder Department of Neuroscience, The Johns Hopkins School of Medicine, 725 N Wolfe Street, Baltimore, MD, 21205, USA
| | - Anna Westerhaus
- The Solomon Snyder Department of Neuroscience, The Johns Hopkins School of Medicine, 725 N Wolfe Street, Baltimore, MD, 21205, USA
| | - Macey Wilson
- The Solomon Snyder Department of Neuroscience, The Johns Hopkins School of Medicine, 725 N Wolfe Street, Baltimore, MD, 21205, USA
- Department of Cellular Biology, University of Georgia, Biological Sciences 302, 120 Cedar St., Athens, GA, 30602, USA
| | - Ethan Wang
- The Solomon Snyder Department of Neuroscience, The Johns Hopkins School of Medicine, 725 N Wolfe Street, Baltimore, MD, 21205, USA
| | - Loyal Goff
- The Solomon Snyder Department of Neuroscience, The Johns Hopkins School of Medicine, 725 N Wolfe Street, Baltimore, MD, 21205, USA
- McKusick-Nathans Department of Genetic Medicine, Kavli Neurodiscovery Institute, The Johns Hopkins School of Medicine, 725 N Wolfe Street, Baltimore, MD, 21205, USA
| | - Shanthini Sockanathan
- The Solomon Snyder Department of Neuroscience, The Johns Hopkins School of Medicine, 725 N Wolfe Street, Baltimore, MD, 21205, USA.
| |
Collapse
|
5
|
Daudelin D, Westerhaus A, Zhang N, Leyder E, Savonenko A, Sockanathan S. Loss of GDE2 leads to complex behavioral changes including memory impairment. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2024; 20:7. [PMID: 38575965 PMCID: PMC10993612 DOI: 10.1186/s12993-024-00234-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) and amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD) are debilitating neurodegenerative diseases for which there are currently no cures. Familial cases with known genetic causes make up less than 10% of these diseases, and little is known about the underlying mechanisms that contribute to sporadic disease. Accordingly, it is important to expand investigations into possible pathways that may contribute to disease pathophysiology. Glycerophosphodiester phosphodiesterase 2 (GDE2 or GDPD5) is a membrane-bound enzyme that acts at the cell surface to cleave the glycosylphosphatidylinositol (GPI)-anchor that tethers distinct proteins to the membrane. GDE2 abnormally accumulates in intracellular compartments in the brain of patients with AD, ALS, and ALS/FTD, indicative of GDE2 dysfunction. Mice lacking GDE2 (Gde2KO) show neurodegenerative changes such as neuronal loss, reduced synaptic proteins and synapse loss, and increased Aβ deposition, raising the possibility that GDE2 disruption in disease might contribute to disease pathophysiology. However, the effect of GDE2 loss on behavioral function and learning/memory has not been characterized. RESULTS Here, we show that GDE2 is expressed throughout the adult mouse brain in areas including the cortex, hippocampus, habenula, thalamus, and amygdala. Gde2KO and WT mice were tested in a set of behavioral tasks between 7 and 16 months of age. Compared to WT, Gde2KO mice display moderate hyperactivity that becomes more pronounced with age across a variety of behavioral tests assessing novelty-induced exploratory activity. Additionally, Gde2KO mice show reduced startle response, with females showing additional defects in prepulse inhibition. No changes in anxiety-associated behaviors were found, but Gde2KOs show reduced sociability. Notably, aged Gde2KO mice demonstrate impaired short/long-term spatial memory and cued fear memory/secondary contextual fear acquisition. CONCLUSIONS Taken together, these observations suggest that loss of GDE2 leads to behavioral deficits, some of which are seen in neurodegenerative disease models, implying that loss of GDE2 may be an important contributor to phenotypes associated with neurodegeneration.
Collapse
Affiliation(s)
- Daniel Daudelin
- The Solomon Snyder Department of Neuroscience, The Johns Hopkins School of Medicine, PCTB 1004, 725 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Anna Westerhaus
- The Solomon Snyder Department of Neuroscience, The Johns Hopkins School of Medicine, PCTB 1004, 725 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Nan Zhang
- The Solomon Snyder Department of Neuroscience, The Johns Hopkins School of Medicine, PCTB 1004, 725 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Erica Leyder
- Department of Pathology, The Johns Hopkins University School of Medicine, 558 Ross Research Building, 720 Rutland Avenue, Baltimore, MD, 21205, USA
- Molecular Microbiology and Immunology Graduate Program in Life Sciences, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD, 21201, USA
| | - Alena Savonenko
- Department of Pathology, The Johns Hopkins University School of Medicine, 558 Ross Research Building, 720 Rutland Avenue, Baltimore, MD, 21205, USA.
- Sensory-Motor Neuroscience (SMN), Center for Scientific Review, ICN Review Branch, National Institutes of Health, 6701 Rockledge Drive, Suite 1010-F, Bethesda, MD, 20892 , USA.
| | - Shanthini Sockanathan
- The Solomon Snyder Department of Neuroscience, The Johns Hopkins School of Medicine, PCTB 1004, 725 N. Wolfe Street, Baltimore, MD, 21205, USA.
| |
Collapse
|
6
|
Hejazian SM, Pirmoradi S, Zununi Vahed S, Kumar Roy R, Hosseiniyan Khatibi SM. An update on Glycerophosphodiester Phosphodiesterases; From Bacteria to Human. Protein J 2024; 43:187-199. [PMID: 38491249 DOI: 10.1007/s10930-024-10190-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/29/2024] [Indexed: 03/18/2024]
Abstract
The hydrolysis of deacylated glycerophospholipids into sn-glycerol 3-phosphate and alcohol is facilitated by evolutionarily conserved proteins known as glycerophosphodiester phosphodiesterases (GDPDs). These proteins are crucial for the pathogenicity of bacteria and for bioremediation processes aimed at degrading organophosphorus esters that pose a hazard to both humans and the environment. Additionally, GDPDs are enzymes that respond to multiple nutrients and could potentially serve as candidate genes for addressing deficiencies in zinc, iron, potassium, and especially phosphate in important plants like rice. In mammals, glycerophosphodiesterases (GDEs) play a role in regulating osmolytes, facilitating the biosynthesis of anandamine, contributing to the development of skeletal muscle, promoting the differentiation of neurons and osteoblasts, and influencing pathological states. Due to their capacity to enhance a plant's ability to tolerate various nutrient deficiencies and their potential as pharmaceutical targets in humans, GDPDs have received increased attention in recent times. This review provides an overview of the functions of GDPD families as vital and resilient enzymes that regulate various pathways in bacteria, plants, and humans.
Collapse
Affiliation(s)
| | - Saeed Pirmoradi
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Electrical Engineering, K.N. Toosi University of Technology, Tehran, Iran
| | | | | | - Seyed Mahdi Hosseiniyan Khatibi
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Oh S, Jang Y, Na CH. Discovery of Biomarkers for Amyotrophic Lateral Sclerosis from Human Cerebrospinal Fluid Using Mass-Spectrometry-Based Proteomics. Biomedicines 2023; 11:biomedicines11051250. [PMID: 37238921 DOI: 10.3390/biomedicines11051250] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/11/2023] [Accepted: 04/18/2023] [Indexed: 05/28/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by the loss of upper and lower motor neurons, which eventually may lead to death. Critical to the mission of developing effective therapies for ALS is the discovery of biomarkers that can illuminate mechanisms of neurodegeneration and have diagnostic, prognostic, or pharmacodynamic value. Here, we merged unbiased discovery-based approaches and targeted quantitative comparative analyses to identify proteins that are altered in cerebrospinal fluid (CSF) from patients with ALS. Mass spectrometry (MS)-based proteomic approaches employing tandem mass tag (TMT) quantification methods from 40 CSF samples comprising 20 patients with ALS and 20 healthy control (HC) individuals identified 53 proteins that are differential between the two groups after CSF fractionation. Notably, these proteins included both previously identified ones, validating our approach, and novel ones that have the potential for expanding biomarker repertoire. The identified proteins were subsequently examined using parallel reaction monitoring (PRM) MS methods on 61 unfractionated CSF samples comprising 30 patients with ALS and 31 HC individuals. Fifteen proteins (APOB, APP, CAMK2A, CHI3L1, CHIT1, CLSTN3, ERAP2, FSTL4, GPNMB, JCHAIN, L1CAM, NPTX2, SERPINA1, SERPINA3, and UCHL1) showed significant differences between ALS and the control. Taken together, this study identified multiple novel proteins that are altered in ALS, providing the foundation for developing new biomarkers for ALS.
Collapse
Affiliation(s)
- Sungtaek Oh
- Department of Neurology, Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70170, USA
| | - Yura Jang
- Department of Neurology, Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Chan Hyun Na
- Department of Neurology, Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| |
Collapse
|