1
|
Hassan SH, Simiele M, Scippa GS, Morabito D, Trupiano D. Omics advancements towards exploring arsenic toxicity and tolerance in plants: a review. PLANTA 2025; 261:79. [PMID: 40044842 PMCID: PMC11882645 DOI: 10.1007/s00425-025-04646-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 02/16/2025] [Indexed: 03/09/2025]
Abstract
MAIN CONCLUSION Omics approaches provide comprehensive insights into plant arsenic stress responses, setting the stage for engineering arsenic-tolerant crops. Understanding arsenic (As) toxicity in plants is crucial for environmental and agricultural sustainability, considering the implications of As in impacting soil productivity and environmental health. Although some articles already examined the detailed molecular mechanisms behind As toxicity and tolerance, a comprehensive review of recent omics advancements in studying plant responses to As exposure is needed. The present review highlights the valuable contribution of omics approaches (genomics, transcriptomics, proteomics, and metabolomics) to characterize the intricate response to As overall, which could empower As-tolerant plant development. Genomic techniques, such as QTL mapping, GWAS, RAPD, and SSH, hold the potential to provide valuable insights into the genetic diversity and expression patterns associated with the plant response to As stress, highlighting also the power of new advanced technology such as CRISPR-Cas9. Transcriptomics approaches (e.g., microarrays and RNA sequencing) revealed gene expression patterns in plants under As stress, emphasizing the role of sulfur metabolism in As tolerance. Proteomics, using 2-DE combined with MALDI-ToF MS or ESI-MS/MS, offers insights into the stress-inducible proteins and their involvement in As toxicity mitigation, while iTRAQ-based proteomics enabled an understanding of cultivar-specific responses under high As concentration. Metabolomics, with LC-MS, GC-MS, (U)HPLC, and NMR, elucidated small molecule alterations and complex metabolic activities occurring under As plant exposure. Compendium of data and evidence-related tools offers a foundation for advancing As-tolerant plant development and promoting environmental and agricultural resilience.
Collapse
Affiliation(s)
- Sayyeda Hira Hassan
- Department of Biosciences and Territory, University of Molise, Pesche, IS, Italy
| | - Melissa Simiele
- Department of Biosciences and Territory, University of Molise, Pesche, IS, Italy
| | | | - Domenico Morabito
- University of Orleans, LBLGC EA 1207, INRAe-USC1328, Orleans, France
| | - Dalila Trupiano
- Department of Biosciences and Territory, University of Molise, Pesche, IS, Italy.
| |
Collapse
|
2
|
Wang Y, Wang W, Chi X, Cheng M, Wang T, Zhan X, Bai Y, Shen C, Li X. Analysis and Identification of Genes Associated with the Desiccation Sensitivity of Panax notoginseng Seeds. PLANTS (BASEL, SWITZERLAND) 2023; 12:3881. [PMID: 38005778 PMCID: PMC10674602 DOI: 10.3390/plants12223881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023]
Abstract
Panax notoginseng (Burk.) F. H. Chen, a species of the genus Panax, radix has been traditionally used to deal with various hematological diseases and cardiovascular diseases since ancient times in East Asia. P. notoginseng produces recalcitrant seeds which are sensitive to desiccation and difficult to store for a long time. However, few data are available on the mechanism of the desiccation sensitivity of P. notoginseng seeds. To gain a comprehensive perspective of the genes associated with desiccation sensitivity, cDNA libraries from seeds under control and desiccation processes were prepared independently for Illumina sequencing. The data generated a total of 70,189,896 reads that were integrated and assembled into 55,097 unigenes with a mean length of 783 bp. In total, 12,025 differentially expressed genes (DEGs) were identified during the desiccation process. Among these DEGs, a number of central metabolism, hormonal network-, fatty acid-, and ascorbate-glutathione-related genes were included. Our data provide a comprehensive resource for identifying the genes associated with the desiccation sensitivity of P. notoginseng seeds.
Collapse
Affiliation(s)
- Yanan Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Y.W.); (X.C.); (M.C.); (T.W.); (Y.B.)
| | - Weiqing Wang
- Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China;
| | - Xiulian Chi
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Y.W.); (X.C.); (M.C.); (T.W.); (Y.B.)
| | - Meng Cheng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Y.W.); (X.C.); (M.C.); (T.W.); (Y.B.)
| | - Tielin Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Y.W.); (X.C.); (M.C.); (T.W.); (Y.B.)
| | - Xiaori Zhan
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 310036, China; (X.Z.); (C.S.)
| | - Yunjun Bai
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Y.W.); (X.C.); (M.C.); (T.W.); (Y.B.)
| | - Chenjia Shen
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 310036, China; (X.Z.); (C.S.)
| | - Xiaolin Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Y.W.); (X.C.); (M.C.); (T.W.); (Y.B.)
| |
Collapse
|
3
|
González-Moscoso M, Juárez-Maldonado A, Cadenas-Pliego G, Meza-Figueroa D, SenGupta B, Martínez-Villegas N. Silicon nanoparticles decrease arsenic translocation and mitigate phytotoxicity in tomato plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:34147-34163. [PMID: 35034295 DOI: 10.1007/s11356-021-17665-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 11/17/2021] [Indexed: 06/14/2023]
Abstract
In this study, we simulate the irrigation of tomato plants with arsenic (As)-contaminated water (from 0 to 3.2 mg L-1) and investigate the effect of the application of silicon nanoparticle (Si NPs) in the form of silicon dioxide (0, 250, and 1000 mg L-1) on As uptake and stress. Arsenic concentrations were determined in substrate and plant tissue at three different stratums. Phytotoxicity, As accumulation and translocation, photosynthetic pigments, and antioxidant activity of enzymatic and non-enzymatic compounds were also determined. Our results show that irrigation of tomato plants with As-contaminated water caused As substrate enrichment and As bioaccumulation (roots > leaves > steam), showing that the higher the concentration in irrigation water, the farther As translocated through the different tomato stratums. Additionally, phytotoxicity was observed at low concentrations of As, while tomato yield increased at high concentrations of As. We found that application of Si NPs decreased As translocation, tomato yield, and root biomass. Increased production of photosynthetic pigments and improved enzymatic activity (CAT and APX) suggested tomato plant adaptation at high As concentrations in the presence of Si NPs. Our results reveal likely impacts of As and nanoparticles on tomato production in places where As in groundwater is common and might represent a risk.
Collapse
Affiliation(s)
- Magín González-Moscoso
- Doctorado en Agricultura Protegida, Universidad Autónoma Agraria Antonio Narro, Calzada Antonio Narro 1923, Buenavista, 25315, Saltillo, Coahuila, México
| | - Antonio Juárez-Maldonado
- Departamento de Botánica, Universidad Autónoma Agraria Antonio Narro, Calzada Antonio Narro 1923, 25315, Saltillo, Coahuila, México
| | - Gregorio Cadenas-Pliego
- Centro de Investigación en Química Aplicada, Enrique Reyna H 140, 25294, Saltillo, Coahuila, México
| | - Diana Meza-Figueroa
- Departamento de Geología, Universidad de Sonora, Blvd. Luis Encinas J, Calle Av. Rosales &, Centro, 83000, Hermosillo, Sonora, México
| | - Bhaskar SenGupta
- School of Energy, Geoscience, Infrastructure & Society, Water Academy, Heriot-Watt University, EGIS 2.02A William Arrol Building, Scotland, EH14 4AS, UK
| | - Nadia Martínez-Villegas
- IPICyT, Instituto Potosino de Investigación Científica Y Tecnológica, Camino a La Presa San José No. 2055, Col. Lomas 4a Sec., 78216, San Luis Potosí, SLP, México.
| |
Collapse
|
4
|
Yang Z, Yang F, Liu JL, Wu HT, Yang H, Shi Y, Liu J, Zhang YF, Luo YR, Chen KM. Heavy metal transporters: Functional mechanisms, regulation, and application in phytoremediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151099. [PMID: 34688763 DOI: 10.1016/j.scitotenv.2021.151099] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 05/22/2023]
Abstract
Heavy metal pollution in soil is a global problem with serious impacts on human health and ecological security. Phytoextraction in phytoremediation, in which plants uptake and transport heavy metals (HMs) to the tissues of aerial parts, is the most environmentally friendly method to reduce the total amount of HMs in soil and has wide application prospects. However, the molecular mechanism of phytoextraction is still under investigation. The uptake, translocation, and retention of HMs in plants are mainly mediated by a variety of transporter proteins. A better understanding of the accumulation strategy of HMs via transporters in plants is a prerequisite for the improvement of phytoextraction. In this review, the biochemical structure and functions of HM transporter families in plants are systematically summarized, with emphasis on their roles in phytoremediation. The accumulation mechanism and regulatory pathways related to hormones, regulators, and reactive oxygen species (ROS) of HMs concerning these transporters are described in detail. Scientific efforts and practices for phytoremediation carried out in recent years suggest that creation of hyperaccumulators by transgenic or gene editing techniques targeted to these transporters and their regulators is the ultimate powerful path for the phytoremediation of HM contaminated soils.
Collapse
Affiliation(s)
- Zi Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fan Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jia-Lan Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hai-Tao Wu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hao Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yi Shi
- Guangdong Kaiyuan Environmental Technology Co., Ltd, Dongguan 523000, China
| | - Jie Liu
- Guangdong Kaiyuan Environmental Technology Co., Ltd, Dongguan 523000, China
| | - Yan-Feng Zhang
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling 712100, Shaanxi, China
| | - Yan-Rong Luo
- Guangdong Kaiyuan Environmental Technology Co., Ltd, Dongguan 523000, China.
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
5
|
Li JJ, Yang L, Miao CP, Teng YJ, Fu ZH, Cheng CL, Chang XX, Qian Y, Zhao LX. Impact of rhizosphere microorganisms on arsenic (As) transformation and accumulation in a traditional Chinese medical plant. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:60923-60934. [PMID: 34165739 DOI: 10.1007/s11356-021-14500-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 05/17/2021] [Indexed: 06/13/2023]
Abstract
Panax notoginseng is an important traditional medicinal plant, but the commercial value is threatened by root-rot disease caused by rhizosphere microbes and a potential health risk caused by plant arsenic (As) accumulation. Whether rhizospheric microbes isolated from P. notoginseng rhizosphere soil could impact As uptake and transport into P. notoginseng is not yet known. Among the three root-rot disease-causing pathogens Fusarium flocciferum (PG 1), Fusarium oxysporum (PG 2), and Fusarium solani (PG 3) and one root-rot disease biocontrol fungus Trichoderma koningiopsis (FC 1) and five biocontrol-exerting bacterial species Bacillus siamensis (BC 1), Delftia acidovorans (BC 2), Brevibacillus formosus (BC 3), Mortierella alpine (BC 4), and Bacillus subtilis (BC 5), one As-resistant pathogen and four biocontrol microorganisms with As-resistant ability were identified. The As-transforming ability of the identified fungi and bacteria was ranked in the order of FC 1 > PG 1 and BC 2 > BC 3 > BC 1, respectively. Then, the As-resistant biocontrol and pathogenic microbes were initiated to colonize the rhizosphere of 1-year-old P. notoginseng seedlings growing in artificially As(V)-contaminated soil to evaluate the impact of microbe inoculation on P. notoginseng As uptake and transport capacity. Concentration of As in P. notoginseng tissues decreased in the order of the sequence stem > root > leaf. Compared to treatment without colonization by microorganism, inoculation with microorganisms increased As root uptake efficiency and root As concentration, especially under treatment of inoculation by BC 2 and PG 1 + BC 2. As transport efficiency from root to stem decreased by inoculation with microorganism, especially under treatment with inoculation of BC 2 and PG 1 + BC 2. However, the impact of microorganism colonization on As stem to leaf transport efficiency was not obvious. In summary, inoculation with rhizosphere microbes may increase As accumulation in P. notoginseng root, especially when using bacteria with high As transformation ability. Therefore, it is necessary to evaluate the As transformation capacity before applying biological control microorganism to the rhizosphere of P. notoginseng.
Collapse
Affiliation(s)
- Jiao-Jiao Li
- School of Ecology and Environmental Sciences, Yunnan University, No. 2 Cuihu North Road, Kunming, 650091, People's Republic of China
| | - Long Yang
- School of Ecology and Environmental Sciences, Yunnan University, No. 2 Cuihu North Road, Kunming, 650091, People's Republic of China
| | - Cui-Ping Miao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, No. 2 Cuihu North Road, Kunming, 650091, People's Republic of China
| | - Ya-Jun Teng
- Technology Center of Kunming Customs District P. R. China, Kunming, 650000, Yunnan, People's Republic of China
| | - Zi-Hao Fu
- School of Ecology and Environmental Sciences, Yunnan University, No. 2 Cuihu North Road, Kunming, 650091, People's Republic of China
| | - Chang-Lei Cheng
- Analysis and Measurements Center of Yunnan Provincial Non-ferrous Geology Bureau, Kunming, 650051, Yunnan, People's Republic of China
| | - Xue-Xiu Chang
- School of Ecology and Environmental Sciences, Yunnan University, No. 2 Cuihu North Road, Kunming, 650091, People's Republic of China
| | - Yu Qian
- School of Ecology and Environmental Sciences, Yunnan University, No. 2 Cuihu North Road, Kunming, 650091, People's Republic of China.
| | - Li-Xing Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, No. 2 Cuihu North Road, Kunming, 650091, People's Republic of China.
- Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091, People's Republic of China.
| |
Collapse
|
6
|
Luo L, Wang B, Jiang J, Fitzgerald M, Huang Q, Yu Z, Li H, Zhang J, Wei J, Yang C, Zhang H, Dong L, Chen S. Heavy Metal Contaminations in Herbal Medicines: Determination, Comprehensive Risk Assessments, and Solutions. Front Pharmacol 2021; 11:595335. [PMID: 33597875 PMCID: PMC7883644 DOI: 10.3389/fphar.2020.595335] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 11/05/2020] [Indexed: 02/05/2023] Open
Abstract
Heavy metal contamination in herbal medicines is a global threat to human beings especially at levels above known threshold concentrations. The concentrations of five heavy metals cadmium (Cd), lead (Pb), arsenic (As), mercury (Hg) and copper (Cu) were investigated using Inductively Coupled Plasma Optical Mass Spectrometry (ICP-MS) with 1773 samples around the world. According to Chinese Pharmacopoeia, 30.51% (541) samples were detected with at least one over-limit metal. The over-limit ratio for Pb was 5.75% (102), Cd at 4.96% (88), As at 4.17% (74), Hg at 3.78% (67), and of Cu, 1.75% (31). For exposure assessment, Pb, Cd, As, and Hg have resulted in higher than acceptable risks in 25 kinds of herbs. The maximal Estimated Daily Intake of Pb in seven herbs, of Cd in five, of Hg in four, and As in three exceeded their corresponding Provisional Tolerable Daily Intakes. In total 25 kinds of herbs present an unacceptable risk as assessed with the Hazard Quotient or Hazard Index. Additionally, the carcinogenic risks were all under acceptable limits. Notably, As posed the highest risk in all indicators including Estimated Daily Intake, Hazard Index, and carcinogenic risks. Therefore further study on enrichment effect of different states of As and special attention to monitoring shall be placed on As related contamination.
Collapse
Affiliation(s)
- Lu Luo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bo Wang
- Hubei Institute for Drug Control, Wuhan, China
| | - Jingwen Jiang
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Martin Fitzgerald
- Department of Life Sciences, University of Westminster, London, United Kingdom
| | - Qin Huang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zheng Yu
- College of Medical Information and Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hui Li
- Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Jiqing Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jianhe Wei
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, China
| | - Chenyuyan Yang
- Institute of Medical Information, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui Zhang
- Akupunktur Akademiet, Hovedgaard, Denmark
| | - Linlin Dong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shilin Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Till 2018: a survey of biomolecular sequences in genus Panax. J Ginseng Res 2020; 44:33-43. [PMID: 32095095 PMCID: PMC7033366 DOI: 10.1016/j.jgr.2019.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 06/07/2019] [Accepted: 06/12/2019] [Indexed: 12/22/2022] Open
Abstract
Ginseng is popularly known to be the king of ancient medicines and is used widely in most of the traditional medicinal compositions due to its various pharmaceutical properties. Numerous studies are being focused on this plant's curative effects to discover their potential health benefits in most human diseases, including cancer- the most life-threatening disease worldwide. Modern pharmacological research has focused mainly on ginsenosides, the major bioactive compounds of ginseng, because of their multiple therapeutic applications. Various issues on ginseng plant development, physiological processes, and agricultural issues have also been studied widely through state-of-the-art, high-throughput sequencing technologies. Since the beginning of the 21st century, the number of publications on ginseng has rapidly increased, with a recent count of more than 6,000 articles and reviews focusing notably on ginseng. Owing to the implementation of various technologies and continuous efforts, the ginseng plant genomes have been decoded effectively in recent years. Therefore, this review focuses mainly on the cellular biomolecular sequences in ginseng plants from the perspective of the central molecular dogma, with an emphasis on genomes, transcriptomes, and proteomes, together with a few other related studies.
Collapse
|
8
|
Fan H, Li K, Yao F, Sun L, Liu Y. Comparative transcriptome analyses on terpenoids metabolism in field- and mountain-cultivated ginseng roots. BMC PLANT BIOLOGY 2019; 19:82. [PMID: 30782123 PMCID: PMC6381674 DOI: 10.1186/s12870-019-1682-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/11/2019] [Indexed: 05/09/2023]
Abstract
BACKGROUND There exist differences in morphological traits and phytochemical compositions between field- and mountain-cultivated Panax ginseng (FCG and MCG), which might be attributed to variations of terpenoids metabolism adapting to different growth conditions. The present work aims to uncover these variations. RESULTS Among 26,648 differentially expressed genes, 496 genes distributed in seven dominant terpenoids pathways were identified. Diterpenoids and triterpenoids biosynthesis genes were significantly higher-expressed in FCG root. Conversely, biosynthesis of carotenoids was significantly more active in MCG root. Additionally, terpenoids backbones, monoterpenoids, sesquiterpenoids, and terpenoid-quinones biosyntheses were neither obviously inclined. Our determination also revealed that there were more gibberellins and steroids accumulated in FCG root which might be responsible for its quick vegetative growth, and enriched abscisic acid and germacrenes as well as protopanaxatriol-type ginsenosides might be major causes of enhanced stress-resistance in MCG root. CONCLUSIONS The study firstly provided an overview of terpenoids metabolism in roots of FCG and MCG in elucidating the underlying mechanisms for their different morphological appearances and phytochemical compositions.
Collapse
Affiliation(s)
- Hang Fan
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Qinghuadonglu No. 35, Haidian District, Beijing, 100083 China
| | - Ke Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Qinghuadonglu No. 35, Haidian District, Beijing, 100083 China
- Research Institute of Advanced Eco-Environmental Protection Technology, Beijing Forestry University, Qinghuadonglu No. 35, Haidian District, Beijing, 100083 China
| | - Fan Yao
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Qinghuadonglu No. 35, Haidian District, Beijing, 100083 China
| | - Liwei Sun
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Qinghuadonglu No. 35, Haidian District, Beijing, 100083 China
| | - Yujun Liu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Qinghuadonglu No. 35, Haidian District, Beijing, 100083 China
| |
Collapse
|