1
|
Yeniterzi D, Cevher SC, Kandur Baglicakoglu S, Ucar AD, Durukan MB, Haciefendioglu T, Yildirim E, Cirpan A, Unalan HE, Soylemez S. Two-Dimensional TiS 2 Nanosheet- and Conjugated Polymer Nanoparticle-Based Composites for Sensing Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:22960-22972. [PMID: 39402945 PMCID: PMC11526354 DOI: 10.1021/acs.langmuir.4c03102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/30/2024]
Abstract
The assessment of phenolic compounds in food samples, environmental samples, and medical applications has gained importance recently. Here, we present research on novel conjugated polymer nanoparticles (P-PimBzBt NPs) and their composites with two-dimensional titanium disulfide nanosheets (2D-TiS2) for electrochemical tyrosinase (TYR)-based catechol detection. P-PimBzBt NPs are decorated with 2D-TiS2 to enhance the electrochemical performance for biosensing. In addition, the interaction of P-PimBzBt NPs with TiS2 was investigated at the molecular level by employing van der Waals (vdW) dispersion-corrected density functional theory (DFT) calculations and classical all-atom molecular dynamics simulations. According to the theoretical studies, the presence of the TiS2 layer increases the interfacial interaction with the conjugated polymer via electrostatic interactions. Using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), field emission scanning electron microscopy (FE-SEM), and energy-dispersive X-ray spectroscopy (EDS) analyses, the production of SPE/TiS2@P-PimBzBt NPs/TYR nanobiosensors was examined. With a detection range of 3.0-27.5 μM, 0.33 μM LOD, and 3.89 μA/μM·cm2 sensitivity values, the sensing layer based on the TiS2@P-PimBzBt NP composites has a targeting ability toward catechol. Its selectivity was investigated using commonly used interfering ions and compounds such as citric acid, urea, glucose, uric acid, KCl, and NaCl. Application of nanobiosensors to actual samples (tap water and black tea) was carried out with high accuracy. The fabricated biosensing platform demonstrates that P-PimBzBt NPs with 2D-TiS2 nanomaterial functionalization are appropriate as electrode materials and could be used to create an inexpensive, fast-response, and highly selective electrochemical biosensor for the detection of catechol in actual samples.
Collapse
Affiliation(s)
- D. Yeniterzi
- Department
of Biomedical Engineering, Necmettin Erbakan
University, 42090 Konya, Türkiye
- Science
and Technology Research and Application Center (BİTAM), Necmettin Erbakan University, 42090 Konya, Türkiye
| | - S. C. Cevher
- Department
of Chemistry, Middle East Technical University, 06800 Ankara, Türkiye
| | - S. Kandur Baglicakoglu
- Department
of Metallurgical and Materials Engineering, Middle East Technical University (METU), 06800 Ankara, Türkiye
| | - A. D. Ucar
- Department
of Metallurgical and Materials Engineering, Middle East Technical University (METU), 06800 Ankara, Türkiye
| | - M. B. Durukan
- Department
of Metallurgical and Materials Engineering, Middle East Technical University (METU), 06800 Ankara, Türkiye
| | - T. Haciefendioglu
- Department
of Chemistry, Middle East Technical University, 06800 Ankara, Türkiye
| | - E. Yildirim
- Department
of Chemistry, Middle East Technical University, 06800 Ankara, Türkiye
| | - A. Cirpan
- Department
of Chemistry, Middle East Technical University, 06800 Ankara, Türkiye
| | - H. E. Unalan
- Department
of Metallurgical and Materials Engineering, Middle East Technical University (METU), 06800 Ankara, Türkiye
- Energy
Storage Materials and Devices Research Center (ENDAM), Middle East Technical University (METU), 06800 Ankara, Türkiye
| | - S. Soylemez
- Department
of Biomedical Engineering, Necmettin Erbakan
University, 42090 Konya, Türkiye
- Science
and Technology Research and Application Center (BİTAM), Necmettin Erbakan University, 42090 Konya, Türkiye
| |
Collapse
|
2
|
Chadchan KS, Teradale AB, Ganesh PS, Das SN. Simultaneous sensing of mesalazine and folic acid at poly (murexide) modified glassy carbon electrode surface. MATERIALS CHEMISTRY AND PHYSICS 2022; 290:126538. [DOI: 10.1016/j.matchemphys.2022.126538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
|
3
|
Khan MM, Yousuf MA, Ahamed P, Alauddin M, Tonu NT. Electrochemical Detection of Dihydroxybenzene Isomers at a Pencil Graphite Based Electrode. ACS OMEGA 2022; 7:29391-29405. [PMID: 36033678 PMCID: PMC9404491 DOI: 10.1021/acsomega.2c03651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
In this work, an HB pencil electrode (HBPE) was electrochemically modified by amino acids (AAs) glycine (GLY) and aspartic acid (ASA) and designated as GLY-HB and ASA-HB electrodes. They were used in the detection of dihydroxybenzene isomers (DHBIs) such as hydroquinone (HQ), catechol (CC), and resorcinol (RS), by cyclic voltammetry (CV), and by differential pulse voltammetry. HBPE was characterized by scanning electron microscopy and energy-dispersive X-ray spectroscopy. These three electrodes showed a linear relationship of current with concentration of DHBIs, and the electrochemical processes were diffusion controlled in all cases. In simultaneous detection, the limit of detection, based on signal-to-noise ratio (S/N = 3), for HQ, CC, and RS was 12.473, 16.132, and 25.25 μM, respectively, at bare HBPE; 5.498, 7.119, and 14.794 μM, respectively, at GLY-HB; and 22.459, 25.478, and 38.303 μM, respectively, at ASA-HB. The sensitivity for HQ, CC, and RS was 470.481, 363.781, and 232.416 μA/mM/cm2, respectively, at bare HBPE; 364.785, 282.712, and 135.560 μA/mM/cm2, respectively, at GLY-HB; and 374.483, 330.108, and 219.574, respectively, at ASA-HB. The interference studies clarified the suitability and reliability of the electrodes for the detection of HQ, CC, and RS in an environmental system. Real sample analysis was done using tap water, and the proposed electrodes expressed recovery with high reproducibility. Meanwhile, these three electrodes have excellent sensitivity and selectivity, which can be used as a promising technique for the detection of DHBIs simultaneously.
Collapse
Affiliation(s)
- Md. Muzahedul
I. Khan
- Department
of Chemistry, Khulna University of Engineering
and Technology, Khulna 9203, Bangladesh
| | - Mohammad A. Yousuf
- Department
of Chemistry, Khulna University of Engineering
and Technology, Khulna 9203, Bangladesh
| | - Parbhej Ahamed
- Department
of Chemistry, Khulna University of Engineering
and Technology, Khulna 9203, Bangladesh
| | - Mohammad Alauddin
- Department
of Theoretical and Computational Chemistry, University of Dhaka, Dhaka 1000, Bangladesh
| | - Nusrat T. Tonu
- Department
of Chemistry, Khulna University of Engineering
and Technology, Khulna 9203, Bangladesh
- Chemistry
Discipline, Khulna University, Khulna 9208, Bangladesh
| |
Collapse
|
4
|
Teradale AB, Ganesh PS, Lamani SD, Swamy BEK, Das SN. Electrochemical investigation of allopurinol polymerised carbon paste electrode interface for epinephrine and folic acid sensing in pharmaceutical samples. MATERIALS RESEARCH INNOVATIONS 2022; 26:295-302. [DOI: 10.1080/14328917.2021.1975988] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/29/2021] [Indexed: 07/23/2024]
Affiliation(s)
- Amit. B. Teradale
- PG Department of Chemistry, BLDEA’s S.B. Arts and K.C.P. Science College, Vijayapur, Karnataka, India
| | - Pattan Siddappa Ganesh
- Department of PG Studies and Research in Industrial Chemistry, Kuvempu University, Shankaraghatta, Shimoga, Karnataka, India
| | - Shekar. D. Lamani
- PG Department of Chemistry, BLDEA’s S.B. Arts and K.C.P. Science College, Vijayapur, Karnataka, India
| | - B. E. K Swamy
- Department of PG Studies and Research in Industrial Chemistry, Kuvempu University, Shankaraghatta, Shimoga, Karnataka, India
| | - Swastika. N. Das
- Department of Chemistry, BLDEA’s College of Engineering and Technology, Vijayapur- 586103, Affiliated to Visvesvaraya Technological University, Belagavi, Karnataka, India
| |
Collapse
|
5
|
Jahani PM, Aflatoonian MR, Rayeni RA, Di Bartolomeo A, Mohammadi SZ. Graphite carbon nitride-modified screen-printed electrode as a highly sensitive and selective sensor for detection of amaranth. Food Chem Toxicol 2022; 163:112962. [DOI: 10.1016/j.fct.2022.112962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/12/2022] [Accepted: 03/22/2022] [Indexed: 12/27/2022]
|
6
|
Ganesh PS, Kim SY, Kaya S, Salim R. An experimental and theoretical approach to electrochemical sensing of environmentally hazardous dihydroxy benzene isomers at polysorbate modified carbon paste electrode. Sci Rep 2022; 12:2149. [PMID: 35140315 PMCID: PMC8828899 DOI: 10.1038/s41598-022-06207-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/19/2022] [Indexed: 12/20/2022] Open
Abstract
It is well known that, surfactants provide a neutral, positive and/or negative charge on the electrode surface by forming a monolayer, which in turn affects the charge transfer and redox potential during the electroanalysis process. However, the molecular level understanding of these surfactant-modified electrodes is worth investigating because the interaction of the analyte with the electrode surface is still unclear. In this report, we used quantum chemical models based on computational density functional theory (DFT) to investigate the polysorbate 80 structure as well as the locations of energy levels and electron transfer sites. Later, the bare carbon paste electrode (bare/CPE) was modified with polysorbate 80 and used to resolve the overlapped oxidation signals of dihydroxy benzene isomers. The m/n values obtained at polysorbate/CPE was approximately equal to 1, signifying the transfer of same number of protons and electrons. Moreover, the analytical applicability of the modified electrode for the determination of catechol (CC) and hydroquinone (HQ) in tap water samples gave an acceptable recovery result. Overall, the application of DFT to understand the molecular level interaction of modifiers for sensing applications laid a new foundation for fabricating electrochemical sensors.
Collapse
Affiliation(s)
- Pattan-Siddappa Ganesh
- Interaction Laboratory, Advanced Technology Research Center, Future Convergence Engineering, Korea University of Technology and Education, Cheonan-si, 31253, Chungcheongnam-do, Republic of Korea
| | - Sang-Youn Kim
- Interaction Laboratory, Advanced Technology Research Center, Future Convergence Engineering, Korea University of Technology and Education, Cheonan-si, 31253, Chungcheongnam-do, Republic of Korea.
| | - Savas Kaya
- Department of Pharmacy, Health Services Vocational School, Sivas Cumhuriyet University, Sivas, 58140, Turkey
| | - Rajae Salim
- Laboratory of Engineering, Organometallic, Molecular and Environment (LIMOME), Faculty of Science, University Sidi Mohamed Ben Abdellah, Fez, Morocco
| |
Collapse
|
7
|
Pushpanjali PA, Manjunatha JG, Hareesha N, Girish T, Al-Kahtani AA, Tighezza AM, Ataollahi N. Electrocatalytic Determination of Hydroxychloroquine Using Sodium Dodecyl Sulphate Modified Carbon Nanotube Paste Electrode. Top Catal 2022:1-9. [PMID: 35075339 PMCID: PMC8769944 DOI: 10.1007/s11244-022-01568-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2021] [Indexed: 12/19/2022]
Abstract
Selective, sensitive, easy, and fast voltammetric techniques were developed for the analysis of Hydroxychloroquine (HCQ). These analysis were carried out at sodium dodecyl sulphate modified carbon nanotube paste electrode (SDSMCNTPE) using an aqueous 0.2 M phosphate buffer solution as supporting electrolyte. The field emission-scanning electron microscopy, cyclic voltammetry (CV), and electrochemical impedance spectroscopy were used for material characterization. A minute quantity of the SDS surfactant was sufficient to convey an outstanding electrocatalytic action to the electrochemical oxidation nature of HCQ. The HCQ molecule parades only electrochemical oxidation (irreversible) with the transfer of two electrons. The detection of HCQ was carried out through CV method at SDSMCNTPE and bare carbon nanotube paste electrode (BCNTPE). The corresponding analytical curve offered a decent linear nature in the considered HCQ concentration range (10-40 µM) and the detection limit was found to be 0.85 µM. The significant peak to peak split-up was observed between HCQ and interferents with a decent sensitivity and stability. The SDSMCNTPE to be an approachable electrode for the usage in the examination of HCQ independently and in the presence of paracetamol (PC) and ascorbic acid (AA). Thus, they were used to determine HCQ in pharmaceutical formulations and the results that showed good agreement with comparative methods. Furthermore, a mechanism for HCQ electro-oxidation was proposed.
Collapse
Affiliation(s)
- P. A. Pushpanjali
- Department of Chemistry, FMKMC College, Constituent College of Mangalore University, Madikeri, Karnataka India
| | - J. G. Manjunatha
- Department of Chemistry, FMKMC College, Constituent College of Mangalore University, Madikeri, Karnataka India
| | - N. Hareesha
- Department of Chemistry, FMKMC College, Constituent College of Mangalore University, Madikeri, Karnataka India
| | - T. Girish
- Department of Chemistry, FMKMC College, Constituent College of Mangalore University, Madikeri, Karnataka India
| | - Abdullah A. Al-Kahtani
- Chemistry Department, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451 Saudi Arabia
| | - Ammar Mohamed Tighezza
- Chemistry Department, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451 Saudi Arabia
| | - Narges Ataollahi
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano, 77, 38123 Trento, Italy
| |
Collapse
|
8
|
Ganesh PS, Kim SY, Choi DS, Kaya S, Serdaroğlu G, Shimoga G, Shin EJ, Lee SH. Electrochemical investigations and theoretical studies of biocompatible niacin-modified carbon paste electrode interface for electrochemical sensing of folic acid. J Anal Sci Technol 2021; 12:47. [DOI: 10.1186/s40543-021-00301-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/14/2021] [Indexed: 12/27/2022] Open
Abstract
AbstractThe modified electrode–analyte interaction is critical in establishing the sensing mechanism and in developing an electrochemical sensor. Here, the niacin-modified carbon paste electrode (NC/CPE) was fabricated for electrochemical sensing applications. The two stable structures of the niacin were optimized and confirmed by the absence of negative vibrational frequency, at B3LYP and B3LYP-GD3BJ level and 6–311 g** basis set. The physical and quantum chemical quantities were used to explain the molecular stability and electronic structure-related properties of the niacin. The natural bond orbital (NBO) analysis was performed to disclose the donor–acceptor interactions that were a critical role in explaining the modifier–analyte interaction. The fabricated NC/CPE was used for the determination of folic acid (FA) in physiological pH by cyclic voltammetry (CV) method. The limit of detection (LOD) for FA at NC/CPE was calculated to be 0.09 µM in the linear concentration range of 5.0 µM to 45.0 µM (0.2 M PBS, pH 7.4) by CV technique. The analytical applicability of the NC/CPE was evaluated in real samples, such as fruit juice and pharmaceutical sample, and the obtained results were acceptable. The HOMO and LUMO densities are used to identify the nucleophilic and electrophilic regions of niacin. The use of density functional theory-based quantum chemical simulations to understand the sensory performance of the modifier has laid a new foundation for fabricating electrochemical sensing platforms.
Collapse
|
9
|
Nayem SMA, Sultana N, Islam T, Hasan MM, Awal A, Roy SC, Aziz MA, Ahammad AJS. Porous tal palm carbon nanosheets as a sensing material for simultaneous detection of hydroquinone and catechol. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- S. M. Abu Nayem
- Department of Chemistry Jagannath University Dhaka Bangladesh
| | - Nasrin Sultana
- Department of Chemistry Jagannath University Dhaka Bangladesh
| | - Tamanna Islam
- Department of Chemistry Jagannath University Dhaka Bangladesh
| | | | - Abdul Awal
- Department of Chemistry Jagannath University Dhaka Bangladesh
| | | | - Md. Abdul Aziz
- Center of Research Excellence in Nanotechnology King Fahd University of Petroleum and Minerals Dhahran Saudi Arabia
| | | |
Collapse
|