1
|
Cancelliere AM, Galletta M, Arrigo A, Fazio E, Campagna S, Puntoriero F. Photophysical Properties of Homo- and Hetero-Aggregate Assemblies Made of N-Annulated Perylene Derivatives. Chemistry 2023; 29:e202302588. [PMID: 37671982 DOI: 10.1002/chem.202302588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/06/2023] [Accepted: 09/06/2023] [Indexed: 09/07/2023]
Abstract
We report the absorption spectra and photophysical properties of homo and hetero-aggregate assemblies of a strongly emissive N-annulated perylene dye (P) and of a dyad made of P and a methyl viologen derivative (P-MV), in ethanol-water solutions. In homo-aggregate assemblies of P, the π-π* fluorescence of the isolated chromophore is replaced by excimer emission at lower energy, with a lifetime of 900 ps, due to excimer formation from the initially prepared excitons. In homo-aggregate assemblies of P-MV, photoinduced charge separation, with formation of P+ -MV- species, occurs in 3 ps with a charge recombination of 20 ps. In hetero-aggregate P/P-MV systems, the light energy absorbed by the P components delocalizes over various P subunits, and when a P-MV unit is reached, charge separation occurs; however, excimer emission is present for P/P-MV ratio larger than 3 : 1, indicating that delocalized excitons within the hetero-aggregate systems extend over a limited number of P chromophores.
Collapse
Affiliation(s)
- Ambra M Cancelliere
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina e Centro Interuniversitario di Ricerca sulla Conversione Chimica dell'Energia Solare (SOLAR-CHEM, sede di Messina), Via F. Stagno d'Alcontres 31, Messina, 98166, Italy
| | - Maurilio Galletta
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina e Centro Interuniversitario di Ricerca sulla Conversione Chimica dell'Energia Solare (SOLAR-CHEM, sede di Messina), Via F. Stagno d'Alcontres 31, Messina, 98166, Italy
| | - Antonino Arrigo
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina e Centro Interuniversitario di Ricerca sulla Conversione Chimica dell'Energia Solare (SOLAR-CHEM, sede di Messina), Via F. Stagno d'Alcontres 31, Messina, 98166, Italy
| | - Enza Fazio
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università di Messina, Via F. Stagno d'Alcontres 31, Messina, 98166, Italy
| | - Sebastiano Campagna
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina e Centro Interuniversitario di Ricerca sulla Conversione Chimica dell'Energia Solare (SOLAR-CHEM, sede di Messina), Via F. Stagno d'Alcontres 31, Messina, 98166, Italy
| | - Fausto Puntoriero
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina e Centro Interuniversitario di Ricerca sulla Conversione Chimica dell'Energia Solare (SOLAR-CHEM, sede di Messina), Via F. Stagno d'Alcontres 31, Messina, 98166, Italy
| |
Collapse
|
2
|
Matsumoto W, Naito M, Danjo H. Preparation of spiroborate supramolecular and peapod polymers containing a photoluminescent ruthenium(ii) complex. RSC Adv 2023; 13:25002-25006. [PMID: 37622015 PMCID: PMC10445220 DOI: 10.1039/d3ra03940d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
The immobilization of functional metal complexes onto polymer supports remains one of the most important research areas. In this study, we prepared spiroborate supramolecular and peapod polymers containing a cationic photoluminescent ruthenium(ii) complex. The supramolecular polymer was obtained by mixing spiroborate cyclic trimer bearing homoallyl group and a ruthenium(ii) tris(bipyridyl) complex, and was further converted into the corresponding peapod polymer by olefin metathesis polymerization. The structure of these polymers was determined by 1H NMR, dynamic light scattering, inductively coupled plasma-atomic emission spectroscopy, energy dispersive X-ray analyses, and atomic force microscopy. The absorption and emission behaviors of the ruthenium(ii) complex were almost the same for the free form and the supramolecular polymer in the mixed solvent of N,N-dimethylformamide and chloroform, although the emission intensity decreased when the chloroform portion was increased. On the other hand, the hypsochromism was observed upon the emission of the ruthenium(ii) complex in the peapod polymer, probably due to the rigidochromic effect of the tight encapsulation by the peapod structure.
Collapse
Affiliation(s)
- Wako Matsumoto
- Graduate School of Natural Science, Konan University 8-9-1 Okamoto, Higashinada Kobe 658-8501 Japan
| | - Muneyuki Naito
- Department of Chemistry, Konan University 8-9-1 Okamoto, Higashinada Kobe 658-8501 Japan
| | - Hiroshi Danjo
- Department of Chemistry, Konan University 8-9-1 Okamoto, Higashinada Kobe 658-8501 Japan
| |
Collapse
|
3
|
Badiei YM, Annon O, Maldonado C, Delgado E, Nguyen C, Rivera C, Li C, Ortega AF. Single‐Site Molecular Ruthenium(II) Water‐Oxidation Catalysts Grafted into a Polymer‐Modified Surface for Improved Stability and Efficiency. ChemElectroChem 2023. [DOI: 10.1002/celc.202300028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- Yosra M. Badiei
- Department of Chemistry Saint Peter's University 07306 Jersey City New Jersey USA
| | - Oshane Annon
- Department of Chemistry Saint Peter's University 07306 Jersey City New Jersey USA
| | - Christina Maldonado
- Department of Chemistry Saint Peter's University 07306 Jersey City New Jersey USA
| | - Emily Delgado
- Department of Chemistry Saint Peter's University 07306 Jersey City New Jersey USA
| | - Caroline Nguyen
- Department of Chemistry Saint Peter's University 07306 Jersey City New Jersey USA
| | - Christina Rivera
- Department of Chemistry Saint Peter's University 07306 Jersey City New Jersey USA
| | - Clive Li
- Department of STEM Hudson County Community College 07306 Jersey City NJ USA
| | - Abril Flores Ortega
- Department of Chemistry Saint Peter's University 07306 Jersey City New Jersey USA
| |
Collapse
|
4
|
Li S, Park S, Sherman BD, Yoo CG, Leem G. Photoelectrochemical approaches for the conversion of lignin at room temperature. Chem Commun (Camb) 2023; 59:401-413. [PMID: 36519448 DOI: 10.1039/d2cc05491d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The selective cleavage of C-C/C-O linkages represents a key step toward achieving the chemical conversion of biomass to targeted value-added chemical products under ambient conditions. Using photoelectrosynthetic solar cells is a promising method to address the energy intensive depolymerization of lignin for the production of biofuels and valuable chemicals. This feature article gives an in-depth overview of recent progress using dye-sensitized photoelectrosynthetic solar cells (DSPECs) to initiate the cleavage of C-C/C-O bonds in lignin and related model compounds. This approach takes advantage of N-oxyl mediated catalysis in organic electrolytes and presents a promising direction for the sustainable production of chemicals currently derived from fossil fuels.
Collapse
Affiliation(s)
- Shuya Li
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, Syracuse, New York 13210, USA.
| | - Seongsu Park
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, Syracuse, New York 13210, USA.
| | - Benjamin D Sherman
- Department of Chemistry & Biochemistry, Texas Christian University, Fort Worth, Texas 76129, USA
| | - Chang Geun Yoo
- Department of Chemical Engineering, State University of New York College of Environmental Science and Forestry, Syracuse, New York 13210, USA.,The Michael M. Szwarc Polymer Research Institute, Syracuse, New York 13210, USA
| | - Gyu Leem
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, Syracuse, New York 13210, USA. .,The Michael M. Szwarc Polymer Research Institute, Syracuse, New York 13210, USA
| |
Collapse
|
5
|
Li S, Shuler EW, Willinger D, Nguyen HT, Kim S, Kang HC, Lee JJ, Zheng W, Yoo CG, Sherman BD, Leem G. Enhanced Photocatalytic Alcohol Oxidation at the Interface of RuC-Coated TiO 2 Nanorod Arrays. ACS APPLIED MATERIALS & INTERFACES 2022; 14:22799-22809. [PMID: 35195406 DOI: 10.1021/acsami.1c20795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Visible-light-driven organic oxidations carried out under mild conditions offer a sustainable approach to performing chemical transformations important to the chemical industry. This work reports an efficient photocatalytic benzyl alcohol oxidation process using one-dimensional (1D) TiO2 nanorod (NR)-based photoanodes with surface-adsorbed ruthenium polypyridyl photocatalysts at room temperature. The photocatalyst bis(2,2'-bipyridine)(4,4'-dicarboxy-2,2'-bipyridine)Ru(II) (RuC) was covalently anchored onto TiO2 nanorod arrays grown on fluorine-doped tin oxide (FTO) electrode surfaces (FTO|t-TiO2|RuC, t = the thickness of TiO2 NR). Under aerobic conditions, the photophysical and photocatalytic properties of FTO|t-TiO2|RuC (t = 1, 2, or 3.5 μm) photoanodes were investigated in a solution containing a hydrogen atom transfer mediator (4-acetamido-2,2,6,6-tetramethylpiperidine-N-oxyl, ACT) as cocatalyst. Dye-sensitized photoelectrochemical cells (DSPECs) using the FTO|t-TiO2|RuC (t = 1, 2, or 3.5 μm) photoanodes and ACT-containing electrolyte were investigated for carrying out photocatalytic oxidation of a lignin model compound containing a benzylic alcohol functional group. The best-performing anode surface, FTO|1-TiO2|RuC (shortest NR length), oxidized the 2° alcohol of the lignin model compound to the Cα-ketone form with a > 99% yield over a 4 h photocatalytic experiment with a Faradaic efficiency of 88%. The length of TiO2 NR arrays (TiO2 NRAs) on the FTO substrate influenced the photocatalytic performance with longer NRAs underperforming compared to the shorter arrays. The influence of the NR length is hypothesized to affect the homogeneity of the RuC coating and accessibility of the ACT mediator to the RuC-coated TiO2 surface. The efficient photocatalytic alcohol oxidation with visible light at room temperature as demonstrated in this study is important to the development of sustainable approaches for lignin depolymerization and biomass conversion.
Collapse
Affiliation(s)
- Shuya Li
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, Syracuse, New York 13210, United States
| | - Eric Wolfgang Shuler
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, Syracuse, New York 13210, United States
| | - Debora Willinger
- Department of Chemistry and Biochemistry, College of Science and Engineering, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Hai Tien Nguyen
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, Syracuse, New York 13210, United States
| | - Saerona Kim
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, Syracuse, New York 13210, United States
| | - Hyeong Cheol Kang
- Department of Energy and Materials Engineering, Research Center for Photoenergy Harvesting & Conversion Technology (phct), Dongguk University, Seoul 04620, Republic of Korea
| | - Jae-Joon Lee
- Department of Energy and Materials Engineering, Research Center for Photoenergy Harvesting & Conversion Technology (phct), Dongguk University, Seoul 04620, Republic of Korea
| | - Weiwei Zheng
- Department of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Chang Geun Yoo
- Department of Chemical Engineering, State University of New York College of Environmental Science and Forestry, Syracuse, New York 13210, United States
- The Michael M. Szwarc Polymer Research Institute, 1 Forestry Drive, Syracuse, New York 13210, United States
| | - Benjamin D Sherman
- Department of Chemistry and Biochemistry, College of Science and Engineering, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Gyu Leem
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, Syracuse, New York 13210, United States
- The Michael M. Szwarc Polymer Research Institute, 1 Forestry Drive, Syracuse, New York 13210, United States
| |
Collapse
|
6
|
Ahmed A, Azam A, Wang Y, Zhang Z, Li N, Jia C, Mushtaq RT, Rehman M, Gueye T, Shahid MB, Wajid BA. Additively manufactured nano-mechanical energy harvesting systems: advancements, potential applications, challenges and future perspectives. NANO CONVERGENCE 2021; 8:37. [PMID: 34851459 PMCID: PMC8633623 DOI: 10.1186/s40580-021-00289-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/11/2021] [Indexed: 05/14/2023]
Abstract
Additively manufactured nano-MEH systems are widely used to harvest energy from renewable and sustainable energy sources such as wind, ocean, sunlight, raindrops, and ambient vibrations. A comprehensive study focusing on in-depth technology evolution, applications, problems, and future trends of specifically 3D printed nano-MEH systems with an energy point of view is rarely conducted. Therefore, this paper looks into the state-of-the-art technologies, energy harvesting sources/methods, performance, implementations, emerging applications, potential challenges, and future perspectives of additively manufactured nano-mechanical energy harvesting (3DP-NMEH) systems. The prevailing challenges concerning renewable energy harvesting capacities, optimal energy scavenging, power management, material functionalization, sustainable prototyping strategies, new materials, commercialization, and hybridization are discussed. A novel solution is proposed for renewable energy generation and medicinal purposes based on the sustainable utilization of recyclable municipal and medical waste generated during the COVID-19 pandemic. Finally, recommendations for future research are presented concerning the cutting-edge issues hurdling the optimal exploitation of renewable energy resources through NMEHs. China and the USA are the most significant leading forces in enhancing 3DP-NMEH technology, with more than 75% contributions collectively. The reported output energy capacities of additively manufactured nano-MEH systems were 0.5-32 mW, 0.0002-45.6 mW, and 0.3-4.67 mW for electromagnetic, piezoelectric, and triboelectric nanogenerators, respectively. The optimal strategies and techniques to enhance these energy capacities are compiled in this paper.
Collapse
Affiliation(s)
- Ammar Ahmed
- Department of Industry Engineering, Northwestern Polytechnical University, Xi’an, 710072 People’s Republic of China
- Mechanical Engineering Department, University of Engineering and Technology Lahore, Lahore, Pakistan
| | - Ali Azam
- School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, 610031 People’s Republic of China
| | - Yanen Wang
- Department of Industry Engineering, Northwestern Polytechnical University, Xi’an, 710072 People’s Republic of China
| | - Zutao Zhang
- School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, 610031 People’s Republic of China
| | - Ning Li
- Graduate School of Tangshan, Southwest Jiaotong University, Tangshan, 063008 People’s Republic of China
| | - Changyuan Jia
- School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, 610031 People’s Republic of China
| | - Ray Tahir Mushtaq
- Department of Industry Engineering, Northwestern Polytechnical University, Xi’an, 710072 People’s Republic of China
| | - Mudassar Rehman
- Department of Industry Engineering, Northwestern Polytechnical University, Xi’an, 710072 People’s Republic of China
| | - Thierno Gueye
- Department of Industry Engineering, Northwestern Polytechnical University, Xi’an, 710072 People’s Republic of China
| | - Muhammad Bilal Shahid
- School of Electrical Engineering, Southwest Jiaotong University, Chengdu, 610031 People’s Republic of China
| | - Basit Ali Wajid
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| |
Collapse
|
7
|
Comerford TA, Zysman-Colman E. Supramolecular Assemblies Showing Thermally Activated Delayed Fluorescence. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202100022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Thomas A. Comerford
- Organic Semiconductor Centre EaSTCHEM School of Chemistry University of St Andrews St Andrews KY16 9ST UK
| | - Eli Zysman-Colman
- Organic Semiconductor Centre EaSTCHEM School of Chemistry University of St Andrews St Andrews KY16 9ST UK
| |
Collapse
|
8
|
Badiei YM, Traba C, Rosales R, Rojas AL, Amaya C, Shahid M, Vera-Rolong C, Concepcion JJ. Plasma-Initiated Graft Polymerization of Acrylic Acid onto Fluorine-Doped Tin Oxide as a Platform for Immobilization of Water-Oxidation Catalysts. ACS APPLIED MATERIALS & INTERFACES 2021; 13:14077-14090. [PMID: 33751889 DOI: 10.1021/acsami.0c19730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The discovery of new and versatile strategies for the immobilization of molecular water-oxidation catalysts (WOCs) is crucial for developing clean energy conversion devices [e.g., (photo)electrocatalytic cells for water splitting]. The traditional approach for surface attachment to transparent conductive oxides [e.g., fluorine doped tin oxide (FTO)] is via synthetic modification of the ligand architecture to incorporate functional groups such as carboxylic acids (-COOH) or phosphonates (-PO3H2) prior to immobilization. However, challenges arising from desorption and the cumbersome derivatizations steps have limited the scope and applications of surface-bound WOCs. Herein, we report the successful immobilization of underivatized Ru(II)-based WOCs (Ru-Cat1 = [Ru(tpy) (bpy) (H2O)]2+ (tpy = 2,2':6'2″-terpyridine and bpy = 2,2'-bipyridine) and Ru-Cat2 = [Ru(Mebimpy) (bpy) (H2O)]2+ (Mebimpy = 2,6-bis(1-methylbenzimidazol-2-yl) pyridine)) and the Ru(II) polypyridyl chromophore Ru-C3 = [Ru(bpy)3]2+ onto a FTO plasma-grafted poly(acrylic acid) surface (PAA|FTO). Various characterization techniques such as attenuated total reflectance Fourier transform infrared spectroscopy, scanning electron microscopy, atomic force microscopy, and cyclic voltammetry measurements provide evidence for the plasma-induced grafted PAA|FTO film and immobilization. Surface stability and electrocatalytic properties of these new hybrid composite films upon cycling were investigated at different pH values. Immobilized Ru-Cat1 and Ru-Cat2 onto PAA|FTO displayed pH-dependent (RuIII/RuII) couples and onset potentials indicative of PCET (proton-coupled electron transfer) reactions. Based on cyclic voltammetry results and spectroscopic monitoring, the immobilized WOCs Ru-Cat1 and Ru-Cat2 exhibited a higher surface stability in neutral aqueous solutions relative to Ru-C3 upon electrochemical oxidation. We attribute the surface PCET and stability to the presence of a water ligand in the coordination sphere of immobilized Ru-Cat1 and Ru-Cat2 which can H-bond with negatively charged carboxylate groups of the cross-linked PAA brushes. Our findings demonstrate that the plasma-grafted polymeric network onto FTO offers a versatile platform to directly anchor unmodified homogeneous WOCs or chromophores for potential applications in solar-to-fuel energy conversion.
Collapse
Affiliation(s)
- Yosra M Badiei
- Department of Chemistry, Saint Peter's University, Jersey City, New Jersey 07306, United States
| | - Christian Traba
- Department of Chemistry, Biochemistry, and Physics, Fairleigh Dickinson University, Teaneck, New Jersey 07666, United States
| | - Rina Rosales
- Department of Chemistry, Saint Peter's University, Jersey City, New Jersey 07306, United States
| | - Anthony Lopez Rojas
- Department of Chemistry, Saint Peter's University, Jersey City, New Jersey 07306, United States
| | - Claudio Amaya
- Department of Chemistry, Saint Peter's University, Jersey City, New Jersey 07306, United States
| | - Mohammed Shahid
- Department of Chemistry, Saint Peter's University, Jersey City, New Jersey 07306, United States
| | - Carolina Vera-Rolong
- Department of Chemistry, Saint Peter's University, Jersey City, New Jersey 07306, United States
| | - Javier J Concepcion
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| |
Collapse
|
9
|
Li S, Kim S, Davis AH, Zhuang J, Shuler EW, Willinger D, Lee JJ, Zheng W, Sherman BD, Yoo CG, Leem G. Photocatalytic Chemoselective C–C Bond Cleavage at Room Temperature in Dye-Sensitized Photoelectrochemical Cells. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00198] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Shuya Li
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, Syracuse, New York 13210, United States
| | - Saerona Kim
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, Syracuse, New York 13210, United States
| | - Andrew H. Davis
- Department of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Jingshun Zhuang
- Department of Chemical Engineering, State University of New York College of Environmental Science and Forestry, Syracuse, New York 13210, United States
| | - Eric Wolfgang Shuler
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, Syracuse, New York 13210, United States
| | - Debora Willinger
- Department of Chemistry and Biochemistry, College of Science and Engineering, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Jae-Joon Lee
- Department of Energy Materials and Engineering, Research Center for Photoenergy Harvesting & Conversion Technology (phct), Dongguk University, Seoul 04620, Republic of Korea
| | - Weiwei Zheng
- Department of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Benjamin D. Sherman
- Department of Chemistry and Biochemistry, College of Science and Engineering, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Chang Geun Yoo
- Department of Chemical Engineering, State University of New York College of Environmental Science and Forestry, Syracuse, New York 13210, United States
| | - Gyu Leem
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, Syracuse, New York 13210, United States
- The Michael M. Szwarc Polymer Research Institute, 1 Forestry Drive, Syracuse, New York 13210, United States
| |
Collapse
|
10
|
Sherman BD, McMillan NK, Willinger D, Leem G. Sustainable hydrogen production from water using tandem dye-sensitized photoelectrochemical cells. NANO CONVERGENCE 2021; 8:7. [PMID: 33650039 PMCID: PMC7921270 DOI: 10.1186/s40580-021-00257-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/16/2021] [Indexed: 05/06/2023]
Abstract
If generated from water using renewable energy, hydrogen could serve as a carbon-zero, environmentally benign fuel to meet the needs of modern society. Photoelectrochemical cells integrate the absorption and conversion of solar energy and chemical catalysis for the generation of high value products. Tandem photoelectrochemical devices have demonstrated impressive solar-to-hydrogen conversion efficiencies but have not become economically relevant due to high production cost. Dye-sensitized solar cells, those based on a monolayer of molecular dye adsorbed to a high surface area, optically transparent semiconductor electrode, offer a possible route to realizing tandem photochemical systems for H2 production by water photolysis with lower overall material and processing costs. This review addresses the design and materials important to the development of tandem dye-sensitized photoelectrochemical cells for solar H2 production and highlights current published reports detailing systems capable of spontaneous H2 formation from water using only dye-sensitized interfaces for light capture.
Collapse
Affiliation(s)
- Benjamin D Sherman
- Department of Chemistry and Biochemistry, Texas Christian University, Campus Box 298860, Fort Worth, TX, 76129, USA.
| | - Nelli Klinova McMillan
- Department of Chemistry and Biochemistry, Texas Christian University, Campus Box 298860, Fort Worth, TX, 76129, USA
| | - Debora Willinger
- Department of Chemistry and Biochemistry, Texas Christian University, Campus Box 298860, Fort Worth, TX, 76129, USA
| | - Gyu Leem
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY, 13210, USA
- The Michael M. Szwarc Polymer Research Institute, 1 Forestry Drive, Syracuse, NY, 13210, USA
| |
Collapse
|
11
|
Davis KA, Yoo S, Shuler EW, Sherman BD, Lee S, Leem G. Photocatalytic hydrogen evolution from biomass conversion. NANO CONVERGENCE 2021; 8:6. [PMID: 33635439 PMCID: PMC7910387 DOI: 10.1186/s40580-021-00256-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/16/2021] [Indexed: 05/03/2023]
Abstract
Biomass has incredible potential as an alternative to fossil fuels for energy production that is sustainable for the future of humanity. Hydrogen evolution from photocatalytic biomass conversion not only produces valuable carbon-free energy in the form of molecular hydrogen but also provides an avenue of production for industrially relevant biomass products. This photocatalytic conversion can be realized with efficient, sustainable reaction materials (biomass) and inexhaustible sunlight as the only energy inputs. Reported herein is a general strategy and mechanism for photocatalytic hydrogen evolution from biomass and biomass-derived substrates (including ethanol, glycerol, formic acid, glucose, and polysaccharides). Recent advancements in the synthesis and fundamental physical/mechanistic studies of novel photocatalysts for hydrogen evolution from biomass conversion are summarized. Also summarized are recent advancements in hydrogen evolution efficiency regarding biomass and biomass-derived substrates. Special emphasis is given to methods that utilize unprocessed biomass as a substrate or synthetic photocatalyst material, as the development of such will incur greater benefits towards a sustainable route for the evolution of hydrogen and production of chemical feedstocks.
Collapse
Affiliation(s)
- Kayla Alicia Davis
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY, 13210, USA
| | - Sunghoon Yoo
- Department of Chemistry, Gachon University, Seongnam, Gyeonggi-do, 13306, Republic of Korea
- Department of Chemical and Molecular Engineering, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Eric W Shuler
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY, 13210, USA
| | - Benjamin D Sherman
- Department of Chemistry and Biochemistry, Texas Christian University, Campus Box 298860, Fort Worth, TX, 76129, USA
| | - Seunghyun Lee
- Department of Chemical and Molecular Engineering, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea.
| | - Gyu Leem
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY, 13210, USA.
- The Michael M. Szwarc Polymer Research Institute, 1 Forestry Drive, Syracuse, NY, 13210, USA.
| |
Collapse
|
12
|
Photocathodes beyond NiO: charge transfer dynamics in a π-conjugated polymer functionalized with Ru photosensitizers. Sci Rep 2021; 11:2787. [PMID: 33531588 PMCID: PMC7854750 DOI: 10.1038/s41598-021-82395-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/19/2021] [Indexed: 11/09/2022] Open
Abstract
A conductive polymer (poly(p-phenylenevinylene), PPV) was covalently modified with RuII complexes to develop an all-polymer photocathode as a conceptual alternative to dye-sensitized NiO, which is the current state-of-the-art photocathode in solar fuels research. Photocathodes require efficient light-induced charge-transfer processes and we investigated these processes within our photocathodes using spectroscopic and spectro-electrochemical techniques. Ultrafast hole-injection dynamics in the polymer were investigated by transient absorption spectroscopy and charge transfer at the electrode-electrolyte interface was examined with chopped-light chronoamperometry. Light-induced hole injection from the photosensitizers into the PPV backbone was observed within 10 ps and the resulting charge-separated state (CSS) recombined within ~ 5 ns. This is comparable to CSS lifetimes of conventional NiO-photocathodes. Chopped-light chronoamperometry indicates enhanced charge-transfer at the electrode-electrolyte interface upon sensitization of the PPV with the RuII complexes and p-type behavior of the photocathode. The results presented here show that the polymer backbone behaves like classical molecularly sensitized NiO photocathodes and operates as a hole accepting semiconductor. This in turn demonstrates the feasibility of all-polymer photocathodes for application in solar energy conversion.
Collapse
|
13
|
Im SW, Ha H, Yang W, Jang JH, Kang B, Seo DH, Seo J, Nam KT. Light polarization dependency existing in the biological photosystem and possible implications for artificial antenna systems. PHOTOSYNTHESIS RESEARCH 2020; 143:205-220. [PMID: 31643017 DOI: 10.1007/s11120-019-00682-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/02/2019] [Indexed: 06/10/2023]
Abstract
The processes of biological photosynthesis provide inspiration and valuable lessons for artificial energy collection, transfer, and conversion systems. The extraordinary efficiency of each sequential process of light to biomass conversion originates from the unique architecture and mechanism of photosynthetic proteins. Near 100% quantum efficiency of energy transfer in biological photosystems is achieved by the chlorophyll assemblies in antenna complexes, which also exhibit a significant degree of light polarization. The three-dimensional chiral assembly of chlorophylls is an optimized biological architecture that enables maximum energy transfer efficiency with precisely designed coupling between chlorophylls. In this review, we summarize the key lessons from the photosynthetic processes in biological photosystems, and move our focus to energy transfer mechanisms and the chiral structure of the chlorophyll assembly. Then, we introduce recent approaches and possible implications to realize the biological energy transfer processes on bioinspired scaffold-based artificial antenna systems.
Collapse
Affiliation(s)
- Sang Won Im
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Heonjin Ha
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Woojin Yang
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea
| | - Jun Ho Jang
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Boyeong Kang
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea
| | - Da Hye Seo
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Jiwon Seo
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea.
| | - Ki Tae Nam
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
14
|
Li G, Zhu D, Wang X, Su Z, Bryce MR. Dinuclear metal complexes: multifunctional properties and applications. Chem Soc Rev 2020; 49:765-838. [DOI: 10.1039/c8cs00660a] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Dinuclear metal complexes have enabled breakthroughs in OLEDs, photocatalytic water splitting and CO2reduction, DSPEC, chemosensors, biosensors, PDT and smart materials.
Collapse
Affiliation(s)
- Guangfu Li
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Dongxia Zhu
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Xinlong Wang
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Zhongmin Su
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
- School of Chemistry and Environmental Engineering
| | | |
Collapse
|
15
|
Kap Z, Karadas F. Visible light-driven water oxidation with a ruthenium sensitizer and a cobalt-based catalyst connected with a polymeric platform. Faraday Discuss 2019; 215:111-122. [DOI: 10.1039/c8fd00166a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel PS–WOC dyad which incorporates a ruthenium-based photosensitizer (PS) connected to a Prussian blue type water oxidation catalyst (WOC) through a P4VP platform is presented.
Collapse
Affiliation(s)
- Zeynep Kap
- Department of Chemistry
- Bilkent University
- 06800 Ankara
- Turkey
| | - Ferdi Karadas
- Department of Chemistry
- Bilkent University
- 06800 Ankara
- Turkey
- UNAM-Institute of Materials Science and Nanotechnology
| |
Collapse
|