1
|
Mancin E, Maltecca C, Jiang J, Huang YJ, Tiezzi F. Capturing resilience from phenotypic deviations: a case study using feed consumption and whole genome data in pigs. BMC Genomics 2024; 25:1128. [PMID: 39574040 PMCID: PMC11583387 DOI: 10.1186/s12864-024-11052-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND In recent years, interest has grown in quantifying resilience in livestock by examining deviations in target phenotypes. This method is based on the idea that variability in these phenotypes reflects an animal's ability to adapt to external factors. By utilizing routinely collected time-series feed intake data in pigs, researchers can obtain a broad measure of resilience. This measure extends beyond specific conditions, capturing the impact of various unknown external factors that influence phenotype variations. Importantly, this method does not require additional phenotyping investments. Despite growing interest, the relationship between resilience indicators-calculated as deviations from longitudinally recorded target traits-and the mean of those traits remains largely unexplored. This gap raises the risk of inadvertently selecting for the mean rather than accurately capturing true resilience. Additionally, distinguishing between random phenotype fluctuations (white noise) and structural variations linked to resilience poses a challenge. With the aim of developing general resilience indicators applicable to commercial swine populations, we devised four resilience indicators utilizing daily feed consumption as the target trait. These include a canonical resilience indicator (BALnVar) and three novel ones (BAMaxArea, SPLnVar, and SPMaxArea), designed to minimize noise and ensure independence from daily feed consumption. We subsequently integrated these indicators with Whole Genome Sequencing using SLEMM algorithm, data from 1,250 animals to assess their efficacy in capturing resilience and their independence from the mean of daily feed consumption. RESULTS Our findings revealed that conventional resilience indicators failed to differentiate from the mean of daily feed consumption, underscoring potential limitations in accurately capturing true resilience. Notably, significant associations involving conventional resilience indicators were identified on chromosome 1, which is commonly linked to body weight. CONCLUSION We observed that deviations in feed consumption can effectively serve as indicators for selecting resilience in commercial pig farming, as confirmed by the identification of genes such as PKN1 and GYPC. However, the identification of other genes, such as RNF152, related to growth, suggests that common resilience quantification methods may be more closely related to the mean of daily feed consumption rather than capturing true resilience.
Collapse
Affiliation(s)
- Enrico Mancin
- Department of Agronomy, Natural Resources, Animals and Environment, (DAFNAE), University of Padova, Viale del Università 14, Legnaro (Padova), Food, 35020, Italy
| | - Christian Maltecca
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale delle Cascine 18, Firenze, 50144, Italy
| | - Jicaj Jiang
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Yi Jian Huang
- Smithfield Premium Genetics, Rose Hill, NC, 28458, USA
| | - Francesco Tiezzi
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale delle Cascine 18, Firenze, 50144, Italy.
| |
Collapse
|
2
|
He Q, Wei Y, Qian Y, Zhong M. Pathophysiological dynamics in the contact, coagulation, and complement systems during sepsis: Potential targets for nafamostat mesilate. JOURNAL OF INTENSIVE MEDICINE 2024; 4:453-467. [PMID: 39310056 PMCID: PMC11411436 DOI: 10.1016/j.jointm.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/17/2024] [Accepted: 02/07/2024] [Indexed: 09/25/2024]
Abstract
Sepsis is a life-threatening syndrome resulting from a dysregulated host response to infection. It is the primary cause of death in the intensive care unit, posing a substantial challenge to human health and medical resource allocation. The pathogenesis and pathophysiology of sepsis are complex. During its onset, pro-inflammatory and anti-inflammatory mechanisms engage in intricate interactions, possibly leading to hyperinflammation, immunosuppression, and long-term immune disease. Of all critical outcomes, hyperinflammation is the main cause of early death among patients with sepsis. Therefore, early suppression of hyperinflammation may improve the prognosis of these patients. Nafamostat mesilate is a serine protease inhibitor, which can inhibit the activation of the complement system, coagulation system, and contact system. In this review, we discuss the pathophysiological changes occurring in these systems during sepsis, and describe the possible targets of the serine protease inhibitor nafamostat mesilate in the treatment of this condition.
Collapse
Affiliation(s)
- Qiaolan He
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yilin Wei
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yiqi Qian
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ming Zhong
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Siti-Zubaidah MZ, Harafinova HS, Liba AN, Nordin ML, Hambali KA, Siti HN. Exploring bradykinin: A common mediator in the pathophysiology of sepsis and atherosclerotic cardiovascular disease. Vascul Pharmacol 2024; 156:107414. [PMID: 39089528 DOI: 10.1016/j.vph.2024.107414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/16/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Sepsis and atherosclerotic cardiovascular disease (ASCVD) are major health challenges involving complex processes like inflammation, renin-angiotensin system (RAS) dysregulation, and thrombosis. Despite distinct clinical symptoms, both conditions share mechanisms mediated by bradykinin. This review explores bradykinin's role in inflammation, RAS modulation, and thrombosis in sepsis and ASCVD. In sepsis, variable kininogen-bradykinin levels may correlate with disease severity and progression, though the effect of bradykinin receptor modulation on inflammation remains uncertain. RAS activation is present in both diseases, with sepsis showing variable or low levels of Ang II, ACE, and ACE2, while ASCVD consistently exhibits elevated levels. Bradykinin may act as a mediator for ACE2 and AT2 receptor effects in RAS regulation. It may influence clotting and fibrinolysis in sepsis-associated coagulopathy, but evidence for an antithrombotic effect in ASCVD is insufficient. Understanding bradykinin's role in these shared pathologies could guide therapeutic and monitoring strategies and inform future research.
Collapse
Affiliation(s)
- Mohd Zahari Siti-Zubaidah
- Department of Anaesthesia and Intensive Care, National Heart Institute, Jalan Tun Razak, 50400 Kuala Lumpur, Malaysia.
| | - Harman-Shah Harafinova
- Department of Internal Medicine, Faculty of Medicine, Universiti Sultan Zainal Abidin, Jalan Sultan Mahmud, 20400 Kuala Terengganu, Terengganu, Malaysia.
| | - Abdullahi Nuradeen Liba
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, Kota Bharu, 16100, Kelantan, Malaysia
| | - Muhammad Luqman Nordin
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, Kota Bharu, 16100, Kelantan, Malaysia; Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Kamarul Ariffin Hambali
- Faculty of Earth Science, Universiti Malaysia Kelantan, Jeli, 17600, Kelantan, Malaysia; Animal and Wildlife Research Group, Faculty of Earth Science, Jeli Campus, Universiti Malaysia Kelantan, 17600, Kelantan, Malaysia.
| | - Hawa Nordin Siti
- Department of Pharmacology, Faculty of Medicine, Universiti Sultan Zainal Abidin, Jalan Sultan Mahmud, 20400 Kuala Terengganu, Terengganu, Malaysia.
| |
Collapse
|
4
|
The versatile role of the contact system in cardiovascular disease, inflammation, sepsis and cancer. Biomed Pharmacother 2021; 145:112429. [PMID: 34801854 DOI: 10.1016/j.biopha.2021.112429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 11/24/2022] Open
Abstract
The human contact system consists of plasma proteins, which - after contact to foreign surfaces - are bound to them, thereby activating the zymogens of the system into enzymes. This activation mechanism gave the system its name - contact system. It is considered as a procoagulant and proinflammatory response mechanism, as activation finally leads to the generation of fibrin and bradykinin. To date, no physiological processes have been described that are mediated by contact activation. However, contact system factors play a pathophysiological role in numerous diseases, such as cardiovascular diseases, arthritis, colitis, sepsis, and cancer. Contact system factors are therefore an interesting target for new therapeutic options in different clinical conditions.
Collapse
|
5
|
Asgari F, Supino D, Parente R, Polentarutti N, Stravalaci M, Porte R, Pasqualini F, Barbagallo M, Perucchini C, Recordati C, Magrini E, Mariancini A, Riva F, Giordano A, Davoudian S, Roger T, Veer CV, Jaillon S, Mantovani A, Doni A, Garlanda C. The Long Pentraxin PTX3 Controls Klebsiella Pneumoniae Severe Infection. Front Immunol 2021; 12:666198. [PMID: 34093560 PMCID: PMC8173212 DOI: 10.3389/fimmu.2021.666198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/04/2021] [Indexed: 12/29/2022] Open
Abstract
Klebsiella pneumoniae is a common pathogen in human sepsis. The emergence of multidrug-resistant K. pneumoniae strains represents a major clinical challenge in nosocomial and community acquired infections. The long pentraxin PTX3, a key component of humoral innate immunity, is involved in resistance to selected pathogens by promoting opsonophagocytosis. We investigated the relevance of PTX3 in innate immunity against K. pneumoniae infections using Ptx3-/- mice and mouse models of severe K. pneumoniae infections. Local and systemic PTX3 expression was induced following K. pneumoniae pulmonary infection, in association with the up-regulation of TNF-α and IL-1β. PTX3 deficiency in mice was associated with higher bacterial burden and mortality, release of pro-inflammatory cytokines as well as IL-10 in the lung and systemically. The analysis of the mechanisms responsible of PTX3-dependent control of K. pneumoniae infection revealed that PTX3 did not interact with K. pneumoniae, or promote opsonophagocytosis. The comparison of susceptibility of wild-type, Ptx3-/-, C3-/- and Ptx3-/-/C3-/- mice to the infection showed that PTX3 acted in a complement-independent manner. Lung histopathological analysis showed more severe lesions in Ptx3-/- mice with fibrinosuppurative, necrotizing and haemorrhagic bronchopneumonia, associated with increased fibrin deposition in the lung and circulating fibrinogen consumption. These findings indicate that PTX3 contributes to the control of K. pneumoniae infection by modulating inflammatory responses and tissue damage. Thus, this study emphasizes the relevance of the role of PTX3 as regulator of inflammation and orchestrator of tissue repair in innate responses to infections.
Collapse
Affiliation(s)
- Fatemeh Asgari
- Department of Inflammation and Immunology, IRCCS Humanitas Research Hospital, Rozzano, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Domenico Supino
- Department of Inflammation and Immunology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Raffaella Parente
- Department of Inflammation and Immunology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Nadia Polentarutti
- Department of Inflammation and Immunology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Matteo Stravalaci
- Department of Inflammation and Immunology, IRCCS Humanitas Research Hospital, Rozzano, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Remi Porte
- Department of Inflammation and Immunology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Fabio Pasqualini
- Department of Inflammation and Immunology, IRCCS Humanitas Research Hospital, Rozzano, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Marialuisa Barbagallo
- Department of Inflammation and Immunology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Chiara Perucchini
- Department of Inflammation and Immunology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Camilla Recordati
- Department of Veterinary Medicine, University of Milano, Lodi, Italy
| | - Elena Magrini
- Department of Inflammation and Immunology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Andrea Mariancini
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Federica Riva
- Department of Veterinary Medicine, University of Milano, Lodi, Italy
| | - Alessia Giordano
- Department of Veterinary Medicine, University of Milano, Lodi, Italy
| | - Sadaf Davoudian
- Department of Inflammation and Immunology, IRCCS Humanitas Research Hospital, Rozzano, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Thierry Roger
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| | - Cornelis Van't Veer
- Center of Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, Netherlands
| | - Sebastien Jaillon
- Department of Inflammation and Immunology, IRCCS Humanitas Research Hospital, Rozzano, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Alberto Mantovani
- Department of Inflammation and Immunology, IRCCS Humanitas Research Hospital, Rozzano, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy.,Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Andrea Doni
- Unit of Advanced Optical Microscopy, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Cecilia Garlanda
- Department of Inflammation and Immunology, IRCCS Humanitas Research Hospital, Rozzano, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| |
Collapse
|
6
|
Dagnino APA, Campos MM, Silva RBM. Kinins and Their Receptors in Infectious Diseases. Pharmaceuticals (Basel) 2020; 13:ph13090215. [PMID: 32867272 PMCID: PMC7558425 DOI: 10.3390/ph13090215] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 01/08/2023] Open
Abstract
Kinins and their receptors have been implicated in a series of pathological alterations, representing attractive pharmacological targets for several diseases. The present review article aims to discuss the role of the kinin system in infectious diseases. Literature data provides compelling evidence about the participation of kinins in infections caused by diverse agents, including viral, bacterial, fungal, protozoan, and helminth-related ills. It is tempting to propose that modulation of kinin actions and production might be an adjuvant strategy for management of infection-related complications.
Collapse
|
7
|
Lam Z, Condliffe AM. Prekallikrein - an emerging therapeutic target for Klebsiella pneumoniae infection? †. J Pathol 2020; 250:359-361. [PMID: 31943204 DOI: 10.1002/path.5382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 01/07/2020] [Indexed: 11/09/2022]
Abstract
Klebsiella pneumoniae is a Gram-negative bacterium that is increasingly difficult to treat due to the emergence of multidrug resistant strains. In a recent article, Ding et al demonstrate that prekallikrein depletion in mice followed by intranasal instillation of K. pneumoniae leads to a reduced bacterial burden and prolonged host survival, together with evidence of reduced distant organ damage. These effects are apparently independent of the role of prekallikrein in the contact system, and are associated with transcriptional changes relevant to innate immunity in the lung, established prior to infection. This study highlights the importance of further investigating the role of prekallikrein and other contact cascade components in host defence to counter K. pneumoniae (and perhaps other pathogens), with an overall aim of identifying potential therapeutic targets relevant to pulmonary infection with such resistant pathogens. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Zena Lam
- Department of Infection, Immunity and Cardiovascular Diseases, University of Sheffield, Sheffield, UK
| | - Alison M Condliffe
- Department of Infection, Immunity and Cardiovascular Diseases, University of Sheffield, Sheffield, UK
| |
Collapse
|
8
|
Ding C, Scicluna BP, Stroo I, Yang J, Roelofs JJ, de Boer OJ, de Vos AF, Nürnberg P, Revenko AS, Crosby J, Van't Veer C, van der Poll T. Prekallikrein inhibits innate immune signaling in the lung and impairs host defense during pneumosepsis in mice. J Pathol 2019; 250:95-106. [PMID: 31595971 PMCID: PMC6972537 DOI: 10.1002/path.5354] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 09/20/2019] [Accepted: 10/01/2019] [Indexed: 12/20/2022]
Abstract
Prekallikrein (PKK, also known as Fletcher factor and encoded by the gene KLKB1 in humans) is a component of the contact system. Activation of the contact system has been implicated in lethality in fulminant sepsis models. Pneumonia is the most frequent cause of sepsis. We sought to determine the role of PKK in host defense during pneumosepsis. To this end, mice were infected with the common human pathogen Klebsiella pneumoniae via the airways, causing an initially localized infection of the lungs with subsequent bacterial dissemination and sepsis. Mice were treated with a selective PKK‐directed antisense oligonucleotide (ASO) or a scrambled control ASO for 3 weeks prior to infection. Host response readouts were determined at 12 or 36 h post‐infection, including genome‐wide messenger RNA profiling of lungs, or mice were followed for survival. PKK ASO treatment inhibited constitutive hepatic Klkb1 mRNA expression by >80% and almost completely abolished plasma PKK activity. Klkb1 mRNA could not be detected in lungs. Pneumonia was associated with a progressive decline in PKK expression in mice treated with control ASO. PKK ASO administration was associated with a delayed mortality, reduced bacterial burdens, and diminished distant organ injury. While PKK depletion did not influence lung pathology or neutrophil recruitment, it was associated with an upregulation of multiple innate immune signaling pathways in the lungs already prior to infection. Activation of the contact system could not be detected, either during infection in vivo or at the surface of Klebsiella in vitro. These data suggest that circulating PKK confines pro‐inflammatory signaling in the lung by a mechanism that does not involve contact system activation, which in the case of respiratory tract infection may impede early protective innate immunity. © 2019 Authors. Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Chao Ding
- Department of Gastric Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, PR China.,Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Brendon P Scicluna
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Clinical Epidemiology and Biostatistics, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ingrid Stroo
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jack Yang
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Joris Jth Roelofs
- Department of Pathology, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Onno J de Boer
- Department of Pathology, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Alex F de Vos
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Peter Nürnberg
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | | | - Jeff Crosby
- Drug Discovery, Ionis Pharmaceuticals, Inc, Carlsbad, CA, USA
| | - Cornelis Van't Veer
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Tom van der Poll
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Division of Infectious Diseases, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|