1
|
Li G, Yi S, Wang H, Qiu H, Wang W, Gao L, Xu Q, Han B, Yin X. Salidroside production through cascade biocatalysis with a thermostability-enhanced UDP-glycosyltransferase. Int J Biol Macromol 2025; 299:140261. [PMID: 39855494 DOI: 10.1016/j.ijbiomac.2025.140261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/24/2024] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Salidroside is a phenylpropanoid glycoside with wide applications in the food, pharmaceutical, and cosmetic industries; however, the plant genus Rhodiola, the natural source of salidroside, has slow growth and limited distribution. In this study, we designed a novel six-enzyme biocatalytic cascade for the efficient production of salidroside, utilizing cost-effective bio-based L-Tyrosine as the starting material. A preliminary analysis revealed that the poor thermostability of the Bacillus licheniformis UDP-glycosyltransferase (EC 2.4.1.384) BlYjiC M6 is a bottleneck in the cascade. Therefore, a combined computational strategy was used to engineer it and finally obtained a mutant TSM6 (T304V/G307A/N309W/F123W/T344V/D271G) with a 134-fold longer half-life at 40 °C and a 13 °C higher Tmapp compared to M6. The integration of TSM6 into the cascade improved salidroside productivity significantly, while reducing residual intermediates. After further optimization, the whole-cell biocatalytic cascade achieved a high salidroside titer of 12.8 g·L-1 in a 5 L bioreactor, giving a productivity of 0.53 g·L-1·h-1. This study provides a green and efficient biosynthetic process for salidroside production and highlights the potential of enzyme engineering to enhance the biocatalytic cascade.
Collapse
Affiliation(s)
- Guosi Li
- Traditional Chinese Medicine Institute of Anhui Dabie Mountain, Generic Technology Research Center for Anhui Traditional Chinese Medicine Industry, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, West Anhui University, Lu'an 237012, Anhui, China
| | - Shanyong Yi
- Traditional Chinese Medicine Institute of Anhui Dabie Mountain, Generic Technology Research Center for Anhui Traditional Chinese Medicine Industry, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, West Anhui University, Lu'an 237012, Anhui, China
| | - Haijiao Wang
- Key State Laboratory of Plant Diversity and Specialty Crops, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Hulin Qiu
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519080, China
| | - Wei Wang
- Traditional Chinese Medicine Institute of Anhui Dabie Mountain, Generic Technology Research Center for Anhui Traditional Chinese Medicine Industry, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, West Anhui University, Lu'an 237012, Anhui, China
| | - Leilei Gao
- Traditional Chinese Medicine Institute of Anhui Dabie Mountain, Generic Technology Research Center for Anhui Traditional Chinese Medicine Industry, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, West Anhui University, Lu'an 237012, Anhui, China
| | - Qilin Xu
- Traditional Chinese Medicine Institute of Anhui Dabie Mountain, Generic Technology Research Center for Anhui Traditional Chinese Medicine Industry, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, West Anhui University, Lu'an 237012, Anhui, China
| | - Bangxing Han
- Traditional Chinese Medicine Institute of Anhui Dabie Mountain, Generic Technology Research Center for Anhui Traditional Chinese Medicine Industry, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, West Anhui University, Lu'an 237012, Anhui, China.
| | - Xinjian Yin
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519080, China.
| |
Collapse
|
2
|
Gu J, Mu W, Xu Y, Nie Y. From discovery to application: Enabling technology-based optimizing carbonyl reductases biocatalysis for active pharmaceutical ingredient synthesis. Biotechnol Adv 2025; 79:108496. [PMID: 39647674 DOI: 10.1016/j.biotechadv.2024.108496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/04/2024] [Accepted: 11/30/2024] [Indexed: 12/10/2024]
Abstract
The catalytic conversion of chiral alcohols and corresponding carbonyl compounds by carbonyl reductases (alcohol dehydrogenases), which are NAD(P) or NAD(P)H-dependent oxidoreductases, has attracted considerable attention. However, existing carbonyl reductases are insufficient to meet the demands of diverse industrial applications; hence, new enzymes with functions that can expand the toolbox of biocatalysts are urgently required. Developing precisely controlled chiral biocatalysts is of great significance for the efficient development of a broad spectrum of active pharmaceutical ingredients via biosynthesis. In this review, we summarized methods for discovering novel natural carbonyl reductases from various perspectives. Furthermore, advances in protein engineering, utilizing known sequence and structural information as well as catalytic dynamics mechanisms to improve potential functions, are also addressed. The exponential growth in data-driven tools over the past decade has made it possible to de novo design carbonyl reductases. Additionally, various applications of these high-performance carbonyl reductases and different strategies for coenzyme regeneration involving photocatalysis during the reaction process were reviewed. These advancements will bring new opportunities and challenges to the fields of green chemistry and biosynthesis in the future.
Collapse
Affiliation(s)
- Jie Gu
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wanmeng Mu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yan Xu
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yao Nie
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
3
|
Guo X, Wang X, Hu Y, Zhang L, Zhao ZK. Truncating the C terminus of formate dehydrogenase leads to improved preference to nicotinamide cytosine dinucleotide. Sci Rep 2024; 14:28701. [PMID: 39562703 PMCID: PMC11576888 DOI: 10.1038/s41598-024-79885-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/13/2024] [Indexed: 11/21/2024] Open
Abstract
Formate dehydrogenase (FDH) is widely applied in regeneration of redox cofactors. There are continuing interests to engineer FDH for improved catalytic activity and cofactor preference. In the crystal structure of FDH from Pseudomonas sp. 101 (pseFDH), the C terminus with 9 amino acid residues cannot be resolved. However, our earlier work showed mutations at C terminus led pseFDH variants to favor a non-natural cofactor nicotinamide cytosine dinucleotide (NCD). Here, we investigated the role of C-terminal residues on cofactor preference by truncating their corresponding C terminus of pseFDH variants. Sequence comparison analysis showed that C-terminal residues were barely conservative among different FDHs. pseFDH and mutants with their C termini truncated were constructed, and the resulted variants showed improved preference to NCD mainly because NAD-dependent activity dropped more substantially. Further structure analysis showed that these pseFDH variants had their cofactor binding domains reconstructed to favor molecular interactions with NCD. Our work indicated that C-terminal residues of pseFDH affected enzyme activity and cofactor preference, which provides a new approach for ameliorating the performance of redox enzymes.
Collapse
Affiliation(s)
- Xiaojia Guo
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Xueying Wang
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yinghan Hu
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Lingyun Zhang
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Zongbao K Zhao
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China.
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| |
Collapse
|
4
|
He J, Liu X, Li C. Engineering Electron Transfer Pathway of Cytochrome P450s. Molecules 2024; 29:2480. [PMID: 38893355 PMCID: PMC11173547 DOI: 10.3390/molecules29112480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Cytochrome P450s (P450s), a superfamily of heme-containing enzymes, existed in animals, plants, and microorganisms. P450s can catalyze various regional and stereoselective oxidation reactions, which are widely used in natural product biosynthesis, drug metabolism, and biotechnology. In a typical catalytic cycle, P450s use redox proteins or domains to mediate electron transfer from NAD(P)H to heme iron. Therefore, the main factors determining the catalytic efficiency of P450s include not only the P450s themselves but also their redox-partners and electron transfer pathways. In this review, the electron transfer pathway engineering strategies of the P450s catalytic system are reviewed from four aspects: cofactor regeneration, selection of redox-partners, P450s and redox-partner engineering, and electrochemically or photochemically driven electron transfer.
Collapse
Affiliation(s)
- Jingting He
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi 832003, China;
| | - Xin Liu
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Key Lab for Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Chun Li
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Key Lab for Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
5
|
Xi X, Hu L, Huang H, Wang Y, Xu R, Du G, Chen J, Kang Z. Improvement of the stability and catalytic efficiency of heparan sulfate N-sulfotransferase for preparing N-sulfated heparosan. J Ind Microbiol Biotechnol 2023; 50:kuad012. [PMID: 37327079 PMCID: PMC10291996 DOI: 10.1093/jimb/kuad012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/15/2023] [Indexed: 06/18/2023]
Abstract
The chemo-enzymatic and enzymatic synthesis of heparan sulfate and heparin are considered as an attractive alternative to the extraction of heparin from animal tissues. Sulfation of the hydroxyl group at position 2 of the deacetylated glucosamine is a prerequisite for subsequent enzymatic modifications. In this study, multiple strategies, including truncation mutagenesis based on B-factor values, site-directed mutagenesis guided by multiple sequence alignment, and structural analysis were performed to improve the stability and activity of human N-sulfotransferase. Eventually, a combined variant Mut02 (MBP-hNST-NΔ599-602/S637P/S741P/E839P/L842P/K779N/R782V) was successfully constructed, whose half-life at 37°C and catalytic activity were increased by 105-fold and 1.35-fold, respectively. After efficient overexpression using the Escherichia coli expression system, the variant Mut02 was applied to N-sulfation of the chemically deacetylated heparosan. The N-sulfation content reached around 82.87% which was nearly 1.88-fold higher than that of the wild-type. The variant Mut02 with high stability and catalytic efficiency has great potential for heparin biomanufacturing.
Collapse
Affiliation(s)
- Xintong Xi
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Litao Hu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Hao Huang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yang Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Ruirui Xu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
| | - Zhen Kang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
6
|
Lee HD, Yoo SK, Yoo HS, Yun CH, Kim GJ. Expression and Characterization of Monomeric Recombinant Isocitrate Dehydrogenases from Corynebacterium glutamicum and Azotobacter vinelandii for NADPH Regeneration. Int J Mol Sci 2022; 23:15318. [PMID: 36499645 PMCID: PMC9736777 DOI: 10.3390/ijms232315318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
The enzymatic transformation of various chemicals, especially using NADPH-dependent hydroxylase, into more soluble and/or high value-added products has steadily garnered increasing attention. However, the industrial application of these NADPH-dependent hydroxylases has been limited due to the high cost of the cofactor NADPH. As an alternative, enzymatic NADPH-regeneration systems have been developed and are frequently used in various fields. Here, we expressed and compared two recombinant isocitrate dehydrogenases (IDHs) from Corynebacterium glutamicum and Azotobacter vinelandii in Escherichia coli. Both enzymes were hyper-expressed in the soluble fraction of E. coli and were single-step purified to apparent homogeneity with yields of more than 850 mg/L. These enzymes also functioned well when paired with NADPH consumption systems. Specifically, NADPH was regenerated from NADP+ when an NADPH-consuming cytochrome P450 BM3 from Bacillus megaterium was incorporated. Therefore, both enzymes could be used as alternatives to the commonly used regeneration system for NADPH. These enzymes also have promising potential as genetic fusion partners with NADPH-dependent enzymes due to the monomeric nature of their quaternary structure, thereby resulting in self-sufficient biocatalysts via NADPH regeneration in a single polypeptide with NADPH-dependent activity.
Collapse
Affiliation(s)
- Hun-Dong Lee
- Department of Biological Sciences and Research Center of Ecomimetics, College of Natural Sciences, Chonnam National University, Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Su-Kyoung Yoo
- Department of Biological Sciences and Research Center of Ecomimetics, College of Natural Sciences, Chonnam National University, Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Ho-Seok Yoo
- Department of Biological Sciences and Research Center of Ecomimetics, College of Natural Sciences, Chonnam National University, Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Chul-Ho Yun
- School of Biological Sciences and Technology, Chonnam National University, Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Geun-Joong Kim
- Department of Biological Sciences and Research Center of Ecomimetics, College of Natural Sciences, Chonnam National University, Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| |
Collapse
|
7
|
Hao JH, Zheng DJ, Ye YH, Yu JT, Li XY, Xiong MJ, Jiang WH, He KP, Li PY, Lv YS, Gu WM, Lai LH, Wu YD, Cao SL. Atomevo: a web server combining protein modelling, docking, molecular dynamic simulation and MMPBSA analysis of Candida antarctica lipase B (CalB) fusion protein. BIORESOUR BIOPROCESS 2022; 9:53. [PMID: 38647745 PMCID: PMC10991163 DOI: 10.1186/s40643-022-00546-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/03/2022] [Indexed: 11/10/2022] Open
Abstract
Although current computational biology software is available and has prompted the development of enzyme-substrates simulation, they are difficult to install and inconvenient to use. This makes the time-consuming and error-prone process. By far there is still a lack of a complete tool which can provide a one-stop service for the enzyme-substrates simulation process. Hence, in this study, several computational biology software was extended development and integrated as a website toolbox named Atomevo. The Atomevo is a free web server providing a user-friendly interface for enzyme-substrates simulation: (1) protein homologous modeling; (2) parallel docking module of Autodock Vina 1.2; (3) automatic modeling builder for Gromacs molecular dynamics simulation package; and (4) Molecular Mechanics/Poisson-Boltzmann Surface Area (MMPBSA) analysis module for receptor-ligand binding affinity analysis. We officially launched the web server and provided instructions through a case for the design and simulation of Candida antarctica lipase B (CalB) fusion protein called Maltose Binding Protein-Thioredoxin A-Candida antarctica lipase B (MBP-TrxA-CalB).
Collapse
Affiliation(s)
- Jin-Heng Hao
- Guangdong Key Laboratory of Food Intelligent Manufacturing, School of Food Science and Technology, Foshan University, Foshan, 528000, China
- School of Food Science and Technology, Foshan University, Foshan, 528225, Guangdong, China
| | - Dun-Jin Zheng
- Guangdong Key Laboratory of Food Intelligent Manufacturing, School of Food Science and Technology, Foshan University, Foshan, 528000, China
- School of Food Science and Technology, Foshan University, Foshan, 528225, Guangdong, China
| | - Yu-Hao Ye
- School of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jie-Ting Yu
- Guangdong Key Laboratory of Food Intelligent Manufacturing, School of Food Science and Technology, Foshan University, Foshan, 528000, China
- School of Food Science and Technology, Foshan University, Foshan, 528225, Guangdong, China
| | - Xin-Yao Li
- Guangdong Key Laboratory of Food Intelligent Manufacturing, School of Food Science and Technology, Foshan University, Foshan, 528000, China
- School of Food Science and Technology, Foshan University, Foshan, 528225, Guangdong, China
| | - Mei-Jie Xiong
- Guangdong Key Laboratory of Food Intelligent Manufacturing, School of Food Science and Technology, Foshan University, Foshan, 528000, China
| | - Wen-Hao Jiang
- Guangdong Key Laboratory of Food Intelligent Manufacturing, School of Food Science and Technology, Foshan University, Foshan, 528000, China
| | - Kang-Ping He
- Guangdong Key Laboratory of Food Intelligent Manufacturing, School of Food Science and Technology, Foshan University, Foshan, 528000, China
| | - Pei-Yu Li
- Guangdong Key Laboratory of Food Intelligent Manufacturing, School of Food Science and Technology, Foshan University, Foshan, 528000, China
| | - Yong-Si Lv
- Guangdong Key Laboratory of Food Intelligent Manufacturing, School of Food Science and Technology, Foshan University, Foshan, 528000, China
| | - Wei-Ming Gu
- Guangdong Key Laboratory of Food Intelligent Manufacturing, School of Food Science and Technology, Foshan University, Foshan, 528000, China
| | - Lin-Hao Lai
- Guangdong Key Laboratory of Food Intelligent Manufacturing, School of Food Science and Technology, Foshan University, Foshan, 528000, China
| | - Yi-Da Wu
- Guangdong Key Laboratory of Food Intelligent Manufacturing, School of Food Science and Technology, Foshan University, Foshan, 528000, China
| | - Shi-Lin Cao
- Guangdong Key Laboratory of Food Intelligent Manufacturing, School of Food Science and Technology, Foshan University, Foshan, 528000, China.
- School of Food Science and Technology, Foshan University, Foshan, 528225, Guangdong, China.
- School of Food Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
8
|
Wang J, Woodley JM. In Situ Cofactor Regeneration Using NAD(P)H Oxidase: Enzyme Stability in a Bubble Column. ChemCatChem 2022. [DOI: 10.1002/cctc.202200255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jingyu Wang
- Technical University of Denmark Department of Chemical and Biochemical Engineerning Søltofts Plads Bygning 228A, 2800 Kgs. Lyngby 2800 2800 Kgs. Lyngby DENMARK
| | - John M. Woodley
- Technical University of Denmark Department of Chemical Engineering S�ltofts Plads DK-2800 Lyngby DENMARK
| |
Collapse
|
9
|
Yang JI, Lee SH, Ryu JY, Lee HS, Kang SG. A Novel NADP-Dependent Formate Dehydrogenase From the Hyperthermophilic Archaeon Thermococcus onnurineus NA1. Front Microbiol 2022; 13:844735. [PMID: 35369452 PMCID: PMC8965080 DOI: 10.3389/fmicb.2022.844735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/03/2022] [Indexed: 11/13/2022] Open
Abstract
The genome of the hyperthermophilic archaeon Thermococcus onnurineus NA1 contains three copies of the formate dehydrogenase (FDH) gene, fdh1, fdh2, and fdh3. Previously, we reported that fdh2, clustered with genes encoding the multimeric membrane-bound hydrogenase and cation/proton antiporter, was essential for formate-dependent growth with H2 production. However, the functionality of the other two FDH-coding genes has not yet been elucidated. Herein, we purified and characterized cytoplasmic Fdh3 to understand its functionality. The purified Fdh3 was identified to be composed of a tungsten-containing catalytic subunit (Fdh3A), an NAD(P)-binding protein (Fdh3B), and two Fe-S proteins (Fdh3G1 and Fdh3G2). Fdh3 oxidized formate with specific activities of 241.7 U/mg and 77.4 U/mg using methyl viologen and NADP+ as electron acceptors, respectively. While most FDHs exhibited NAD+-dependent formate oxidation activity, the Fdh3 of T. onnurineus NA1 showed a strong preference for NADP+ over NAD+ as a cofactor. The catalytic efficiency (k cat /K m) of Fdh3 for NADP+ was measured to be 5,281 mM-1 s-1, which is the highest among NADP-dependent FDHs known to date. Structural modeling suggested that Arg204 and Arg205 of Fdh3B may contribute to the stabilization of the 2'-phosphate of NADP(H). Fdh3 could also use ferredoxin as an electron acceptor to oxidize formate with a specific activity of 0.83 U/mg. Furthermore, Fdh3 showed CO2 reduction activity using reduced ferredoxin or NADPH as an electron donor with a specific activity of 0.73 U/mg and 1.0 U/mg, respectively. These results suggest a functional role of Fdh3 in disposing of reducing equivalents by mediating electron transfer between formate and NAD(P)H or ferredoxin.
Collapse
Affiliation(s)
- Ji-In Yang
- Marine Biotechnology Research Centre, Korea Institute of Ocean Science and Technology, Busan, South Korea
- Department of Marine Biotechnology, KIOST School, University of Science and Technology, Daejeon, South Korea
| | - Seong Hyuk Lee
- Marine Biotechnology Research Centre, Korea Institute of Ocean Science and Technology, Busan, South Korea
| | - Ji-Young Ryu
- Marine Biotechnology Research Centre, Korea Institute of Ocean Science and Technology, Busan, South Korea
| | - Hyun Sook Lee
- Marine Biotechnology Research Centre, Korea Institute of Ocean Science and Technology, Busan, South Korea
- Department of Marine Biotechnology, KIOST School, University of Science and Technology, Daejeon, South Korea
| | - Sung Gyun Kang
- Marine Biotechnology Research Centre, Korea Institute of Ocean Science and Technology, Busan, South Korea
- Department of Marine Biotechnology, KIOST School, University of Science and Technology, Daejeon, South Korea
| |
Collapse
|
10
|
Gad El-Hak HN, Mahmoud HS, Ahmed EA, Elnegris HM, Aldayel TS, Abdelrazek HMA, Soliman MTA, El-Menyawy MAI. Methanolic Phoenix dactylifera L. Extract Ameliorates Cisplatin-Induced Hepatic Injury in Male Rats. Nutrients 2022; 14:1025. [PMID: 35268000 PMCID: PMC8912432 DOI: 10.3390/nu14051025] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 12/20/2022] Open
Abstract
This study investigated the ameliorative potential of methanolic date flesh extract (MDFE) against cisplatin-induced hepatic injury. Twenty male rats (weighing 180-200 g) were allocated into four groups: control; date flesh (DF) group (oral 600 mg/kg MDFE for 21 days); Cis group (7.5 mg/kg i.p. at day 16); and date flesh/cisplatin (DF/Cis) group (oral 600 mg/kg MDFE for 21 days and 7.5 mg/kg i.p. at day 16). Hepatic biochemical parameters in sera, and inflammatory and oxidant/antioxidant hepatic biomarkers were estimated. Hepatic histological changes and the immunohistochemistry of cyclooxygenase-2 (COX-2), nuclear factor kappa B (NF-κB), and alpha smooth muscle actin (α-SMA) were assessed. Pretreatment with MDFE decreased Cis-triggered liver biochemical parameters, oxidative stress, inflammatory biomarkers, and histological damage. Moreover, MDFE treatment reduced Cis-induced hepatic NF-κB, COX-2, and α-SMA protein expression. MDFE exerted a hepatoprotective effect when used concomitantly with Cis. Its effect was mediated via its antioxidant and anti-inflammatory ingredients.
Collapse
Affiliation(s)
- Heba Nageh Gad El-Hak
- Zoology Department, Faculty of Sciences, Suez Canal University, Ismailia 41522, Egypt;
| | - Hany Salah Mahmoud
- Center of Scientific Foundation for Experimental Studies and Research, Ismailia 41511, Egypt;
| | - Eman A. Ahmed
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt;
| | - Heba M. Elnegris
- Department of Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt;
- Department of Histology and Cell Biology, Faculty of Medicine, Badr University in Cairo, Cairo 11829, Egypt
| | - Tahany Saleh Aldayel
- Department of Physical Sport Sciences, College of Education, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Heba M. A. Abdelrazek
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt;
| | - Mohamed T. A. Soliman
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 67614, Saudi Arabia;
| | | |
Collapse
|
11
|
Yin X, Zeng Y, Chen J, Liu L, Gao Z. Combined active pocket and hinge region engineering to develop an NADPH-dependent phenylglycine dehydrogenase. Bioorg Chem 2022; 120:105601. [PMID: 35033816 DOI: 10.1016/j.bioorg.2022.105601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/20/2021] [Accepted: 01/04/2022] [Indexed: 12/29/2022]
Abstract
NADPH-dependent amino acid dehydrogenases (AADHs) are favorable enzymes to construct artificial biosynthetic pathways in whole-cell for high-value noncanonical amino acids (NcAAs) production. Glutamate dehydrogenases (GluDHs) represent attractive candidates for the development of novel NADPH-dependent AADHs. Here, we report the development of a novel NADPH-dependent phenylglycine dehydrogenase by combining active pocket engineering and hinge region engineering of a GluDH from Pseudomonas putida (PpGluDH). The active pocket of PpGluDH was firstly tailored to optimize its binding mode with bulky substrate α-oxobenzeneacetic acid (α-OA), and then, the hinge region was further engineered to tune the protein conformational dynamics, which finally resulted in a mutant M3 (T196A/T121I/L123D) with a 103-fold increase of catalytic efficiency (kcat/Km) toward α-OA. The M3 mutant exhibited high catalytic performance in both in vitro biocatalysis preparation and in vivo biosynthesis of l-phenylglycine, indicating its promising practical applications. Our results demonstrated that co-engineering of the active pocket and hinge region is an effective strategy for developing novel NADPH-dependent AADHs from GluDHs for NcAAs production.
Collapse
Affiliation(s)
- Xinjian Yin
- School of Marine Science, Sun Yat-sen University, Zhuhai 519080, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| | - Yujing Zeng
- School of Marine Science, Sun Yat-sen University, Zhuhai 519080, China
| | - Jun Chen
- School of Marine Science, Sun Yat-sen University, Zhuhai 519080, China
| | - Lan Liu
- School of Marine Science, Sun Yat-sen University, Zhuhai 519080, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| | - Zhizeng Gao
- School of Marine Science, Sun Yat-sen University, Zhuhai 519080, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China.
| |
Collapse
|
12
|
Yu Z, Yu H, Xu J, Wang Z, Wang Z, Kang T, Chen K, Pu Z, Wu J, Yang LR, Xu G. Enhancing Thermostability of Lipase from Pseudomonas alcaligenes for producing L-menthol by the CREATE Strategy. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00082b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Lipase from Pseudomonas alcaligenes (PaL) catalyzes the hydrolysis of racemic menthol propionate to produce L-menthol, one of the most important flavoring agents in food, cosmetics and pharmaceuticals industries. However,...
Collapse
|